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Second-order two-cycle analysis 
of frames based on interpolation 
functions from the solution of the 
beam-column differential equation
Abstract

In geometrically nonlinear problems solved using the Finite Element Method 
(FEM), the structure response is directly influenced by the level of discretization and 
the nonlinear solution algorithm used. To reduce the discretization dependence, exact 
solutions are developed based on the deformed infinitesimal element equilibrium. To 
deal with the nonlinear solution problem, the two-cycle method can be used, since it 
is not dependent on load or displacement steps. The two-cycle method developed by 
Chen & Lui (1991) uses the classical geometric matrix and is not accurate for high 
axial loads. This happens because the geometric matrix is obtained using Hermitian 
polynomials which are approximate solutions. To circumvent this issue, the frame ele-
ment’s tangent matrix is obtained using interpolation functions that match the ho-
mogeneous solution of the differential equation of the beam-column problem. The 
main objective of this study is to carry out a second order analysis of the frames and 
obtain equilibrium paths using the two-cycle method and the tangent stiffness matrix 
based on solutions of the differential equations obtained from the element’s deformed 
configuration. The results in terms of displacements and rotations for the examples 
studied are identical to the analytical solutions, showing that the combination of the 
two-cycle method with the exact element formulation is promising and can diminish 
the need for discretization.
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The evolution of engineering de-
mands the development of economic 
structures with less weight and material 
consumption without any trade-off in du-
rability and safety. Hence, the use of high 
strength materials and slender elements 
becomes more common in new ventures. 
Under this view, the consideration of 
geometric nonlinearity is indispensable, 
especially for slender elements.

In context of the geometric nonlin-
earity of frames, a second-order stability 
analysis can be carried out in many ways, 
from simple checks based on first-order 
linear analyses to higher-order nonlinear 
numerical analyses. Despite the existence 
of several analytical solutions to solve 
stability problems, numerical solutions 
using the Finite Element Method (FEM) 
are often employed. From this numeri-
cal approach, the continuous structure 
response is directly influenced by the en-
gineer’s experience in choosing the most 
suitable number of elements to be used 
in structural analysis (discretization). All 
these influences occur because the FEM 
discrete solution approximates the analyti-
cal solution, i.e., the interpolation func-
tions that define the structure deformed 
configuration do not always agree with 
the problem’s exact solution (Burgos & 
Martha, 2013; Rodrigues et al., 2019).

In literature, to reduce element dis-
cretization dependence using the FEM in 
nonlinear geometric analysis, several stud-
ies have been carried out, such as Burgos 
et al., (2005), who used additional degrees 
of freedom within the elements in a classi-

cal linearization of the stability problem. 
Also, Chen & Lui (1991) and Aristizabal-
Ochoa (1997, 2008, 2012), used classical 
or modified stability functions. Other 
authors have sought solutions based on 
infinitesimal element equilibrium in their 
deformed or undeformed configurations 
considering a combination of effects, 
such as transversal and axial loads, shear 
deformation (Timoshenko beam theory) 
and elastic foundation. Davis et al., (1972) 
and Nukulchai et al., (1981) formulated 
the exact solution for beam elements con-
sidering shear deformation. Zhaohua 
& Cook (1983) and Ting & Mockry 
(1984) developed the finite beam element 
considering two and one-parameter 
elastic foundations respectively, but with 
no shear deformation. Shrima & Giger 
(1992), in turn, formulated Timoshenko’s 
beam finite elements considering a two-
parameter elastic foundation. Onu (2008) 
was the first author to formulate a finite 
element combining all effects (transversal 
and axial loads, shear deformation and 
two-parameter elastic foundation). Burgos 
& Martha (2013) presented exact shape 
functions including transversal and axial 
loading and shear deformation. Rodrigues 
et al. (2021) developed the three-dimen-
sional tangent stiffness matrix and nodal 
equivalent loads, using exact interpolation 
functions, considering axial load, shear 
deformation and high-order terms of the 
Green-Lagrange strain tensor.

In addition to the exact finite ele-
ments previously addressed in literature, 
a nonlinear analysis methodology is also 

needed in numerical methods to describe 
the equilibrium path of a structural 
system. Thus, incremental, and iterative 
methods are commonly used, and some 
stand out among them: Newton-Raphson 
method, secant method and arc length 
method (Wempner, 1971; Ricks, 1972, 
1979; Ramm, 1981; Crisfield, 1983, 
1986), displacement control method (Yang 
& Shieh, 1990; Yang & Kuo, 1994) and 
indirect displacement control method (de 
Borst, 1986, 1987), among others. Along 
with these traditional general methods, 
there are simplified approaches capable 
of solving nonlinear problems with less 
computational effort, such as the γz coef-
ficient method (NBR 6118, 2014), moment 
amplification method (Chen & Lui, 1991), 
P-Delta method (Chen & Lui, 1991) and, 
finally, the two-cycle method (Chen & 
Lui, 1991), which is applied in this study. 
The main objective of this research is to 
carry out a second order analysis of frames 
and obtain equilibrium paths using the 
two-cycle method and the tangent stiff-
ness matrix based on exact solutions of 
the differential equations obtained for the 
element’s deformed configuration.

The article is organized in the 
following manner: the next section in-
troduces the differential equations that 
govern the problem. Section 3 presents the 
exact tangent stiffness matrix. The two-
cycle method is presented in section 4 and 
some examples of second order analysis of 
frames are presented in section 5. Finally, 
in section 6, the authors conclude this ar-
ticle and suggest ideas for future research. 

2. Solution of the beam-column differential equation

Figure 1 (Rodrigues et al., 2021) 
shows the deformed configuration of an 

infinitesimal beam element, subjected to 
transversal (q) and axial loads (P). Con-

sidering all forces involved, equilibrium 
imposition leads to Equations (1) and (2):

Figure 1 – Deformed infinitesimal beam element in equilibrium (Rodrigues et al., 2021).

(1)

1. Introduction

F
y
 = 0 → -dV + q(x) dx = 0 →

dV
dx

= q(x)
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The shape functions are used to in-
terpolate the nodal values of the discrete 

element, obtaining displacements and 
rotations within the element of the continu-

ous solution of the problem, according to 
Equation (9):

Inverting matrix [H] in Equation (8) and substituting in Equation (7), shape functions can be easily written:

According to Burgos & Martha 
(2013), P can be either a tensile axial load 
(P>0), in which case μ is a real number 
and the expression for v

h
 (x) can be written 

in terms of hyperbolic functions. On the 
other hand, in the case of a compressive 
axial load (P<0), μ is a complex number 
and the expression for v

h
 (x) can be written in 

terms of trigonometric functions. All those 
expressions are available in Rodrigues et al. 
(2019). In matrix form, the conditions given 
by Equations (5) and (6) are written as:

The same process can be performed 
using the expressions in terms of hyperbolic 

or trigonometric functions and the stiffness 
matrices are then obtained accordingly.

With boundary conditions given by:

3. Tangent stiffness matrix based on interpolation functions from the beam-column differential equation

The differential equation solution results in lateral displacement v
h
 (x) and the rotation can be obtained using θ(x) = dv

h
 ⁄ dx:

v
h
 (x) = c1 e

μx + c2 e
-μx + c3 x + c4

θ
h
 (x) = μ c1 e

μx- μc
2
 e-μx) + c

3

[H].{C} = {d},

(5)

(6)

(8)

(9)

(10)

(7)v(x)
θ(x) = [X].{C}, [X] = [C] = 

eµx e-µx

µeµx -µe-µx
x
1 0

1
C1
C2
C3
C4

θ1

θ2

v2

v1

v (x)
θ (x)

N2 N3 N5 N6

N2 N3 N5 N6

= = =N Nd d. ,
v v v v

θ θ θ θ

v (x)
θ (x)

→= =X NH d. .
-1 -1

X H.

(4)
d4v

h
(x)

dx4
-

d2v
h
(x)

dx2
P
EI

μ2 = 0, μ =

Herein, the Navier (Euler-Bernoulli) 
theory is employed. Thus, the rotation 

and transversal load can be written as the 
derivative of the lateral displacement and 

shear force respectively, leading, after some 
algebraic manipulation, to Equation (3):

The previous equation can be rewritten considering only its homogeneous part (q(x)=0), which leads to v
h
 (x):

(3)d4v(x)
dx4

d2v(x)
dx2

P
EI

q(x)
EI

- =

(2)

M
0
 = 0 → dM - (V + dV ) dx - P dv + q(x) 

dx2

2
= 0, M(x) = EI dθ(x)

dx

d2θ(x)
dx2EI - V(x) - P

dv(x)
dx

= 0 →
d3θ(x)

dx3EI
d2v(x)

dx2

dv(x)
dx

= 0 - - P

v1
θ1

θ2

v2

v (0)
θ (0)

θ (L)
v (L)d = H ==

1
µ

eLµ

µeLµ

1
-µ
e-Lµ

-µe-Lµ

0
1

1
L

1
0

0
1
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In the case of μ being a complex number (P<0), coefficients in terms of trigonometric functions are:

The axial components of the 
tangent stiffness matrix of the frame 
element are the same as those of 

the classical elastic stiffness matrix 
(EA/L), easily found in literature, in 
which E is the material Young’s modu-

lus, L is the element length and A is 
the cross-section area.

In the case of μ being a real number (P>0), coefficients in terms of hyperbolic functions are:

K22 = K55 = -K25 = K52 = 12EI
12DL3

(µL)3 (eµL + 1)

K23 = K26 = K32 = -K35 = -K53 = -K56 = K62 = -K65 = 6EI
6DL3

(µL)2 (eµL - 1)

K33 = K66 = 4EI
L 4D(eµL - 1)

µL [µL(e2µL + 1) - (e2µL - 1)]

K36 = K63 = 2EI
L 2D(eµL - 1)

µL [(e2µL + 1) - 2µLeµL]

P
EID = µL (eµL + 1) - 2(eµL - 1),     µ =

Burgos & Martha (2013) presented the 
expressions and plots of these shape functions 
for all cases described above, as well as the 

development to obtain the tangent stiffness 
matrices described in Equations (11) to (13), 
based on the Principle of Minimum Potential 

Energy. In case the homogeneous solution is 
given by exponential functions, the coefficients 
of the tangent stiffness matrix are given by:

(11)

(12)

(13)

K22 = K55 = -K25 = K52 = 12EI
12DL3

(µL)3 sinh(µL) 

K23 = K26 = K32 = -K35 = -K53 = -K56 = K62 = -K65 = 6EI
6DL3

(µL)2 (cosh(µL) - 1)

K33 = K66 = 4EI
L 4D

µL [µL cosh(µL) - sinh(µL)] 

K36 = K63 = 2EI
L 2D

µL [sinh(µL) - µL]

P
EID = 2 - 2 cosh(µL) + µLsinh(µL),     µ =

K22 = K55 = -K25 = K52 = 12EI
12DL3

(µL)3 sin(µL)

K23 = K26 = K32 = -K35 = -K53 = -K56 = K62 = -K65 = 6EI
6DL3

(µL)2 (cos(µL) - 1)

K33 = K66 = 4EI
L 4D

µL [µL cos(µL) - sin(µL)]

K36 = K63 = 2EI
L 2D

µL [sin(µL) - µL]

-P
EID = 2 - 2 cos(µL) + µLsinh(µL),     µ =
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Developed by Chen & Lui (1991), 
the two-cycle method uses only two 
iterations to obtain second-order ef-

fects. In this method, the classical 
Equation (14) is utilized in two steps. 
In the first step, an elastic linear analy-

sis is carried out using the classical 
elastic stiffness matrix – easily found 
in literature.

In this study, MATLAB® (2018) 
was used to obtain the solutions for the 
models shown in Figure 2. The equilib-
rium paths for second-order analysis 
using the two-cycle method with exact 
shape functions were compared to the 

analytical solutions and results ob-
tained using classical frame elements 
(Hermitian shape functions) through 
MASTAN2 software (McGuire et al., 
2000), which adopts the predictor-
corrector method for the nonlinear 

analysis. For the two-cycle solution, 
each load value results in a displacement 
vector which is independent from previ-
ous steps, since the method is used to 
obtain the exact displacement solution, 
and not in an iterative manner.

Figure 2a shows a laterally re-
strained (non-sway) frame subjected to 
a vertical load P and bending moments 

M = αPL = 0.001PL. Properties of all bars 
are: L = 6 m, E = 108 kN/m2 , I = 10-5 m4, 
and EA = 106 kN. The critical load is 

Pcr= 2.5515 π2 EI ⁄ L2 = 699.51 kN and the 
analytical solution in terms of the free 
rotation is given by:

A look at Figure 3, shows that the 
results for the two-cycle method using the 
exact tangent stiffness matrix is equivalent 
to the equilibrium path of the analytical 
solution and better than the MASTAN2 

solution discretized in 1, 2 and 4 elements 
(M1, M2 and M4). In this example, it is 
clear how the engineer’s experience would 
be required in discretization, especially 
considering that the difference between 

the results produced using discretization 
M1 and M2 is 44.10%. One of the main 
objectives of this study is to reduce the 
need for discretization in simple problems, 
such as nonlinearities in planar frames.

Figure 2 – Proposed models for second-order analysis. a) Non-sway frame. b) Sway frame. c) Cantilever beam.

From the axial load components 
obtained in the previous step, the second 
step starts with the substitution of these 
loads in the tangent stiffness matrix co-
efficients. A second solution is obtained 
using Equation (14) again, but replac-
ing the elastic stiffness matrix with the 
tangent stiffness matrix. Thus, in this 
second step, displacements and forces 
will be of second order, i.e., consider-
ing geometric nonlinearity. Herein, the 
tangent stiffness matrix coefficients are 
given by Equations (11) to (13). In the 
original two-cycle method, these coef-

ficients are obtained by the sum of the 
elastic and geometric matrices and are 
not as accurate. One of the problems that 
arise from this approach is the possibil-
ity of numerical singularities (division 
by zero) that come from low values in 
axial loads. This can be easily solved by 
adding a tolerance that flags the need for 
a nonlinear analysis.

It is interesting to point out that 
in obtaining the differential equation, 
it is assumed that the axial load is 
known. Thus, in this method, the first 
step is necessary only to calculate and 

increment the axial loads for the second 
step. In short: the major contribution to 
achieve reliable results closer to the ana-
lytical solution is in the exact approach 
of the tangent stiffness matrix in the 
second cycle. Since the differential equa-
tion is obtained assuming that the axial 
load is constant within the element, the 
discretization using one element per bar 
is not only advantageous, but also man-
datory. Discretization using more than 
one element per bar is not comparable 
with the analytical solution, for the 
same reasons exposed before.

{f} = [K] {d}

4. Two cycle method

5. Numerical examples

5.1 Example 1: non-sway frame

(14)

(15)

(a) (b) (c)

αµL2[ 2µcos(µL) - 2µ + µ2 Lsin(µL)]
4cos(µL) + µ2L2 cos(µL) + µLsin(µL) - 4

θ(L) =
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Figure 2b shows an unbraced 
(sway) frame subjected to a ver-
tical load P and horizontal loads  

H = αP=0.001P. Properties are the same as 
the previous example. The critical load is 
Pcr = 0.74766 π2 EI  ⁄ L2 = 204.98 kN and the 

analytical solution in terms of displace-
ment at the top is given by:

Figure 2c shows a cantilever 
beam subjected to a horizontal (com-
pressive) load P and vertical load  

αP=0.01P. Properties are the same as the 
previous examples. The critical load is 
P

cr 
= π2 EI ⁄ 2L2 =68.54 kN and the analyti-

cal solution as shown in McGuire et al. 
(2000) is given by:

Figure 5 shows that the results 
for M1 and M4 discretization, despite 

being close to the analytical solution, 
are not identical as the ones obtained 

by the two-cycle method with exact 
element formulation.

Figure 4 shows that the results 
for two-cycle method using the exact 
tangent stiffness matrix are identical 

to the analytical solution. In other 
words, the combination of the two-cycle 
method with exact element formulation 

provides excellent results in predicting 
the nonlinear geometric behavior of the 
sway frame.

Figure 3 – Equilibrium paths for non-sway frame.

Figure 4 – Equilibrium paths for sway frame.

Figure 5 – Equilibrium paths for cantilever beam.

5.2 Example 2: sway frame

5.3 Example 3: cantilever beam

(16)

(17)v(L) = αL 
tan(µL)

µL
-1

α[12 cos(µL) + L2µ2 cos(µL) + 5µLsin(µL) - 12]
µ[6sin(µL) + µLcos(µL)]

v(L) =
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This article presented the combi-
nation of a simple method for second-
order analysis with a formulation of 
the element tangent stiffness that uses 
shape functions that match the homo-
geneous solution of the differential 
equation in deformed configuration to 
solve nonlinear geometric problems.

From the examples shown, the 
analyses using the two-cycle method 
with the suggested formulation of the 
tangent stiffness proved to be efficient 
when compared to traditional numeri-
cal solutions; furthermore, results are 

also independent of model discretiza-
tion. It is interesting to notice that 
result accuracy in numerical solutions 
by finite elements strongly depends on 
the boundary conditions of the models. 
The sway frame and cantilever beam 
achieved better results than the non-
sway frame in one element discretiza-
tion (M1) for the numerical solution in 
MASTAN2. This issue alone shows the 
need for a tool that does not rely on user 
experience in discretizing the model 
and providing nonlinear parameters 
(load step, solution algorithm). This 

problem is no longer present when the 
combination of the two-cycle method 
with exact tangent stiffness is applied. 
It is important to emphasize that all 
the analyses are performed for small 
displacements and loads that are below 
critical values, i.e., postcritical behavior 
is not considered.

In future studies, the authors 
suggest the development of analogous 
analyses that consider shear deforma-
tion, elastic foundation and/or variable 
cross-sections. Another suggestion is 
the use of distributed loads.
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