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Abstract

Assuming non-stationarity in flood frequency models is still controversial due to uncertainty in estimates. In this study, a hierarchical 
Bayesian framework for flood frequency analysis is presented without assuming the stationarity hypothesis. We account data and model 
uncertainty in all modelling steps and use the Pardo River, Brazil, as study case. Results showed the presence of  increasing trends in 
floods in Pardo River. The stationary model underestimated floods compared to the non-stationary model. Physical-based covariates 
models performed better than time-based showing the importance of  adding physical covariates to explain the trend behavior. 
The presented model is adaptable to other case. Finally, this study provided guidance for the flood recurrence estimation under 
non-stationary conditions.
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Resumo

Assumir a não estacionariedade em modelos de frequência de cheia ainda é controverso devido à incerteza nas estimativas. Neste 
estudo, um modelo bayesiano hierárquico para análise de frequência de cheias é apresentado sem assumir a hipótese de estacionariedade. 
Levamos em consideração incertezas dos dados e do modelo em todas as etapas de modelagem e utilizamos o rio Pardo, Brasil, como 
estudo de caso. Os resultados mostraram a presença de tendências crescentes nas cheias no rio Pardo. O modelo estacionário subestimou 
as cheias em comparação com o modelo não estacionário. Os modelos de covariantes de base física tiveram melhor desempenho do 
que os baseados em tempo, mostrando a importância de adicionar covariantes físicas para explicar o comportamento da tendência. 
O modelo apresentado é adaptável a outros estudos de caso. Finalmente, este estudo forneceu orientação para a estimativa de recorrência 
de cheias em condições não estacionárias.

Palavras-chave: Análise de Frequência de Cheias; Bayesiano; Monte Carlo via Cadeias de Markov; Extremos; Mudanças Climáticas.
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INTRODUCTION

An accurate characterization of  magnitude, frequency, 
duration, and timing of  floods is key for water management 
(Merz  et  al., 2012). The estimation of  flood recurrence is 
useful in many applications, including natural stream design, 
urban zoning and planning, and design of  hydraulic structures 
(Gordon  et  al., 2004; Montanari  et  al., 2009). The Flood 
frequency analysis (FFA) is a method of  fitting a probability 
distribution to a dataset to estimate the future occurrence of  
an event of  interest, allowing us to determine the probability 
of  flood’s magnitude and frequency, and therefore, supporting 
water management practices and policies (Rao & Hamed, 2000; 
Brunner et al., 2021; Slater et al., 2021).

Traditional FFA methods require flood data set to be: 
i) independent and identically distributed, and ii) stationary 
(i.e., statistical properties do not change over time). When 
assuming stationarity, we’re implying that the chosen return 
period (RP) in the structure’s design will be the same by the end 
of  its planned design life (Salas & Obeysekera, 2014).

However, as many studies have identified significant trends 
in hydrological series, the stationarity assumption does not always 
support. Trends in hydrological series were already identified 
in many studies in different regions. The 100-year flood may 
become more common in many watersheds in the United States 
(Vogel et al., 2011), trends in magnitude of  snowmelt floods 
were identified in Canada (Cunderlik & Ouarda, 2009), annual 
streamflow in Europe (Stahl et al., 2012) and downward annual 
maxima flood trends in the southeast and southwest regions 
of  Australia (Ishak et al., 2013). In Brazil, Detzel et al. (2011) 
identified trends in inflow series of  hydroelectric plants. However, 
a more recent study by Berghuijs  et  al. (2017) found smaller 
increases in the frequency and magnitude of  extreme floods in 
Brazil compared to Europe and the United States when analyzing 
multi-continental changes. Bartiko et al. (2019) observed more 
pronounced trends in the frequency rather than the magnitude 
of  floods on an annual scale in Brazil. Despite this, the authors 
noted that flood events are becoming more frequent and intense 
in regions of  Brazil with wet conditions and less frequent and 
intense in drier regions.

Although it is difficult to distinguish the exact cause 
of  trends, researchers have identified several potential drivers, 
including atmospheric factors such as natural climate variability 
and human-induced climate change, catchment characteristics 
such as urbanization and land use changes, and alterations 
to rivers and streams resulting from in-stream channel 
engineering (Merz et al., 2012, Bloschl et al., 2015). According to 
Milly et al. (2008), anthropogenic effects on Earth’s climate and 
its consequences on water cycle makes it unfeasible to consider 
the stationary assumption.

Conversely, some authors (Montanari & Koutsoyiannis, 2014; 
Serinaldi & Kilsby, 2015) argue that stationarity should be the default 
assumption in hydrologic series modeling due to uncertainties 
added to the nonstationary model, affecting its reliability, as well 
as the difficulty to demonstrate the main driver in hydrologic 
series changes. Therefore, these authors suggest there should be 
strong evidence of  changes in extreme events before assuming 
non-stationarity.

To assess uncertainty in non-stationary models, the Bayesian 
analysis seems a promising approach. The Bayesian framework 
considers the addition covariates and, therefore, reduce uncertainties 
(Serinaldi & Kilsby, 2015). Some of  the usual FFA methods, such 
as the Maximum-Likelihood may have some drawbacks related to 
instability in the likelihood function of  small sample sizes, leading 
to estimates with high bias and variance (Hosking et al., 1985).

Several non-stationary techniques have been developed for 
FFA. For instance, Martins & Stedinger (2000) proposed an approach 
based on the Generalized Maximum Likelihood. Hosking (1990) 
adapted the L-moments estimation for non-stationary conditions, 
as further demonstrated by Gado & Nguyen (2016). Another 
approach involves a two-parameter distribution utilizing Generalized 
Additive Models for Location, Scale and Shape (GAMLSS), as 
proposed by Villarini et al. (2009). Some alternatives to narrow 
uncertainty in FFA include considering peaks-over-threshold 
(Thiombiano  et  al., 2017), adding other covariates such as 
drainage area (Lima et al., 2016; Wu et al., 2019), precipitation 
(Prosdocimi et al., 2014; Šraj et al., 2016), climate related covariates 
(Dong et al., 2019; Sharma et al., 2022), and a mixture of  climate 
and physiographic basin characteristics (Viglione et al., 2016).

Numerous studies in FFA (Martins & Stedinger, 2000; 
El Adlouni et al., 2006; Gado & Nguyen, 2016; Bhat et al., 2019) 
use model selection methodologies that penalizes models with 
higher number of  parameters (Burnham & Anderson, 2004) instead 
of  considering the direct uncertainty caused by data and model 
parameterization (Vehtari et al., 2017). Bayesian studies often does 
not integrate over the posterior of  parameters by considering point 
estimates like the posterior mean (Šraj et al., 2016). Bootstrapping 
is a common approach to account for prediction uncertainty 
by calculating confidence intervals (Serinaldi & Kilsby, 2015; 
Gado & Nguyen, 2016). However, its use is not straightforward 
for the non-stationary case, when we commonly have hierarchical 
data structure (e.g., precipitation), whereas the bootstrap was 
originally designed for data modelled as i.i.d (Field & Welsh, 2007; 
Ren et al., 2010). Additionally, bootstrap does not consider informative 
priors, a drawback as no expert knowledge is used to narrow model 
uncertainty in a world where hydrological data is scarce.

Therefore, due to the necessity to better understand 
uncertainty in non-stationary flood recurrence credibility intervals, 
we present a hierarchical Bayesian model for flood risk estimation 
of  non-stationarity rivers using GEV distribution. First, we provide 
guidelines to FFA under a fully Bayesian approach. We use the 
GEV distribution as likelihood in our Bayesian model and set its 
parameters to vary depending on covariates. Secondly, using the 
hydrological data of  Pardo River watershed in southeast Brazil, 
we assess the proposed method by analyzing the flood recurrence 
intervals under the non-stationary assumption. We incorporate 
the use of  precipitation information as explainable variable of  
non-stationarity and compare with the time covariant (in years) case.

MATERIAL AND METHODS

We used Bayesian inference for flood estimation (Figure 1). 
We used annual maximum streamflow and GEV as likelihood 
for all models. We set time and precipitation as covariates 
(99th quantile and total annual precipitation) and compared results 
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to stationary model. After sampling from Markov Chain Monte 
Carlo (MCMC), we assessed model convergence and quantified 
the goodness of  fit for all tested models. We selected the Pardo 
River as study case to assess model performance.

Bayesian theory and MCMC

The Bayesian theorem involves calculating the probability 
of  a set of  parameters (θ ) given a set of  observations (X ). Unlike 
frequentist approaches, which treat the variable of  interest as a constant 
value, Bayesian theory considers it as a random variable to account for 
the uncertainty in its exact value. This uncertainty is represented by a 
probability distribution that can be calculated from the observations.

Some advantages of  Bayesian method are its ability to 
provide the parameters’ full posterior distribution, instead of  only 
a point estimate, which allows the evaluation of  uncertainties in 
the model, known as credible intervals.

To employ the Bayesian approach, we integrate the prior 
distribution, P(θ), which represents our prior knowledge about the 
parameter θ, with the likelihood of  the dataset, P(X|θ). In cases 
where we lack robust prior information about the parameters, it is 
advisable to choose an uninformative prior distribution, which can 
be uniform or flat. Conversely, if  we possess sufficient background 
information, we can set informative priors to better inform the 
analysis. The Bayes’ theorem (Equation 1) is expressed as follows:

( ) ( )
( )

( | )
|

P P X
P X

P X
θ θ

θ = 	 (1)

Where ( | )P Xθ  is the posterior distribution, or the probability 
of  the hypothesis given the data or evidence X ; ( )P θ  is the 
prior distribution; ( | )P X θ  is the likelihood function, or the 
probability of  the data under the hypothesis, and it is usually 
given by a known distribution (for instance, GEV distribution); 
( )P X  makes the posterior distribution of  probabilities for 

each hypothesis sum to one, and for this reason, is called 
normalizing constant.

For simple problems ( )P X  can be obtained analytically. 
However, in non-trivial cases where the parameter vector is large, 
computational methods are required such as the Markov Chain 
Monte Carlo (MCMC; Gelman et al., 2013).

MCMC construct a Markov Chain whose stationary 
distribution is the target distribution (i.e., Posterior) after a large 
number of  steps. Among the several MCMC techniques, the 
Metropolis Hastings (MH) (Metropolis et al., 1953; Hastings, 1970) 
has been widely used in hydrology studies (Han & Coulibaly, 2017). 
It consists of  sampling from a target distribution by making a 
random proposal for new parameter values and deciding if  those 
values are incorporated to the chain or if  they are discarded based 
on defined criteria. This procedure is repeated until the desired 
number of  iterations is achieved, attaining the samples from the 
target distribution in the accepted parameters values.

Figure 1. Workflow and summary of  used techniques.
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Nonetheless, a characteristic and drawback of  MH is its 
own randomness, called the “random walk” since it tends to waste 
computational time or explore narrow regions of  the parameters 
space in complex problems. Hence, Hamiltonian Monte Carlo 
(HMC) algorithm is a more efficient way to explore the parameter 
space avoiding the random walk and sensitivity to correlated 
parameters (Hartmann & Ehlers, 2017). Traditional HMC requires 
the specification of  two parameters, and it is highly sensitive to 
them: step size and number of  steps. In this matter, the No U-Turn 
Sampler (NUTS) use a recursive algorithm that eliminates the 
need to set a number of  steps. NUTS performs equally or more 
efficiently than traditional HMC (Hoffman & Gelman, 2014). 
In this work, we used the the Probabilistic Programming framework 
written in Python, PyMC3 (Salvatier et al., 2016).

Stationary and non-stationary models

The Generalized Extreme Value (GEV) distribution is 
commonly used to model annual streamflow maxima (Katz et al., 2002). 
It includes three distribution families according to the shape parameter 
(κ ): Gumbel ( 0κ = ), Fréchet ( 0κ < ) and Weibull ( 0κ > ). GEV 
distribution in its cumulative form (Equation 2) is represented by:

( )
1

exp 1
  

−   = − −        

yF y
κµκ

a
	 (2)

where yaµ
κ

 + ≤ < ∞ 
 

 when 0κ <  (Fréchet), y−∞ < < ∞ when 0κ =  
(Gumbel) and y aµ

κ
 −∞ < ≤ + 
 

 when 0κ >  (Weibull). µ , a , κ  are 
the location, scale and shape parameters, respectively. To calculate 
quantiles with non-exceedance probability P, the inverse of  the 
cumulative distribution function is used.

Reasonable shape parameters lie between -0.5 and 0.5 due 
to GEV restrictions regarding skew and variance. Due to these 
mathematical restrictions and based on hydrological experience, 
it is recommended a ( )~ 6, 9Beta p qκ = =  prior centered in -0.1 
(Martins & Stedinger, 2000). Moreover, for heavy tailed cases, most 
common in hydrological practice, the choice of  parameters 6 and 9 gives 
better quantile estimates (Park, 2005). For location and scale, when 
no information is available, uninformative parameters are chosen.

Convergence checking

As in any other optimization method, the convergence 
of  the MCMC process must be analyzed for a proper inference, 
as we are assuming that the samples are derived from the true 
posterior distribution. We can determine the minimum number 
of  samples required to ensure a reasonable approximation. There 
are several known methods to perform convergence diagnostics. 
Once no method works in every case, it is recommended a 
combination of  strategies to evaluate MCMC sampler convergence 
(Cowles & Carlin, 1996; El Adlouni et al., 2006). In this study, we 
chose Gelman and Rubin (Gelman & Rubin, 1992) and Geweke 
(Geweke, 1991) tests due to their ease interpretation and wide use 
in the literature (Najafi & Moradkhani, 2013; Nguyen et al., 2014; 
Seidou et al., 2012).

The Gelman and Rubin test is based on the comparison 
of  the variation within the chains in relation to the total variation 
across the chains for all the iterations. Several Markov chains are 
run in parallel and the square root of  the ratio between average 
within-chain and average between-chains variance of  the likelihood 
are computed during the iterations. This ratio should ideally be 
equal to 1 if  convergence is achieved.

The Geweke test splits the MCMC resulting chain in two 
parts and compare their mean. If  the chain has converged, their 
mean should be similar. With this test is also possible to determine 
the burn-in period of  the simulation (or how many initial iterations 
to discard), which would be equivalent to the smallest early portion 
of  the chain that passes the diagnostic (El Adlouni et al., 2006).

Model selection

Cross-validation (CV) is primarily used to estimate model 
performance when limited data is available. In the standard 
approach, called k-fold CV, we split the dataset in k  smaller sets. 
For each subset we sampled a group as a holdout dataset and 
took the remaining groups as a training dataset. We fitted the 
model using the training set and then, evaluated the model using 
the discarded set. In the Leave-One-Out cross-validation (LOO), 
we iterated through each data point to test model performance. 
To implement K-fold cross-validation we need to partition the 
data repeatedly and fit the model on every partition, which 
is computationally costly. To approximate LOO, importance 
sampling we used the Pareto Smoothed Importance Sampling 
(PSIS) (Vehtari et al., 2017). One advantage of  PSIS-LOO is 
that the method is more robust than the Watanabe–Akaike 
information criterion (WAIC) in the finite case with weak 
priors or influential observations. As PSIS-LOO accounts for 
the whole posterior it is a fully Bayesian method, unlike AIC 
or DIC. Therefore, we used PSIS-LOO to assess prediction 
accuracy. Models with lower scores are preferred than the others. 
One concern regarding using LOO is the fact that we are using 
“future” data to validate past data, as we hold-out one data at a 
time for validation (Bürkner et al., 2020). However, LOO is able 
to select a model which can describe well the structure in the 
time series. The main assumption we have to make is that it is 
likely that such model we choose as the “best” would also make 
good predictions for future data as it did for the calibration data.

CASE STUDY

The Pardo River Basin was selected to assess the presented 
model in this study. Streamflow and precipitation records were 
obtained from Hidroweb from the Brazilian National Water 
Agency (ANA). Based on non-stationarity evidence in literature 
(Santos et al., 2016) we selected streamflow data from the Clube 
de Regatas station (code 61834000), located in the city of  Ribeirão 
Preto, São Paulo Brazil. The streamflow timeseries correspond to 
1941-2014 period. Data from nearby precipitation gauge station 
(code 02147004), was used. We considered a 5% maximum gap 
to include each year into the used dataset. After this pre analysis, 
and to pair both streamflow and precipitation data, we considered 
the period of  1945-2012.
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Annual flood time series, annual precipitation percentile 99th, 
and total annual precipitation were grouped from the time series 
dataset. All three variables indicate an increasing trend (Figure 2).

All models in this study use GEV distribution as likelihood 
in the Bayesian framework. We chose to vary the location parameter 
in function of  time and precipitation. The shape parameter was 
assumed as constant in time for the principle of  parsimony. 
The models are summarized as:

•	 ( )0 , ,GEV µ a κ : A stationary case, where all parameters are 
constant;

•	 ( )1 1 2, ,GEV m t m a κ+ : A non-stationary case, where the 
location parameter (µ) is linearly dependent on time 
as covariate;

•	 ( )1 99 1 99 2, ,PGEV m P m a κ+ : A non-stationary case, where the 
location parameter (µ) is linearly dependent on the 99th 
percentile of  daily rainfall values during a hydrological year;

•	 ( )1 1 2, ,PTotal TotalGEV m P m a κ+ : A non-stationary case, where 
the location parameter µ) is linearly dependent on the total 
annual precipitation.

Time ( t ) was counted from the beginning of  the record 
for 1GEV .

As indicated in section 2.2, Beta prior for the shape parameter 
was used for all models. For all other parameters and hyper-parameters 
uninformative priors were set. Details on distributions and boundaries 
are presented in Supplementary Material S1.

To make predictions we extrapolate covariates. As for 1GEV  
covariate is time, extrapolation is evident, for the precipitation-
based models we performed a linear regression of  recorded 
precipitations and time to forecast the near-future precipitation 
data using the assumption floods will change in the same rate as 
in the recorded period.

RESULTS AND DISCUSSIONS

Model convergence

Figure  3 presents the trace plots for the 1GEV  model 
parameters obtained to Pardo River timeseries. It shows that all 
parameters follow a central tendency, meaning they are stable 
and there is low dependence from the initial state (i.e., they have 
low autocorrelation). All traceplots from 1GEV  present a zig-zag 
motion indicating a good exploration of  the posterior distribution. 
To guarantee the chain has converged to its equilibrium value, we 
drawn multiple long chains and compared marginal parameter 
densities when estimating FFA. To choose the “long chain” quantity 
we checked different (computationally feasible) chain lengths from 
1,500 to 10,000 and respective impacts on posterior summaries 
such as Highest Posterior Densities (HPD; most likely values of  
the parameters with a fixed probability, e.g., 95%), mean and median 
values. There is no rule to choose chain lengths, but there was no 
evidence of  longer chains needed in our sensitivity analysis. In our 
study, all trace plots converged (Figure 3). Parameter estimates do 
not move quickly from the central tendency after a few iterations 
from the initial value. This pattern means we have a good starting 
value (other trace plots not shown here).

Figure 2. Time series in the Pardo River of  discharge, annual 
99th quantile precipitation and total annual precipitation. In gray, 
linear regression for time series.

Chain length values can also be chosen depending on burn 
in period identified by model converge diagnostics. Geweke and 
Gelman and Rubin tests showed convergence for a burn-in-period 
of  500 iterations and chain length of  2500 (parameters not 
shown here). Multiple chains were generated and then retested 
using convergence diagnostics. They did not show considerable 
variation in terms of  convergence parameters. Due to the results 
of  Geweke and Gelman and Rubin tests, we assume that the model 
achieved convergence. It is important to note that if  some of  the 
above methods fail convergence detection, the alternative is to 
try a different parametrization strategy, such as different priors 
and respective hyper parameters, or resetting model structure. 
Changing to more informative priors, rebuilding model setup, 
and even gathering more data might improve model convergence.
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Figure 3. Trace plots and posterior densities of  GEV1 parameters in Pardo River. Different colors represent multiple simulated chains.

Parameter estimation

Table 1 shows the parameter estimation results for the 
studied models considering time and rainfall-based covariates. 
We found similar shape estimations (negative and close to zero) 
regardless of  the studied model. For all the non-stationary models 
we found the angular coefficient for the location parameter 1m ) 
to be positive not only for the posterior mean, but for the whole 
considered HPD. This confirms our suspicions of  an increasing 
trend in Pardo River. In 1GEV  the hyperparameter 1m  can give us 

an indication of  how much flow discharge increases per year. 
Compared to data mean (650 m3/s) it represents approximately 
0.9% of  the flow discharge per year. For hydraulic structures 
with long design lifespan this increase could be impactful under 
stationarity for the whole design period.

Comparison and prediction

1 99PGEV  and 1PTotalGEV  performed better than 0GEV  and 1GEV  
(Figure 4). LOO-score is represented in terms of  Deviance, which 
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is the LOO log-score multiplied by -2 (lower Deviance is better). 
The model that has total annual precipitation as covariate resulted as 
the best model in our study considering the cross-validation analysis.

Comparing 0GEV  and 1GEV  in terms of  the PSIS-LOO 
score, 1GEV  performed best (964.6 over 967.9), but errors overlap. 
Taking in to account the uncertainty in their estimation, the 
PSIS-LOO seems quite flat across these two models, meaning 
uncertainty mostly overlaps across models. This indicates that 
even though 1GEV  performed best, it does not differ much from 
the stationary model in terms of  PSIS-LOO. In this case, model 
complexity could not outweigh its benefit in absolute fit than the 
simpler model (even when there is an established increase trend). 
PSIS-LOO should guide our decision about the best model. 
However, it should not be the only metric to decide which model 
to effectively choose. Also, one limitation from PSIS-LOO or 
others cross-validation metrics is that they can only provide a 
relative test of  model quality. In other words, PSIS-LOO cannot 
answer if  the model is good in absolute sense (Vehtari et al., 2017). 
This means that we are comparing which model performs best 
with these specific chosen parameters. To find more informative 
priors and test different covariates that may improve model 
accuracy is one of  the main focus on Bayesian Flood Frequency 
Analysis (Han & Coulibaly, 2017).

Figure 5 shows flood prediction from years 2022-2050 
to the 2 and 100 years return period for our models. 
2 and 100 years were chosen to represent a common and a rare 
(and potentially catastrophic) event. 1GEV  overestimated more 
than other non-stationary models and presents higher uncertainty 
even for low return period values such as the 2-year presented. 
As LOO accounts for the whole posterior, the higher uncertainty 
in 1GEV  agrees with higher LOO values for this model compared 
to the precipitation-based ones. 1GEV  also shows higher differences 
in trend attenuation (the slope hyperparameter) then the other 
non-stationary, which shows the value of  adding physical-based 
covariates to non-stationary models for narrowing uncertainty. 

1PtotalGEV  and 1 99PGEV  present similar results on prediction. 
However, 1 99PGEV  slightly underestimate compared to 1PtotalGEV . 
The 99th quantile for the maximum predicted precipitation for year 
2050 is 60.6 mm, which means a discharge of  1552 m3/s for the 
expected 100 years flood considering the posterior mean of  our 
model. This value is 2.1% higher than the predicted value using 

1PtotalGEV  for 2022-year, 1520 m3/s.
All non-stationary models that have time as covariate, are 

extrapolations of  the trend pattern and infer about events that 
have not been observed. However, there is no guarantee that the 
increasing pattern of  floods in Pardo River will hold indefinitely. 
Future data may indicate change in the non-stationarity intensity. 
Therefore, it is important to identify what are the main drivers of  
non-stationarity to predictions (Viglione et al., 2016).

Considerations on the time frame predictions must be taken 
parsimoniously, while prediction data include a new layer of  uncertainty. 
Even though a linear regression is fair for comparing different 
models, it severely underestimates the variance of  the series and 
is unsuitable for a long-time ahead extrapolation. An alternative is 
using Regional Climate Models (Giorgi, 2019), which can provide 
more reliable information of  climate-related variables in a changing 
climate (Gebrechorkos et al., 2019). It is also important to note that to 
design bigger hydraulic structures such as dams, we need to estimate 
decamillennial floods. In the proposed framework, it would require 
covariates to be extrapolated 10,000 years in the future as well, 
which would clearly incorporate more uncertainty to the problem.

Our results showed significant differences in quantile estimates 
between stationary and non-stationary models, with lower discharge 
values for the stationary case. Unjustified stationarity assumptions 
could lead to an increase in risk failure of  hydraulic structures. 
Our results suggest that precipitation is a good covariate to explain the 
non-stationarity characteristic in Pardo River corroborating with other 
studies (Prosdocimi et al., 2014; Šraj et al., 2016; Viglione et al., 2016 ). 

Table 1. Summary of  the posterior estimates for all four models using time and rainfall-based covariates. Estimated parameters 
(posterior mean) are followed by 94% credible intervals (in brackets).

Model µ 1m 2m a κ

0GEV 528.38
[469.64; 586.65] - - 233.41

[195.04; 279.57]
-0.034

[-0.152; 0.096]

1GEV - 3.13
[0.43;5.84]

425.58
[313.56;529.41]

226.48
[184.82;269.86]

-0.032
[-0.149; 0.099]

1 99PGEV - 8.64
[3.92;13.41]

92.55
[-134.14;355.49]

211.67
[175.78;255.43]

-0.016
[-0.139; 0.123]

1PTotalGEV - 0.424
[0.26;0.59]

-74.318
[-321.29;160.74]

194.27
[158.81;232.51]

-0.006
[-0.130; 0.149]

Figure 4. Models’ comparison in terms of  PSIS-LOO and WAIC. 
Empty circle represents the values of  LOO and respective black 
error bars associated with them are the values of  the standard 
deviation of  LOO. Gray plots correspond to Watanabe–Akaike 
Information Criterion (WAIC).
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In fact, other climate indicators should be explored for Pardo River 
such as done by other authors (Zhang et al., 2019; Dong et al., 2019; 
Liu et al., 2014). Using multiple explanatory variables can be an 
attractive option because it may help to better explain the variability 
in the data. However, it is important to study these variables carefully 
since including more variables does not necessarily lead to a reduction 
in uncertainty (Zhang et al., 2019).

As the integration of  physical variables into non-stationary 
FFA methods seems promising, they still rely on extrapolation as 
in the time-based 1GEV  and have their own forecast uncertainty. 
The Bayesian method can deal with this uncertainty by adding a 
new level in model hierarchy. Naturally, this adds complexity to 
the model and their implications on how to model uncertainty 
should yet be explored which is out of  the scope of  this study. 
The representativeness of  river discharge time series also must be 
considered when performing FFA. Small size and insufficient datasets 
are associated with even higher uncertainties and consequently 
unreliable estimations.

CONCLUSIONS

The Bayesian framework for flood forecast presented 
in this study is flexible and adaptable to all cases. By presenting 
uncertainty in prediction return periods decision makers have 
the option to be even more cautious on flow return levels when 
designing hydraulic structures. The addition of  covariates and 

expert knowledge to update priors were extremely valuable to 
increase model accuracy and make better predictions.

The limitation of  the research work is still the uncertainty 
in extrapolating trends, as examining the assumption of  the 
stationarity. Several aspects from the future work can be tackled 
from this study: consideration of  regional data to better estimate 
priors, evaluation of  Bayesian model flexibility and estimation 
uncertainty regarding the combination of  multiple physical 
covariates, understand the role of  other physical variables such 
as radar data, climate data and remotely sensed data.
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