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Optimum design of prestressed 
steel beams via genetic algorithm
Abstract

The objective of this article is to present an optimization problem formulation 
to reduce the total structural cost of prestressed doubly-symmetric and monosym-
metric I-shaped steel simply supported beams with straight tendons. The optimization 
problem was implemented via MATLAB’s native Genetic Algorithm. The validation 
and evaluation processes adopted two examples from literature. The design method 
follows the Brazilian standard NBR 8800:2008 for the Ultimate and Serviceability 
Limit States. The best result was found for a monosymmetric case by up to 20.00% 
and 25.70%. Saving in material weight and installation of tendons, without exceeding 
the security limits, was also effective. Furthermore, the results presented an efficient al-
ternative for structural engineering, providing a significant model for similar analyzes.
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Although steel structures have more 
advantages than other materials, their cost 
is a negative point. Composite materials 
as well as new design methods can be 
developed to minimize such a factor.

It is well known that prestressed 
steel could provide economic advantages 
over traditional techniques. In this respect, 
such technique has been involving research 
for improvement since Belenya (1977). 
Furthermore, Belletti and Gasperi (2010) 
noticed the number of deviators, such as 

prestressing tendons and theirs position, as 
critical design variables that require atten-
tion, aiming for better beam performance.

Design methods must be as accurate 
as possible to guarantee structural safety. 
Therefore, a higher number of variables, 
combinations, and conditions are involved. 
Moreover, the trial and error to obtain the 
lowest cost of prestressed steel structures 
requires computational approaches.

Many studies have shown the Genet-
ic Algorithm (GA) optimization technique 

as a powerful tool to improve the design 
on structural engineering (Agrawal, 
Chandwani and Porwal (2013), Kociecki 
& Adeli (2015), Yldirim & Akcay (2019), 
Martinelli & Alves (2020), Skoglund, Le-
ander & Karoumi (2020)). The GA was 
proposed by Holland (1992) based on the 
Charles Darwin’s Theory of Evolution. 
The search and combination processes al-
low the algorithm to find a result without 
exceeding determined conditions, called 
constraint functions.

1. Introduction
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GA also presents a high capacity 
for working with multiple constraints 
without elevated computational cost. 
Dealing with this type of problem was ap-
proached by Tang, Tong and Gu (2005). 
Mixed coding, i.e., integer and continuous 
variables, successfully showed results on 
a truss design optimization.

Kripakaran, Hall and Gupta (2011) 
proposed a GA formulation employing 
discrete decision variables. Furthermore, a 
search space was delimitated to limit the GA 
combinations. Such methodology is deeply 
explained by Rajeev & Krishnamoorthy 
(1997) and Gupta et al. (2005) aiming for 
a higher computational performance.

The Spanish, European and Ameri-
can codes were adopted for the optimiza-
tion of steel structures by Prendes-Gero et 
al. (2018) . The GA was implemented to 
follow a 144 cross-section database and 
determine the optimum value for a three-
story steel building. Results demonstrated 

the capacity of the algorithm on the inter-
nationals building design codes. Moreover, 
the researchers pointed out the use of 
discrete variables to obtain better results.

Taiyari, Kharghani and Hajihas-
sani (2020) compared four metaheuristic 
optimization techniques in the design 
of pile wall retaining systems: Genetic, 
Particle swarm optimization, Bee, and 
Biogeography-based algorithms. The 
reduction on the total structural cost was 
selected as the objective function. OpenS-
ees software and the MATLAB platform 
were used for coding. The GA proved to 
be able to reduce the objective function.

Alves & Ramos (2021) proved 
the GA effectiveness of the weight 
reduction on a steel-concrete compos-
ite beam. MATLAB’s native GA was 
also adopted, using its GUI platform. 
The Ultimate and Serviceability Limit 
States were followed by the Brazilian 
standard NBR 8800:2008. Small spans 

were analyzed, i.e., from 5 to 16 me-
ters. The objective function consists of 
multiple constraints.

Recently, Mageveske et al. (2021) 
have shown the possibility of savings 
in material weight and total structural 
cost on doubly-symmetric I-shaped 
steel beams. The researchers optimized 
the Ultimate and Serviceability Limit 
States following the Brazilian standard 
NBR 8800:2008.

This article presents an optimiza-
tion problem for prestressed I-shaped 
simply supported steel beams. The design 
model is in accordance with the standard 
NBR 8800:2008 and was implemented 
via MATLAB’s platform using the GUI 
tool to generate an interactive graphical in-
terface. To solve the optimization problem, 
this program makes use of MATLAB’s 
native GA. Both are monosymmetric, 
such that their being doubly-symmetric, 
presented significant economic results.

2. Optimization problem formulation

2.1 Objective function

The optimization problem consid-
ered shapes as illustrated by Figure 1. 
Therefore, the number of prestressed 
tendons (nt), the depth of cross-section 

(d), and the flange widths (bfs and bfi), 
were considered as integer variables. 
Flange thicknesses (tfs and tfi) and web 
thickness (tw) were considered as con-

tinuous variables, i.e., a hybrid formu-
lation. Notice that doubly-symmetric 
cases are particular cases when bfs= bfi 

and tfs= tfi.

Figure 1 – General cross-sectional variables.

Table 1 – Input values.

The objective function must 
reduce the total structural cost –  

Equation (1). Therefore, the volume of 
steel, the number of prestressed tendons, 

and its anchorage were considered.

Diameter 9.5 mm 15.2 mm

Ct
s

R$ 12.88

Ct
t

R$ 12.69

Ct
ti

R$ 125.66 R$ 158.65

µ
t

0.004158 kN/m 0.012152 kN/m

Where: Cts is the cost of steel [R$/m3]; 
As is the cross-section area [m²]; Ctt 
is the tendon’s cost [R$/kN]; nt is the 
number of tendons; µt is the specific 

weight of the tendons [kN/m]; L is the 
length of span [m]; and, Ctti is the ten-
don's anchorage cost [R$]. The input 
values are described in Table 1. The 

presence of deviators naturally alters 
the objective function, so that  the 
length of the tendons will not be equal 
to the span.

f (x) = (Ct
s
 ⋅ A

s + Ct
t 
⋅ n

t 
⋅ μ

t
 ) ⋅ L + (n

t 
⋅ Ct

ti
 ) (1)
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(8)

(11)

(15)

(9)

(12)

(16)

(10)

(14)

(13)

(17)

Where: M
sd
 is the design bending moment 

[kNm]; Mrd is the design bending moment 
resistance  [kNm]; Msd,e is the prestressing 
bending moment [kNm]; Vsd is the design 
shear force [kN]; Vrd is the design shear 
resistance [kN]; Nsd is the design axial 
force [kN]; Nrd is the design axial load 
resistance [kN]; δtot is the total vertical 

displacement [mm]; δlim is the maximum 
vertical displacement [mm]; δtot, e is the 
vertical prestressing displacement [mm]; 
d is the depth of a cross-section [mm]; b

f 
is 

the flange width [mm]; h is the depth of a 
web [mm]; t

w
 is the web thickness [mm]; 

σt and σc are the maximums tensile and 
compressive strength [kN/m²], respec-

tively; and, f
y is the yield strength [kN/m²]. 

The C(1), C(2), C(3) and C(4) de-
limits the maximum efforts of steel consid-
ering its resistance. C(5) and C(6) evaluate 
the displacements on the Serviceability 
and Ultimate Limit States. C(7) (prestress-
ing time) and C(8) (In service) limits the 
combining bending. C(9), C(10), C(11), 

C(13): σ
t
 / f

y
 - 1 ≤ 0

C(14): σ
c
 / f

y
 - 1 ≤ 0

C(1): M
sd
 / M

rd
 - 1 ≤ 0

C(3): V
sd
 / V

rd
 - 1 ≤ 0

C(4): N
sd
 / N

rd
 - 1 ≤ 0

C(5): δ
tot

 / δ
lim

 - 1 ≤ 0

C(6):δ
e
 / δ

lim
 - 1 ≤ 0

(2)

(5)

(3)

(6)

(4)

(7)

The constraint functions, Equa-
tions 2 to 18, followed the Brazilian 
standard NBR 8800:2008. The design 

criteria satisfy both serviceability and 
strength requirements. Notice that 
C(7), C(8), and C(10) are coded as an 

if-else statements due to the cross-
sectional shape, i.e., doubly-symmetric 
or monosymmetric.

2.2 Constraint functions

C (2) : M
sd

  / M
rd
 - 1 ≤ 0

e

C (7) : 
N

sd

N
rd

N
sd

N
rd

+ 8
9(             ) . (        )N

rd

N
sde - 1 ≤ 0, ≥ 0.2

C (7) : 
N

sd

N
rd

- 1 ≤ 0, ≥ 0.2
N

sd

2 N
rd

(        ) M
sd

M
rd

+ (      )
C (8) : 

N
sd

N
rd

+ 8
9(             ) . - 1 ≤ 0 

M
sd

M
rd

(      )
C (8) : 

N
sd

2 N
rd

M
sd

M
rd

(        )+ (      ) - 1 ≤ 0 

C (9) : 1 - 4  ≤ 0 
b

f

d(     )
C (10) :  -1 ≤ 0 

b
f

d(     )3
2

C (11) : 4(            ) / 0.76 - 1 ≤ 0 
( h / t

w )√

C (12) : 1 - 4(            ) / 0.35 ≤ 0 
( h / t

w )√
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3. Numerical analysis

3.1 Example 1 – Prestressed Monosymmetric I-shaped Steel Beam (Abbas et al., 2018)

Two design examples from literature 
were analyzed: A Finite Element approach 
via ANSYS, presented by Abbas et al. 
(2018); and (ii) a traditional design pre-
sented by Ferreira (2007), following the 

Brazilian standard NBR 8800:1986.
Both the examples adopted the char-

acteristic tensile strength of tendons (fptk) 
equal to 1900 MPa, as well as the coef-
ficient modification value for non-uniform 

bending moment diagram (Cb) equal to 1. 
The examples consist of simply supported 
beams due to comparison with literature 
– Figure 2. Different boundary conditions 
can be straightforwardly employed.

Abbas et al. (2018) studied a 
Finite Element model via the ANSYS 
optimization package. Two objective 
functions were employed to mini-
mize the strain energy and the mate-
rial weight of two steel girders – with 

and without prestressing. Moreover, 
straight-line tendons were considered 
by the structural model.

The aforementioned researchers 
did not delimit the prestressing losses. 
Thus, it was convenient to vary it by 0, 

5, 10, 15, and 20% to obtain different 
parameters of comparison. Therefore, 
the input data considered: 2-point loads 
of 120 kN applied at 10.25 and 11.75 
m from the left support; L of 22 m; t

w
 of 

10.40 mm; tendons of 9.5 mm allocated 

The authors point out that the self-
weight was considered by the program. 
Therefore, the lower and upper limits as-
signed to the GA are stated in Table 3. The 

initial population contains 120 individuals 
and the following, 60. The rate of elite 
individuals and crossing of the intermedi-
ate type are 0.05 and 0.8, respectively, 

whereas the mutation rate is random. The 
GA is performed primarily with an entirely 
random initial population, thereby obtain-
ing an optimal local response.

Variable Lower limit Upper limit

tfs and tfi [cm] 1.6 4.44

bfs and bfi [cm] 10 55

d [cm] 55 200

nt [units] 0 20

Figure 2 – Beam models of (a) Abbas et al. (2018) and (b) Ferreira (2007).

Table 3 – GA variables: lower and upper limits.

Internal forces Distributed load (q ) Concentrated load (P ) Pretension load (F )

Bending moment Fe

Shear force -

Normal force - - F 

Table 2 – Relationships for estimating the internal forces.

and C(12) govern the geometric proper-
ties to avoid buckling. C(13) and C(14) 
evaluate the yield strength over the limits 
of compression and tension. Therefore, 

the optimization problem proposed was 
solved via MATLAB's native GA.

In the analysis method, the required 
forces were estimated from the equilib-

rium equations – Table 2. The tendons ec-
centricity herein defined as e is considered 
on the pretension load. The distance from 
the left support is indicated by a.

qL2

8

Pa
2

, a < L
2

P (L - a)
2

, a ≤ L
2

qL
2

Pa
L
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Example d
(mm)

bfi
(mm)

bfs
(mm)

tfi
(mm)

tfs
(mm)

tw
(mm) Ntendons Ix(e+4mm4) δ (mm) σc 

(MPa)
σt 

(MPa)
Total Cost 

(R$)

Abbas et al. 
(2018) 984.3 390.8 391.8 20.80 22.60 10.40 3 465231.00 56.83 -193.40 147.20 60240.10

MS0 1200 250 300 16.00 16.01 10.40 7 445518.29 38.68 -196.44 169.20 48291.32

MS5 1160 290 210 16.00 25.24 10.40 5 443415.54 46.24 -199.95 184.46 49198.32

MS10 1320 160 330 16.00 16.06 10.40 7 504286.07 32.51 -162.01 186.57 48970.94

MS15 1140 290 170 16.00 32.28 10.40 7 427262.86 44.74 -200.00 179.67 49475.77

MS20 1200 260 300 16.00 16.16 10.40 7 452928.76 42.21 -198.00 178.50 48745.42

DS0 1080 270 270 20.80 20.80 10.40 5 412110.28 56.86 -194.06 159.60 50226.59

DS5 1080 270 270 20.80 20.80 10.40 5 412110.28 57.54 -195.28 162.55 50226.59

DS10 1080 270 270 20.80 20.80 10.40 5 412110.28 58.22 -196.50 165.49 50226.59

DS15 1080 270 270 20.80 20.80 10.40 6 412110.28 56.60 -193.62 158.47 50470.70

DS20 1080 270 270 20.80 20.80 10.40 6 412110.28 57.42 -195.08 162.00 50470.70

Table 4 – Doubly-symmetric (DS) and monosymmetric (MS) results based on Abbas et al. (2018).

The MS geometries varies with pre-
stressing losses. On the other hand, the 
DS shapes has presented exactly the same 
geometry. Thus, as expected, the MS are 
more able than DS to change their shapes 
without exceeding the constraints. Natu-
rally, the inertia on the DS is constant.

Due to the impossibility of reduction 
on the DS geometries without exceeding 
the security limits, GA decreases the 
number of tendons. Moreover, the higher 
(?) on the tendons and inertia led to lower 

displacements. Therefore, the MS showed 
greater values than DS about the tensile 
and compressive strength.

Besides this study presents a greater 
number of tendons compared to Abbas et 
al. (2018), the total structural costs were 
lower than the reference for each case. The 
large flanges and thicknesses, as well as the 
smaller depth of cross-section, was not the 
best combination, increasing the final cost.

Figure 4 illustrates the total struc-
tural cost normalized according to Abbas 

et al. (2018). In general, each of the models 
are better choices than the reference. The 
greatest reduction was found on the MS0 
with 20.00%. On the other hand, other 
models are not unsatisfactory options, 
considering those costs near to MS0. 
The large deviation is 4.00% (DS15 and 
DS20), which is negligible in the authors 
point of view. The designer will choose 
a model based on the local parameters of 
construction, e.g., architectonic project or 
structural constraints.

Figure 3 – Constraint results for Example 1.

50 mm above the inferior flange bottom; 
f

y
 of 200 MPa; and E of 200000 MPa.

The optimum results are displayed 

on Table 4 and its constraints are 
graphically represented on Figure 3. The 
nomenclature adopted by this example 

indicates the type of the beam (MS or 
DS) as well the related losses (L), i.e., 
0, 5, 10, 15, or 20.
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Ferreira (2007) analyzed pre-
stressed I-shaped beams (i) with po-
lygonal and (ii) straight-line tendons. 
However, this study focused only on (ii).

The tw varied at 12.5 and 16.0 mm – 
lower values exceeded the GA constraints. 
Moreover, bfs ranged as follows: 22.4, 
25.0, 31.5, 37.5, and 44.4 mm. Therefore, 

the input data considered: 3-point loads 
of 150 kN applied at 11, 12.5, and  
14 meters from the left support; over-
load of 3 kN/m; permanent load of 
12.86 kN/m; serviceability overload 
of 15 kN/m; L of 25 m; tendons of 
15.2 mm allocated 100 mm below 
the inferior flange bottom; fy equal to  

345 MPa; E of 205000 MPa; and pre-
stressing losses of 12.3%.

The optimum results are displayed in 
Table 5 and their constraints are graphi-
cally represented on Figure 5. Different 
from example 1, the nomenclature herein 
indicates only the type of the beam (MS or 
DS) and an identification number.

Example d
(mm)

bfi
(mm)

bfs
(mm)

tfi
(mm)

tfs
(mm)

tw
(mm) Ntendons Ix(e+4mm4) δ (mm) σc 

(MPa)
σt 

(MPa)
Total Cost 

(R$)

Ferreira 
(2007) 1000 380 500 32.00 44.40 16.00 18 853611.00 58.11 -169.84 328.18 134317.52

MS01 1630 410 190 16.00 39.82 16.00 10 1425607.95 55.20 -344.96 271.90 104810.90

MS02 1620 410 180 16.00 44.40 16.00 9 1423223.71 59.51 -343.50 288.69 104755.85

MS03 1640 550 230 16.00 39.82 12.50 8 1581053.44 57.71 -331.97 260.59 99801.48

MS04 1680 530 200 16.00 44.40 12.50 8 1623991.92 55.56 -330.14 257.95 99407.54

MS05 1620 410 210 16.00 37.50 16.00 9 1426673.17 59.34 -342.80 287.76 104739.17

MS06 1640 540 240 16.00 37.50 12.50 9 1563784.41 54.45 -331.21 250.88 99613.63

MS07 1610 420 250 16.00 31.50 16.00 9 1425142.96 59.65 -342.41 286.06 104981.83

MS08 1660 530 280 16.00 31.50 12.50 9 1594697.76 52.95 -327.36 248.46 99575.71

MS09 1630 410 300 16.00 25.00 16.00 9 1444331.46 58.50 -342.90 283.31 104701.26

MS10 1660 530 350 16.00 25.00 12.50 9 1599878.18 52.74 -326.19 247.61 99604.15

MS11 1610 420 340 16.00 22.40 16.00 9 1423455.23 59.78 -344.34 285.02 104695.19

MS12 1670 540 390 16.00 22.40 12.50 8 1636304.76 55.25 -326.73 254.04 99827.13

DS01 1210 310 310 39.82 39.82 16.00 18 1038055.18 69.61 108.77 118056.96

DS02 1170 300 300 44.40 44.40 16.00 19 1012765.33 69.49 -248.03 98.74 121553.88

DS03 1260 320 320 39.82 39.82 12.50 16 1120211.86 69.95 -257.31 120.02 110545.52

DS04 1190 310 310 44.40 44.40 12.50 18 1042745.55 70.17 -251.09 100.59 114313.04

DS05 1240 310 310 37.50 37.50 16.00 17 1051585.88 71.34 -262.31 122.19 115270.03

DS06 1290 330 330 37.50 37.50 12.50 15 1157792.70 70.48 -260.81 131.13 109230.62

DS07 1320 330 330 31.50 31.50 16.00 15 1127893.83 71.20 -270.58 143.96 111668.59

DS08 1390 350 350 31.50 31.50 12.50 13 1260938.21 68.85 -267.51 151.34 104840.53

DS09 1400 360 360 25.00 25.00 16.00 14 1178925.00 68.99 -276.61 154.55 107825.48

DS10 1520 390 390 25.00 25.00 12.50 10 1420564.06 68.98 -278.78 187.63 101257.04

DS11 1470 370 370 22.40 22.40 16.00 12 1254444.70 70.95 -287.36 182.15 106163.28

DS12 1580 410 410 22.40 22.40 12.50 9 1491047.92 68.26 -282.45 199.72 99903.72

3.2 Example 2 – Prestressed Monosymmetric I-shaped Steel Beam (Ferreira, 2007)

Figure 4 – Total structural cost for Example 1.

Table 5 – Doubly-symmetric (DS) and monosymmetric (MS) results based on Ferreira (2007).
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Figure 5 – Constraint results for Example 2.

Figure 6 – Total structural cost for Example 2.

The MS shapes obtained higher d 
than DS, according to the conclusion in 
Example 1 about the MS capacity of its 
shape changing. Furthermore, the inertia 
clearly increased, meaning unnecessary 
higher number of tendons. Thus, MS 
shapes support more elevated tensile and 
compressive strength than DS.

Unlike Example 1, the number of 
tendons was lower than the referenced. In 
general, MS got a half of Ferreira’s (2007) 

values. This fact jointly with the smaller 
geometry, increases the total structural 
cost of Ferreira (2007).

Figure 6 illustrates the total struc-
tural cost normalized according to 
Ferreira (2007).

As such, the MS as well as DS 
models, obtained better results than the 
reference. Considering the design method, 
i.e., traditional technique, employed by 
the aforementioned author, lower costs 

were also expected. The best result 
was MS04 with 25.70% of reduction. 
However, MS03, MS06, MS08, MS10, 
MS12, DS10, and DS12, resulted almost 
the same value as MS04. Between those 
models, the large deviation is 0.0138%, 
again negligible in the authors point of 
view. Therefore, any of these models can 
be designed with a lower cost, considering 
the applicability will need to consider the 
local conditions.

The influence of bfs and tw on the 
total structural cost are demonstrated 
by Figure 7. Overall, the MS models 
results optimum values than DS. Fur-
thermore, the DS bfs are proportional to 

the cost, different from MS. Moreover, 
as well as the bfs decrease, DS costs have 
a tendency to show almost MS costs – 
about the same tw.

Therefore, DS models with tw equal 

to 12.5 mm and bfs less than or equal to 
31.50 mm, results minor total structural 
costs than MS models with tw equal to 16.0 
mm. In this respect, for small values of bfs, 
the MS are almost equal DS geometries.
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This article presents an optimum 
design for prestressed I-shaped steel 
beams via MATLAB’s native GA tech-
nique. Savings in material weight as well 
as prestressing tendons anchorage is the 
objective function – total structural cost. 
Abbas et al. (2018) and Ferreira (2007) 
were the examples to validate and evalu-
ate the algorithm. Furthermore, signifi-
cant models were proposed considering 
the objective function without exceeding 
the security limits. The design method 
followed the Brazilian standard NBR 

8800:2008. Thus, the main conclusions 
from the study are:

• Example 1 (Abbas et al., 2018) 
resulted in 20.00% of reduction consid-
ering 0% of prestressing losses (MS0). 
However, the largest deviation from 
MS0 is 4%. Thus, the MS as well as DS 
models are able to be applied.

• Example 2 (Ferreira, 2007) 
reduced the total structural cost by 
25.70% (MS04). MS03, MS06, MS08, 
MS10, MS12, DS10, and DS12 are also 
alternatives to MS04. The largest de-

viation is 0.0138%. Therefore, for small 
values of bfs, the model shapes tend to 
be a DS.

In general, monosymmetric was 
the better option compared to the 
doubly-symmetric shapes. Neverthe-
less, the deviation between some shapes 
could be neglected. For that reason, 
the proposed formulation was efficient 
to obtain the optimal solution for the 
prestressed I-shaped steel beams. More-
over, the GA proved to be useful with 
a low computational cost.
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the support given to the postgradu-
ate program in civil engineering at 
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