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Histoplasma capsulatum is an intracellular fungal pathogen that causes respiratory and systemic disease by 
proliferating within phagocytic cells. The binding of H. capsulatum to phagocytes may be mediated by the pathogen’s 
cell wall carbohydrates, glucans, which consist of glucose homo and hetero-polymers and whose glycosydic link-
age types differ between the yeast and mycelial phases. The α-1,3-glucan is considered relevant for H. capsulatum 
virulence, whereas the β-1,3-glucan is antigenic and participates in the modulation of the host immune response. 
H. capsulatum cell wall components with lectin-like activity seem to interact with the host cell surface, while host 
membrane lectin-like receptors can recognize a particular fungal carbohydrate ligand. This review emphasizes the 
relevance of the main H. capsulatum and host carbohydrate-driven interactions that allow for binding and internal-
ization of the fungal cell into phagocytes and its subsequent avoidance of intracellular elimination.
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Histoplasma capsulatum is an ubiquitous dimorphic 
intracellular fungal pathogen which exists in either a 
mycelial (saprobe-infective form) or a yeast (parasitic-
virulent form) phase. The characterization of outer car-
bohydrates specific to these phases may lead to a better 
understanding of their pathogenic fungal-host interac-
tions, such as fungal adhesion, internalization and host 
immune evasion mechanisms. Therefore, this review fo-
cuses on specific fungal saccharidic structures that may 
be involved in the aforementioned mechanisms.

The chemical characteristics and the functions of 
H. capsulatum cell wall carbohydrates

The cell wall is essential to almost every aspect of H. 
capsulatum biology and pathogenicity. In general, 80% of 
the fungal cell wall’s dry weight is composed of saccha-
rides (Bernard & Latgé 2001). Glucose (Glc), followed by 
mannose (Man) and galactose (Gal), is the most abundant 
monosaccharide found in H. capsulatum cell walls dur-
ing the mycelial and yeast phases. It has been reported 
that polymers of Glc (glucans) and N-acetyl-glucosamine 
(GlcNAc) called chitin are the major components of the 
H. capsulatum cell wall (Kanetsuna et al. 1974). The con-
centration of saccharides can vary depending on culture 
medium composition, environmental conditions, strain 
type and the extraction method used (Domer et al. 1967, 
Kanetsuna et al. 1974, Reiss et al. 1977).
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It has been proposed that glucans play an important 
role in fungal host-cell interactions. There are differences 
between the glucan glycosydic linkages in the cell walls 
of the H. capsulatum yeast and mycelial phases. The α 
and β-glucans present in the cell walls of these morpho-
logical phases have different biological roles (Domer et 
al. 1967, Domer 1971, Gómez et al. 1991). An α-glucan 
contains α-1,3-glucosyl linear residues, while β-glucan 
consists of a linear β-1,3-glucosyl-linked backbone with 
β-1,6-glucosyl-linked side chains that vary in length and 
distribution, while forming a complex tertiary structure 
stabilized by interchain hydrogen bonding (Kanetsuna 
et al. 1974). The yeast cell wall contains an inner layer 
of chitin, a polysaccharide composed of β-1,4-GlcNAc 
residues, and an outer fibrous-layer of α-1,3-glucan (Ka-
netsuna et al. 1974). Topographically, the α-1,3-glucan 
overlaps the β-glucan polymer in the yeast cell wall. The 
yeast and mycelia phases of H. capsulatum contain dif-
ferent chitin fibril arrangements within their cell walls 
(Kanetsuna 1981).

Based on the α-1,3-glucan concentration in the yeast 
cell wall, H. capsulatum is classified as chemotype I and 
II (Domer et al. 1967, Domer 1971). A chemotype II cell 
wall contains of a mixture of α and β-glucans, with glu-
can predominantly linked in the α-configuration, while 
chemotype I is entirely β-linked (Davis et al. 1977). 
Moreover, the cell walls of H. capsulatum chemotype I 
strains contain more chitin and less glucan than chemo-
type II (Domer et al. 1967, Domer 1971).

In general, fungal chitin is considered to play both a 
structural role in maintaining cell wall rigidity, as well 
as in resisting the environment (Ruiz-Herrera 1992). It 
is also possible that chitin has a dual immunomodula-
tory effect on macrophages by immunosuppressing or 
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activating anti-microbial mechanisms by increasing ni-
tric oxide production, an activity previously described in 
Candida albicans (Rementeria et al. 1997).

The presence of α-1,3-glucans in H. capsulatum  has 
previously been associated with strain virulence (Kü-
gler et al. 2000, Rappleye et al. 2007). Alternatively, 
β-glucan, which is predominant in the fungal mycelial 
phase, participates in both leukocyte recruitment and the 
upregulation of inflammatory mediators, such as leukot-
rienes (Medeiros et al. 1999).

A temperature-induced phase transition may modify 
the biosynthesis of glucans, i.e., the synthesis of α-1,3-
glucan is a special attribute of H. capsulatum yeast phase 
(Kanetsuna et al. 1974, Klimpel & Goldman 1988). In 
recent studies, α-1,4-amylase has been involved in both 
the synthesis of α-1,3-glucan and the virulence of H. 
capsulatum (Marion et al. 2006). Virulent H. capsula-
tum strains contain up to 1,000-fold more α-1,3-glucan 
than avirulent strains do. Some H. capsulatum strains 
spontaneously produce avirulent variants lacking α-1,3-
glucan. These can persist for several weeks inside mac-
rophages and adopt an unusual morphology, similar to 
those variants reported in tissues of chronically infected 
humans and other mammals (Klimpel & Goldman 1988). 
The α-1,3-glucans may contribute to the establishment 
of intracellular latency (Eissenberg et al. 1996, 1997), 
regulate yeast proliferation inside a host macrophage 
(Kügler et al. 2000) and  protect yeast within phagolyso-
somes (Eissenberg & Goldman 1991). Moreover, the low 
TNF-α produced by infected host cells provides indirect 
evidence for an α-1,3-glucan-mediated effect on the host-
parasite relationship (Rappleye et al. 2004, 2007). It has 
also been suggested that α-1,3-glucan can block innate 
immune recognition of H. capsulatum by a particular 
β-glucan receptor (Rappleye et al. 2007).

Cell wall mannans (Man-containing polysaccharides) 
and mannosylated proteins are important fungal antigens 
and have been implicated in host tissue adherence (Ross 
2002). Galactomannan-protein complexes from the my-
celial phase cell wall of H. capsulatum have antigenic 
properties; they can induce delayed-type hypersensitivity 
in guinea pigs and inhibit macrophage migration factor 
release (Azuma et al. 1974, Reiss et al. 1974). A depro-
teinized polysaccharide-protein complex isolated from H. 
capsulatum, which immunolocalized mainly to the my-
celial phase cell wall by colloidal gold labelling (Taylor 
& Bojalil 1977, Taylor et al. 1980, Pereira-Morales et al. 
1998), shares common characteristics with the galacto-
mannan-protein complex reported by Reiss et al. (1974). 
Fungal galactomannan complexes may be involved in a 
mechanism to protect the organism against its own serine-
thiol protease, an enzyme associated with pathogen dis-
semination through the extracellular matrix, as described 
in paracoccidioidomycosis (Matsuo et al. 2006).

The fungal cell wall contains a low proportion of 
lipids, of which several are linked to carbohydrates and 
illustrate structural heterogeneity. In H. capsulatum, 
sphingolipid modifications may be functionally rel-
evant for their growth, life cycle, morphogenesis, and 
host-pathogen interactions (Dickson & Lester 1999). Ad-
herence to the membrane of host cells by H. capsulatum 

seems to be mediated by lactosylceramide (Galβ1-4Glcβ1-
1Cer) (Jiménez-Lucho et al. 1990). Lactosylceramide is 
the major glycosphingolipid in the host cell and seems 
to be an important component of some receptor moieties 
participating in yeast adherence to phagocytes and other 
host cells, an event that probably favours fungal dissemi-
nation (Obei et al. 2002). The glycosylinositol phosphoryl-
ceramides present in the mycelial and yeast phases of H. 
capsulatum (Barr et al. 1984, Barr & Lester 1984) seem to 
be required for fungal survival (Dickson & Lester 1999).

The interactions between H. capsulatum cell wall 
carbohydrates and host cells

The molecular interactions between host cells and H. 
capsulatum are critical events in the intracellular fate of 
this fungus, as well as in the pathogenesis of histoplas-
mosis. Microorganisms initially trigger the immune sys-
tem by activating the innate immune response, which is 
based on recognition of pathogen-associated molecular 
patterns (PAMPs). β-Glucans possess many of the char-
acteristics attributed to PAMPs and are known to be po-
tent triggers of innate immunity (Brown 2006).

Different host receptors can interact specifically 
with fungal carbohydrates, especially the lectin-like re-
ceptors, including the Man receptor (CD206); β-glucan 
receptors, such as Dectin-1 and DC-SIGN (CD209); 
complement receptor-3 (CR3 or CD11b/CD18); and 
collectins, such as surfactant factors (SP-A and SP-D) 
and pentraxin-3. These are considered pattern recogni-
tion receptors (PRRs) and are present in both profes-
sional and non-professional host phagocytes, including 
macrophages, dendritic cells (DC) and epithelial cells 
(Brown 2006, Dennehy & Brown 2007).

Dectin-1, a nonclassical C-type lectin found in neu-
trophils, natural killer cells, DC and a subset of T cells is 
important for the detection of glycosylated fungal com-
ponents (Brown 2006). It is a major nonopsonic β-glucan 
receptor and one of the first PRRs identified that can me-
diate its own signalling, as well as being able to act syner-
gistically with Toll-like receptors (TLR) to initiate specific 
responses to infectious agents. It can also mediate signals 
to induce inflammatory responses to β-glucans from sev-
eral fungal pathogens (Brown 2006, Dennehy & Brown 
2007). Several PAMPs located in the cell wall or on other 
fungal cell surfaces have been identified as potential li-
gands for TLR-2 and TLR-4 and have been implicated in 
host defence against some pathogenic fungi (Meier et al. 
2003, Roeder et al. 2004). However, the participation of 
TLRs in histoplasmosis has not been confirmed.

It has been suggested that H. capsulatum α-1,3-
glucans block host Dectin-1 from recognizing β-glucans 
present during the fungal yeast phase (Rappleye et al. 
2007). This implies that the α-1,3-glucans act as “decoy 
ligands” for the Dectin-1 receptor. However, several 
membrane components, such as CR3, the scavenger re-
ceptor, and Gal β1-4Glcβ1-1Cer, have been shown to in-
teract with β-glucan (Kataoka et al. 2002). Consequent-
ly, the abrogation of the host innate immune response 
by blocking Dectin-1 with α-1,3-glucan may be circum-
vented by other β-glucan receptors or Gal β1-4Glc β1-
1Cer molecules during natural host interactions.
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At present, the specific receptors recognizing H. 
capsulatum α-1,3-glucan have not been identified. How-
ever, Bittencourt et al. (2006) recently described the 
participation of cell wall α-1,3-glucan in the phagocytic 
internalization of Pseudallescheria boydii, which stimu-
lated the secretion of inflammatory cytokines through 
the  involvement of TLR2, CD14, and MyD88.

As previously described, H. capsulatum β-glucan 
favours the production of inflammatory mediators 
(Medeiros et al. 1999). In general, activation of mac-
rophages by several types of soluble β-glucans culmi-
nates in the induction of proinflammatory mediators, 
nitric oxide synthase, TNF-α and macrophage inflam-
matory protein-2 (Kataoka et al. 2002, Deepe & Gib-
bons 2006, Deepe 2007).

CR3 is considered the main macrophage lectin-like 
receptor involved in nonopsonic recognition of H. cap-
sulatum yeast (Long et al. 2003). H. capsulatum yeast 
bind to CD18 β2-chains of integrin, CR3 (CD11b/CD18), 
LFA-1 (CD11a/CD18) and to CR4/p150/95 (CD11c/CD18) 
on macrophages (Bullock & Wright 1987). Heat shock 
protein 60 seems to be the major ligand mediating H. 
capsulatum yeast and conidia binding to the CD18 chain 
of CR3 on macrophages (Long et al. 2003). It has been 
reported that signalling via CR3 down-regulates IL-12 
production in response to H. capsulatum. Consequently, 
the lower production of IL-12 abolishes its protective re-
sponse against fungi (Marth & Kelsall 1997). It is well 
known that the CR3 molecule contains a lectin domain 
with specificity for polysaccharides containing Man, Gl-
cNAc and Glc (Xia et al. 1999, Ross 2002). In addition, 
lectin-mediated interactions between CR3 and several 
microbial ligands abrogate the release of toxic oxygen 
metabolites. Therefore, CR3 functions as a receptor for 
soluble and particulate polysaccharides and may act as a 
safe portal for the entry of an intracellular microorgan-
ism into macrophages.

Another lectin-mediated interaction between H. 
capsulatum yeast and host cells has been considered, 
in which lectin activity is associated with a compo-
nent present on the yeast cell surface. This lectin-like 
activity is specific to galactosylated surface molecules 
(mainly β-anomer) on murine macrophages (Taylor et 
al. 1998, Duarte-Escalante et al. 2003). H. capsulatum 
yeast also has the ability to bind and agglutinate human 
erythrocytes through this lectin-like component (Taylor 
et al. 2004). The biological significance of these find-
ings seems to be related to aspects of dissemination and 
pathogenesis of the associated clinical disease. The H. 
capsulatum lectin recognizes a 68-kDa cell surface pro-
tein on murine macrophages (Taylor et al. 1998). This 
membrane receptor seens to participate in mechanisms 
that activate macrophages and those that regulate phago-
cytosis (Maldonado et al. 1998).

In some cases, opsonins are required to capture fungi 
by phagocytic lectin-like receptors. Serum opsonins that 
have lectin-like receptor activity, such as CR3 and the 
family of collectin molecules, play an important role in 
the immune response against microorganisms (Lu et al. 
2002). Collectins play a dual role in the innate response: 
as a possible mechanism for dissemination (McMahon et 

al. 1995) and as serum opsonin (McCormack et al. 2003). 
The collectins commonly associated with H. capsulatum 
are lung surfactant proteins A and D (SP-A and SP-D) 
and Man-binding lectin. SP-A and SP-D provide a mech-
anism to control H. capsulatum proliferation during the 
preinflammatory phase of the host-pathogen interaction. 
Both collectins inhibit fungal growth by increasing the 
microorganism’s permeability and circumventing its ag-
gressiveness. H. capsulatum is protected from collectin-
mediated killing by rapidly entering pulmonary mac-
rophages (McCormack et al. 2003).

Surface carbohydrates on numerous pathogens are 
important for the early activation of the innate immune 
response and the subsequent control and destruction of 
these pathogens. H. capsulatum utilizes its cell wall car-
bohydrates or the host cell surface carbohydrates to bind 
and colonize the host, as well as to activate the innate 
response. Moreover, they seem to provide H. capsula-
tum with the capacity to survive in macrophages. The 
cell wall is the major fungal structure involved in inter-
actions with the host. It is a highly dynamic entity and 
changes in its composition or structure may trigger criti-
cal consequences for the host-parasite relationship.
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