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Abstract

This paper deals with the deterministic and probabilistic optimization of struc-
tures against bending when submitted to dynamic loads. The deterministic optimiza-
tion problem considers the plate submitted to a time varying load while the probabi-
listic one takes into account a random loading defined by a power spectral density 
function. The correlation between the two problems is made by one Fourier Trans-
formed. The finite element method is used to model the structures. The sensitivity 
analysis is performed through the analytical method and the optimization problem is 
dealt with by the method of interior points. A comparison between the deterministic 
optimisation and the probabilistic one with a power spectral density function compat-
ible with the time varying load shows very good results.
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1. Introduction

A deterministic dynamic load is one 
whose value is determined in any instant 
and, consequently, the response value 
is determined in that instant by a deter-
ministic analysis. This type of analysis 
is well known and a variety of methods, 
such as modal analysis, finite differences, 
and Newmark can be used to obtain the 
solution of the problem. The structural 
optimization problem for this type of load 
is presented in the work of Falco (Falco, 
2000). In this work, a study is presented for 
the shape optimization of shells submitted 
to a deterministic load.

A random loading is one that cannot 
be foreseen in any instant of time and can 
only be defined through statistical proper-
ties. Therefore the analysis for this type of 

load can only be tackled by statistical or 
probabilistic methods. Random loads stem 
mainly from phenomena like earthquakes, 
wind, traffic and the vibration of aerospace 
structures. The analysis of structures 
submitted to random loads is very well 
established, whereas optimization stud-
ies are scarce. Some applications for this 
type of problem are: reduction of mass 
structures under the effect of earthquake 
without loss of stiffness; and mass reduc-
tion of satellite structures during launch so 
that their frequencies are often disengaged 
from the launch vehicle. Alves et al (2000) 
present a thorough study of the sensitivity 
analysis of structures submitted to random 
loading. In this work the equations of the 
analytical method are validated by the 

finite difference method. Alves and Vaz 
(2013) present the formulation and the 
results of the structural optimization of 
homogeneous and sandwich plates under 
random vibration.

Search is in this work presents a 
comparative study between the determin-
istic optimization problem, ie in the time 
domain, and the probabilistic optimization 
problem in the frequency domain. The 
equivalent formulation in the frequency 
domain was obtained from the application 
of Fourier Transforms in the formulation 
in the time domain. A comparative analysis 
of structural optimization for plates bend-
ing with random loading and the equiva-
lent deterministic loading is presented to 
validate the formulation.

2. The finite element model

For the structural modeling of the 
plate, a 6-node triangular AST6 is used, 
and for the other examples, the beam ele-
ment is used. This triangular element was 

developed by Sze (1997) for homogeneous 
plates and Goto (2000) extended it for 
laminated plates and shells. The moti-
vation for the use of this element stems 

from the fact that its stiffness and mass 
matrices are explicitly given, permitting 
therefore the sensitivity analysis by the 
analytical method.

3. Deterministic optimization

According to Falco (2000), the de-
terministic optimization problem consists 

in the minimization of the structural mass 
subjected to a condition whereby the dis-

placement in a given point and in a given 
instant of time is equal or less than a given 
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threshold. Falco (2000) applies this formulation for the plate problem. This problem is formulated as follows:

Minimize Σ ρiAihi

Subject to: u(t) ≤ umax

hlw≤ hi ≤ hup

In Equation 1,ρi, Ai and h
i
 are, re-

spectively, the mass density, the area, 
and thickness of the ith element; u(t) 

is the displacement in a given point; 
and hlw and hup are, respectively, the 
lower and upper bounds of the design 

variable. The displacement u(t) is 
obtained by the Newmark method 
as follows.
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where tu , tu , tü are displacement, veloc-
ity and acceleration with the time t and 

t+Δtu , t+Δtu e t+Δtü are displacement, veloc-
ity and acceleration with the time t t+Δt. 

Herein, δ equal to 0.5 and Δt equal to 
0.1s were adopted.

4. Probabilistic optimization

The equivalent probabilistic 
optimization problem is the minimi-
zation of the structural mass with 

the restriction that the probability 
of the displacement in a given point 
be greater than a given value that 

must be less than a given probabil-
ity. This problem is formulated as  
(Alves, 2013).

Minimize Σ ρiAihi

Subjected to: Pr(ui>umax) ≤ Pdmax

Pr(ui>umax) < Pamax

hl <hi <hu

In Equation 5 ρi, Ai and hi are the same 
as in Equation 1; Pr(ui>umax) is the probabil-
ity that the displacement in a given point 

be greater than a maximum displacement; 
Pdmax is the given probability; and hlw and 
hup are, respectively, the lower and upper 

bounds of the design variables.
The probability that the displacement 

be greater than the maximum displacement is

=>
max

)()(
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u
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Where p(ui) is the probability density 
function of ui.

The probability density function consid-
ered here is the Gaussian distribution:
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As the processes considered in this work are ergodics with zero mean, Equation 7 transforms into.
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In Equations 4 and 5 σui is the stan- dard deviation of ui, from the theory of the stochastic response of a multi-degree-
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of-freedom system, and ui is obtained by following equation:
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B is a matrix whose entries are the 
nj modal components and Sy (Ω) is a 

spectral density matrix of the modal 
coordinates. This matrix is defined as;

  
Sy (  ) =  (  ) SP (  ) H (  )

where Sp (Ω)  is the spectral matrix of the 
nodal loads and Η ( Ω ) is the diagonal 

matrix whose entries are the complex 
frequency response functions associated 

to each normal mode. For the n generic 
mode:

  Hn = [ (Kn – Mn n
2 ) + 2i n Mn n] 

Kn, Mn, Ωn and ξn being, respec-
tively, the generalized stiffness and 

mass and the damping ration of the n 
normal mode.

5. The solution of the optimization problem

The solution of the optimization 
problem presented through Equations 
1 and 5 is performed by the Interior 
Points Method, Herskovits (1995).

The method works specifically 
with the feasible region of the prob-
lem. Where the problem is bounded 

by the objective function and the 
constraint functions, which may be 
equal or unequal. It basically consists 
in determining some points within this 
feasible region and from these, con-
tinue to search for the sweet spot that 
belongs equally to this region. Hence 

all points earned in sequence always 
possess decreasing values. So, even 
though the convergence to the optimum 
is not guaranteed, the last point found 
will always be less than or equal to the 
other, so it will be viable. Consider the 
minimization problem:

Minimize f(x)

Subject to c(x)≤0     i= 1.....m

And the Kuhn-Tucker conditions for this problem are:

g + ∑ λiai = 0
m

i =1

λ*i ci (x*) = 0

ci (x*) ≤ 0

λ*i ≥ 0

Where A a matrix containing the 
gradients of the constraints, and C 

a diagonal matrix that contains the 
values of these restrictions. Thus, the 

first two equations can be rewritten 
as follows:

g + At l = 0

Cl = 0

Using Newton's method to solve this problem, we have:

[ [Wk At

ΛA C ( (d0
λ0

=- ( (g
0

whereby Λ is a diagonal matrix where 
Λii=λi , and d0 is the search direction 
which is the estimate of the Lagrange 

multipliers. It can be shown that the 
search direction will always decrease, 
except in the case where the point x 

does not change the value. In this case 
the search direction d0 = 0.

6. Examples
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The application example is the opti-
mization of the isotropic plate depicted in 
Figure 1. The plate properties are: Young̀ s 
modulus= 2.6 x 1010 N/m², shear modulus 

1.0x1010 N/m²; Poisoǹ s ratio ν=0.3 and 
mass density 25000N/m3. The imposed re-
striction is that the center displacement of the 
plate, wc, must be less or equal than 2,9cm. 

The optimisation problem is considered with 
1, 2 and 4 design variables. Figure 2 shows 
the distribution of the design variables in the 
finite element mesh.

Figure 1
Symmetrical plate.
4x4 mesh.Clamped in 4 sides.

Figure 2
a) Optimization with 1 design variable. 
b) 2 design variables. 
c) 3 design variables.

The deterministic problem is formulated in the following way:

Minimize

Subject to: wc(t)≤0.029

hlw≤hi≤hup

The load time history is presented in Figure 3.

(16)

Figure 3
Time variation of concentrated 
load for deterministic optimization.

(a) (b)

(c)
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Design Variables Initial Final 

1 D. V. 2 D. V. 4 D. V.

h1(m) 1x10-2 9.615x10-2 1.605x10-2 2.104x10-2

h2(m) 1x10-2 -- 3.657x10-3 1.004x10-2

h3(m) 1x10-2 -- -- 5.243x10-3

h4(m) 1x10-2 -- -- 3.007x10-3

Objective. Function(kg) 25.0 24.04 16.89 15.38

Const.(m) 2.58x10-2 2.9x10-3 2.9x10-3 2.9 x10-3

Decrease Objective. Function(%) 3.85 29.74 8.9

The results of the optimization are shown in Table 1 and Figure 4.

Table 1
Results of the deterministic optimization.

Table 1 presents the results of the 
optimization problem with 1, 2 and 4 
variables and reduction of the objec-

tive function when there is an increase 
in the number of project variables. 
With the increase in design variables 

above, 4 had no significant reduction 
in the objective function.

Figure 4
Thickness Distribution throughout 

the plate considering 4 design variables.

The observation of these results 
indicates that the increase in the 
number of design variables leads to 

a diminishing value of the objective 
function, which is to be expected.

In the sequel , the equiva-

lent probabilistic optimization is 
performed. Now the problem is  
defined as

Minimize 

Subject to: Prwc(t)≤0.029Pdmax

hlw≤hi≤hup

To attain consistence, the value 
of the constraint is calculated from 
an analysis of the results obtained 

with the final values of the design 
variables in the deterministic optimi-
zation and the load is given from the 

Fourier transform (Figure 5 ) of the 
load considered in the deterministic 
optimization.
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Figure 5
Equivalent Load for 

Probabilistic Optimization.
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The results of the optimization are tabulated in Table 2 and Figure 6.

Table 2
Results of the probabilistic optimization.

Design Variables Initial Final

1 D.V. 2 D.V. 4 D.V.

h1(m) 1x10-2 7.036x10-2 1.026x10-2 1.155x10-2

h2(m) 1x10-2 -- 4.806x10-3 7.466x10-3

h3(m) 1x10-2 -- -- 2.970x10-3

h4(m) 1x10-2 -- -- 5.776x10-3

Obj. Func.(kg) 25.0 17.590 15.424 13.942

Const.(%) 38 44.7 44.7 44.7

Decrease Objective. Function (%) 29.64 8.76 9.6

Figure 6
Thickness Distribution throughout 
the plate considering 4 design variables.

7. Conclusion

A comparison of deterministic 
and probabilistic optimization of plate 
submitted to dynamic load indicates 
the reliability of both types of opti-
mization. If there is consistency in the 
definition of the deterministic and the 
probabilistic load, the results of both 
types of optimization agree quite well.

A better design in relation to the 

initial design is obtained in all the 
analyzed cases. In Example 1, with 
4 design variables, the variable least 
altered is variable 1 (h). This is to be 
expected as the elements near the point 
of application of the load must be more 
rigid. This example is illustrative, as 
the real plate has a constant thickness

Although the design variables 

are different in the two types of op-
timization, the values of the objective 
functions are quite similar for the 
cases with 2 and 4 design variables. 
This conclusion is to be expected as 
the two problems work with differ-
ent design spaces and two different 
analyses, one deterministic and the 
other, probabilistic.
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