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Introduction
Ultrasonic methods are widely used to investigate 

the internal structures of several kinds of media, 
particularly in biological subjects. This is mainly due 
to ultrasound (US) being a nonionizing radiation able to 
generate real-time images at low cost. Its most attractive 
application is to quantitatively describe the US properties 
of tissues with the objective of differentiating normal 
and pathological ones.

The mean scattering space (MSS) is also considered 
to be an important tool for tissue characterization in 
addition to classical parameters that can be estimated 
from US data of biological tissues, such as scattering 
cross-section, wave speed, and attenuation coefficient 
(Bridal et al., 1998). The MSS is related to the natural 
periodicity of structures that exist in some organs, such 
as the liver and kidney (Simon et al., 1997).

There are several techniques available in the literature 
for estimating MSS. For example, Wear et al. (1993) 
compared methods using the Burg algorithm and Fast 
Fourier Transform (FFT). Varghese and Donohue (1993, 
1994, 1995) proposed a spectral correlation function to 
calculate the mean scattering space. Simon et al. (1997) 
presented an algorithm that uses the magnitude information 
of the spectrum of radio frequency (RF) signals.

The above mentioned techniques are applied to RF 
signals, or to their envelopes, which contains a mixture of 
contributions from periodic and non-periodic scatterers. 
To separate periodic and non-periodic signals, Pereira 
and Maciel (2001) used singular spectrum analysis (SSA) 
to estimate the MSS. Other studies considering SSA 
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used phantoms (Pereira et al., 2002) and bone in vitro 
(Pereira et al., 2004).

Kauati  et  al. (2012) evaluated the Burg, Wiener, 
and MUSIC spectral estimation methods for automatic 
MSS calculation without requiring operator intervention. 
The evaluation of these methods was carried out using 
10,000 simulated signals generated by a model where 
the variables of interest can be controlled. Signals 
from a periodic phantom using nylon wires were also 
used. The subspace method MUSIC provided the best 
performance.

Based on RF ultrasound signals, Donohue et al. (2001) 
used the generalized spectrum (GS) to analyze scatterer 
properties and compared them with the conventional 
texture analysis (CTA) for classifying breast tumors. 
Huang et al. (2000) used methods based on the GS and 
cepstrum to detect and estimate duct wall spacings in 
signals from ultrasonic phantom experiments and Monte 
Carlo simulations. Chen et al. (2011) proposed a method 
combining the Simon’s method (Simon et al., 1997) and 
the temporal autocorrelation to avoid spurious spectral 
peaks related to highly reflecting targets. Their proposed 
method outperformed Simon’s method alone.

Since then, the publication rate of studies related 
to periodicity estimation has slowed down. Recently, 
Pan et al. (2014, 2015) presented a method of mode 
decomposition-based cepstrum spacing measurement 
of MSS changes in quasi-periodic trabecular bones. 
In 2013, Rubert and Varghese (2013) compared multi-
taper coherence and single-taper to estimate MSS and 
concluded that the multi-taper significantly improves 
over single-taper. Periodicity estimation remains an open 
problem as can be seen in the recent paper from Zhou et al. 
(2017), that makes a detailed comparison of the 13 most 
common methods used for MSS estimation, regarding 
their advantages and limitations. They proposed that a 
comparative analysis of state-of-the-art MSS estimation 
methods is, thus, needed in the future, considering their 
estimation accuracy, time efficiency, and robustness.

This paper introduces a method to estimate the MSS 
by using SSA in association with the concept of entropy. 
SSA is a means of optimizing the separation between 
noise and signal subspaces and entropy is used as a 
quantitative criterion to establish a boundary between 
the two. The results of Monte Carlo simulations and 
real signals from a phantom are presented. These results 
were compared with the SSA method used by Pereira 
and Maciel (2001) and the SIMON method proposed by 
Simon et al. (1997). The SIMON method was chosen 
because it performed better than several other methods 
that we tested, such as Burg (Kauati et al., 2012), MUSIC 
(Kauati  et  al., 2012), SAC (Varghese and Donohue, 
1993, 1994, 1995), Tufts and Kumaresan (1982), and 
Wiener (Kauati et al., 2012).

Methods
The analysis was carried out on simulated US signals 

backscattered from biological soft tissues and subsequently 
on phantom signals. In this section, we present the main 
concepts regarding the tissue model, SSA, and Entropy 
with the steps followed for their implementation. We also 
describe the real phantom signals.

Model of the simulated tissue
A unidimensional model (Pereira and Maciel, 2001) 

was utilized to simulate backscattered RF signals from 
biological soft tissues. This model is based on the 
hypothesis that the medium possesses linear properties, 
so the signal (echo) received r(t) can be characterized as:

( ) ( ) ( ) ( )*(r t p t g t n t= + 	 (1)

where: p (t) = transmitted ultrasound pulse;
g(t) = function characterizing the medium (impulse 
response); 
n(t) = experimental system noise;
* = convolution.

The function g(t) is modeled as a sum of regularly 
and randomly spaced particles in the medium:

( ) ( ) ( )1 1
N M
i ii i i ig t c t b t= == δ − τ + δ − θ∑ ∑ 	 (2)

where: N = total number of regularly spaced particles; 
M = total number of irregularly spaced particles; 
Ci = amplitude of the ith regularly spaced particle; 
τi = time-delay of the ith regularly spaced particle 
(regarding the position); 
bi = amplitude of the ith irregularly spaced particle; 
θi = Time-delay of the ith irregularly spaced particle 
(regarding the position); 
δ = impulse function.

The simulation algorithm of the RF signals is 
described below:

1.	 Definition of the transmitted signal, medium, 
and US pulse.
−	The emitted US is defined by the sampling rate, 

transducer exciting frequency, and excitation 
signal band;

−	The medium is characterized by the velocity of 
the US in it, mean distance between the regular 
particles and their percentile variance (jitter) 
around their exact periodic position, maximum 
and minimum amplitudes of the regular particles, 
ratio between the mean amplitudes of the echoes 
from the irregular and regular particles (Ad), 
signal-to-noise ratio between the regular signal 
and white noise in dB, and number of regular 
and diffuse particles;

−	The US pulse has a Gaussian-shaped envelope.
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2.	 Definition of the scattering characteristics.
−	The unidimensional model is equivalent to 

aligning the scattering of regular and irregular 
particles;

−	The position of the irregular scatterers follows 
a uniform distribution and the position of the 
regular scatterers follows a gamma distribution;

−	The amplitudes of the regular and irregular 
scatterers are random with a uniform distribution 
limited by the parameter Ad for the irregular 
particles and by the maximum and minimum 
amplitudes for the regular particles.

3.	 Building the RF signal by the convolution of 
the pulse and medium particles along with the 
noise (Equation 1).

Figure 1 shows an example of a simulated signal 
with an MSS of 1.25 mm, Ad of 11.7% and sampling 
frequency of 25 MHz.

The standard periodicity of the time signal can be 
estimated from the first peak of the PSD (power spectral 
density). The analysis uses the envelope signals only. 
This envelope can be obtained as the modulus of the Hilbert 
transform of the RF signal with its mean subtracted from 
it and divided by its variance for normalization purposes.

In this example, periodicity is evident by a simple 
visual inspection, for didactic purposes. In fact, 
we simulated 20 combinations of the jitter and Ad 
parameters, obtaining much more complex signals 
where the periodicity could not be identified visually. 
See Table 1 for the details.

Figure 1. For MSS of 2.5 mm, jitter = 1% and Ad =11.7%: (A) RF simulated signal and (B) its power spectrum density (PSD), (C) envelope signal 
and (D) respective PSD.

Table 1. Characteristics of the simulated US signals used in the Monte Carlo simulation (US speed 1540 m/s and MSS = 1.25 mm).

Group Jitter (%) Ad (%) Group Jitter (%) Ad (%) Group Jitter (%) Ad (%)
1 1 11.7 9 10 11.7 17 20 11.7
2 1 41.2 10 10 41.2 18 20 41.2
3 1 58.8 11 10 58.8 19 20 58.8
4 1 76.5 12 10 76.5 20 20 76.5
5 5 11.7 13 15 11.7 21 30 11.7
6 5 41.2 14 15 41.2 22 30 41.2
7 5 58.8 15 15 58.8 23 30 58.8
8 5 76.5 16 15 76.5 24 30 76.5
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Singular spectrum analysis

SSA is based on the well-known principal component 
analysis (PCA) which projects an N data vector , with 
respect to an optimized orthonormal basis (Ek, 1 ≤ K ≤ M). 
Ek are the eigenvectors obtained from diagonalization 
of the correlation matrix of , which is constructed 
by moving a window of M points along x. The M data 
points inside the window can be described by a linear 
combination of the vectors Ek:

1
k kM

ki j i jx a E=+ = ∑ 	 (3)

where: 1 ≤ j ≤ M; 
M < N; 
1 ≤ i+j ≤ N; 
1 ≤ i ≤ N-M+1.

The projection coefficients k
ia  are called the principal 

components (PCs), and the basis vectors Ek are the 
orthonormal functions. The vectors Ek are the eigenvectors 
of the cross-correlation matrix Cx of the sequence x.

According to Vautard and Ghil (1989), if a periodic 
component is present in a time series, its periodicity 
can be found from the power spectrum of the signal 
reconstructed with the eigenvectors corresponding to the 

periodic component. Thus, SSA can be used to separate 
the periodic and non-periodic structures of a medium.

As an example, SSA was applied to the envelope 
signal in Figure  2A (cross-correlation matrix with 
dimensions of 200 × 200). Figures 2A and 2B show the 
signal reconstructed using the first four eigenvectors 
(i.e., first two pairs) and its power spectrum, respectively. 
A peak was found at 610 kHz, which corresponds to an 
estimated MSS of 1.26 mm (the original simulated MSS 
was 1.25 mm). Figures 2C and 2D show the residual 
signal obtained by the subtraction of the reconstructed 
signal from the original one and its power spectrum, 
respectively.

Figure 3 shows a set of the first 50 eigenvalues of 
the 200 × 200 correlation matrix arranged in descending 
order according to their magnitude. The arrows show 
the eigenvalue pairs responsible for the periodicity of 
the signal. In fact, the first pair corresponds to the peak 
in the power spectrum of Figure 3, and the second pair 
corresponds to the 2nd peak in the same power spectrum.

The next step is to seek a quantitative criterion that 
can be used to define how many eigenvalue pairs should 
be considered to reconstruct the signals to include all the 
periodic information and minimize the noise.

Figure 2. (A) Signal reconstructed with the first two pairs of eigenvectors and (B) its power spectrum. (C) The residual signal obtained by the 
subtraction of the reconstructed signal from the original one and (D) its power spectrum.
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If the periodic part of the signal is considered as the 
“organized signal” compared to the aperiodic and noisy 
part, the concept of entropy–associated with the level 
of order of the medium–may help with the separation.

Thus, as periodicity is always related to eigenvalue 
pairs (Vautard and Ghil, 1989), it can be recovered by 
inspecting the corresponding eigenvectors. The question 
that remains is how many eigenvectors should be used 
to reconstruct the periodic part of the signal. This is 
treated in the next section.

Entropy
The concept of entropy is applied to determine 

how many eigenvectors should be used in the linear 
combination for signal reconstruction. Entropy is a 
measure of the uncertainty of a random variable, i.e., how 
much information, on average, is necessary to describe 
a random variable. One of its basic definitions includes 
a function that is not dependent on values of the random 
variable x, but on its probability distribution, as shown 
in Equation 4 (Cover and Thomas, 1991).

( ) ( ) ( ) logx XH x p x p x=−∑ ò 	 (4)

where: H(x) = absolute entropy function; 
x = discrete random variable; 
p(x) = probability density function.

Another useful concept is the relative entropy, which 
is the measure of the distance between two distributions:

( ) ( ) ( )
( )

logx X
p x

D p p p x
q x

= ∑ ò 	 (5)

where: ( )D p p  = relative entropy; 
p(x) = probability distribution; 
q(x) = probability distribution.

In this work q(x) was calculated from the envelope 
of the RF signal and p(x) from the signal reconstructed 
using the PCs.

To test the concept of relating entropy to periodicity, 
simple simulated signals composed of 10 sinusoids 
(0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, and 
2.50 MHz) with added noise (SNR: 7.0, 3.5, and 2.0 dB) 
were generated. SSA was applied to the signals and the 
respective eigenvalue/eigenvector sets were obtained 
from the 200 × 200 correlation matrix.

The 10 sinusoidal frequencies correspond to 
10 eigenvalue/eigenvector pairs. The next step was to 
reconstruct each signal by sequentially adding the two 
eigenvectors corresponding to the eigenvalues in descending 
order of magnitude. Each subsequent reconstruction was 
performed by adding the two eigenvectors corresponding 
to the next two largest eigenvalues. The process was 
repeated until the last eigenvalue pair was used. The relative 
entropy was calculated for each residual signal (RD) that 
remained after the reconstructed signal was subtracted 
from the original signal as each new eigenvector pair 
was added. A curve of RD as function of the number 
of eigenpairs was built. The minimum relative entropy 
value was obtained for the residual signal RD when 
the reconstructed signal had 10 sinusoids, which was 
probably due to the original signal being composed of 
exactly ten sinusoids. The RD curve seemed to be an 
indication that the position of the minimum value may 
be used as a numerical criterion to estimate the number 
of periodic signals present in the analysis. Thus, the 
next step was to verify if this relative entropy behavior 
is also exhibited by the simulated RF signals.

Estimating the MSS based on entropy: Monte 
Carlo Simulation

The main objective of this work was to estimate the 
MSS of a regular structure from US signals. Here, we 
propose to use SSA and apply entropy as a criterion to 
define the number of eigenvector pairs used to reconstruct 
the periodic part of the signal. The basic steps to estimate 
the MSS are as follows:

1.	 Apply SSA to the US scattered signal whose 
envelope is obtained by the magnitude of the 
Hilbert transformation without the DC component 
and divided by its variance;

2.	 The cutoff frequencies of the 6th-order bandpass 
filter were chosen to limit the MSS window 
between 0.05–5.0 mm, which are enough for 
biological tissues. The filter order was determined 
empirically. The sixth-order filter has a flat band 
around the central frequency so the filtered signal 
has basically no distorting and tests with higher 
order filters did not improve the results;

Figure 3. First 50 eigenvalues of the original signal in Figure 1. 
The arrows point to the first two eigenvalue pairs that can be related to 
periodic activity in the signal.
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3.	 Obtain the set of eigenvalues and eigenvectors 
of the envelope of the RF signal;

4.	 Reconstruct the signal by sequentially adding 
pairs of eigenvectors according to the order of 
the magnitude of the corresponding eigenvalues;

5.	 Obtain the relative entropy estimation for the 
residual signal as each pair is added to the 
reconstructed signal;

6.	 Find the minimum on the relative entropy curve. 
The number of pairs that correspond to this 
minimum is used to make the final reconstruction 
of the signal;

7.	 Reconstruct the signal with the number of 
eigenvectors pointed out by the entropy curve, 
obtain the FFT and estimate the frequency with 
the highest amplitude;

8.	 Use this frequency to estimate the MSS.

 
2  

vMSS
Frequency

=
⋅

	 (6)

where: ν is the speed of ultrasound in the propagation 
medium (1540 m/s for water).

These eight steps were applied to 24,000 simulated 
US signals with different levels of Ad and jitter (Table 1).

Phantom

One wire phantom was used with four 0.5 mm 
diameter nylon wires aligned in a vertical plane 
with a regular spacing of 1.2 mm. The phantom was 
immersed in a water bath (no diffuse scatterer) and the 
backscattered RF signals were acquired with a 20 MHz 
center-frequency transducer. For data acquisition, the 
transducer was placed parallel to the length of the wires 
on a B-scan plane at an angle of 10–15° to the vertical 
plane of the wires to assure that all wires were insonified. 
The acquired RF signals were amplified and digitized 
at a 100 MHz sampling rate with an 8-bit oscilloscope. 
Eight bits was a limitation of the equipment but the 
results presented small MSS error acceptable for the 
application. We collected 152 signals from each phantom. 
The US speed in the water was assumed to be 1,498 m/s. 
A detailed explanation of the experimental setup was 
given by Pereira and Maciel (2001).

Results
One thousand US signals were simulated for each 

of the 24 groups (Table 1) and 24,000 MSS estimates 
were obtained. A “correct” estimate was defined within 
a 5% window around the real value (1.25 mm). Figure 4 

Figure 4. SSA performance curves of the correct MSS estimates as a function of jitter for five different levels of Ad using (A) the SSA method and 
entropy, (B) SSA method and two pairs of eigenvalues, and (C) SIMON method.
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presents the results as a function of the jitter and Ad 
parameters for: (A) the SSA method and entropy, 
(B) the SSA method with two pairs of eigenvalues, and 
(C) SIMON method. SSA with two pairs of eigenvalues 
was used for the comparison because of its performance 
according Pereira and Maciel (2001).

The wire phantom was used to record 152 signals. 
The SSA with entropy method identified the most frequent 
MSS to be 1.096 mm for the wire phantom spaced at 
1.2 mm (Figure 5A). When two pairs of eigenvalues were 
used, the MSS characterized as 0.959 mm for 13 signals, 
while for the other 139 signals the MSS was estimated to 
be equal to 1.096 mm (Figure 5B). The SIMON method 
estimated the MSS as smaller than 1.096 mm for 30 and 
equal to 1.096 mm for 122 signals (Figure 5C).

Discussion

A method was presented to estimate the MSS of US 
backscattered signals from biological tissues based on 
SSA combined with the concept of entropy. The relative 
entropy was used as a means to establish a numerical 
criterion to define the number of eigenvalues for the 
reconstruction of the signal subspace.

Figure 5. Estimated mean space scattering for the phantom with 1.2 mm using (A) the SSA method and entropy, (B) SSA method and two pair of 
eigenvalues and (C) SIMON method.

The reconstructed signal was used to estimate the 
MSS of periodic structures for simulated signals with 
the Monte Carlo approach giving consistent results even 
for high levels of noise and jitter.

Regarding the real phantom signals, the results of 
the SSA + Entropy method were compared to the SSA 
implemented by Pereira and Maciel (2001) and the 
method of Simon et al. (1997), as these two achieved 
superior periodicity estimation performance compared 
to others found in the literature. The smaller MSS value 
obtained by every method can be explained by the fact 
that the B-scan plane enclosed an angle of 10–15° with 
the vertical plane of the wires, so the MSS seen being 
in fact smaller.

In terms of MSS estimation, the results of the Pereira 
and Maciel (2001) and Simon et al. (1997) were similar 
to those of our method for the same 24,000 simulated 
US signals (Figure 4). The SIMON method was chosen 
because it performed better than several other methods 
tested using the same data (Kauati et al., 2012). Our method 
performed slightly better for the wire-phantom signals 
(Figure 5). The method of Simon et al. (1997) does not 
keep phase information, and hence, it is not capable of 
the characterization of the irregular signals.
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Comparing our results with other works in the 
literature is not straightforward, as the signals used to 
test the MSS estimation differed. Zhou  et  al. (2017) 
concluded that a comparative analysis of MSS estimators 
with respect to estimation accuracy, time efficiency and 
robustness should be carried out.

In our case, one comparable work is the technique 
from Chen  et  al. (2011) as they proposed a method 
based on the SIMON method (Simon et al., 1997) in 
combination with temporal signal autocorrelation. They have 
simulated signals similar to ours and–for a jitter of 1%, 
5%, 10% and 15%, and Ad of 10% (Figure 4, p. 605 
of their paper)–it is possible to see that the coefficient 
of variation (standard deviation/mean) is higher than 
10%. Meanwhile, in our case (Table 2), the coefficient 
of variation is equal to or less than 6.0%. Therefore, our 
proposed method outperforms their method.

This work proposed the combination of SSA with 
entropy to estimate the MSS of a periodic or quasi-periodic 
medium that resulted in estimation capabilities similar 
or better compared to two other methods found in the 
literature. The novelty of our method is the application 
of entropy as a quantitative criterion for selecting the 
SSA periodic components, achieving independency of 
heuristic criteria.
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