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Abstract

The objective of the point-feature cartographic label placement problem (PFCLP) is to give more
legibility to an automatic map creation, placing point labels in clear positions. Many researchers
consider distinct approaches for PFCLP, such as to obtain the maximum number of labeled points that
can be placed without overlapping or to obtain the maximum number of labeled points without overlaps
considering that all points must be labeled. This paper considers another variant of the problem in
which one has to minimize the number of overlaps while all points are labeled in the map. A conflict
graph is initially defined and a mathematical formulation of binary integer linear programming is
presented. Commercial optimization packages could not solve large instances exactly using this
formulation over instances proposed in the literature. A heuristic is then examined considering a
Lagrangean relaxation performed after an initial partition of the conflict graph into clusters. This
decomposition allowed us to introduce tight lower and upper bounds for PFCLP.

Keywords: label placement; modeling; Lagrangean relaxation.

Resumo

O Problema Rotulagdo Cartografica de Pontos (PRCP) tem como objetivo dar maior legibilidade a um
mapa, colocando os rotulos dos pontos em posi¢des legiveis. Existem abordagens distintas para o
PRCP direcionadas a obter o maximo niimero de pontos rotulados que podem ser colocados sem
sobreposi¢do ou ainda obter 0 maximo numero de pontos rotulados sem sobreposi¢ao considerando que
todos os pontos devem ser rotulados. Esse artigo aborda o problema de uma outra forma, minimizando
o numero de sobreposigdes existentes em uma rotulagdo de todos os pontos. Um grafo de conflitos é
definido inicialmente e uma formulagdo matematica de programacgdo linear inteira binaria €
apresentada. Instdncias de grande porte propostas na literatura ndo puderam ser resolvidas por um
software comercial de otimizagdo, com isso, uma heuristica ¢ examinada considerando uma relaxagao
Lagrangeana feita ap6s um particionamento inicial do grafo de conflitos em clusters. Essa
decomposi¢do permitiu obter bons limitantes inferiores e superiores para o PRCP.

Palavras-chave: rotulacdo de pontos; relaxacdo Lagrangeana; modelagem.
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1. Introduction

The point-feature cartographic label placement problem (PFCLP) is a challenge problem in
automated cartography. Positioning the texts requires that overlaps among texts should be
avoided and also cartographic conventions and preferences should be obeyed. Figure 1(a)
illustrates the difficulty that arises when many labels are positioned in overlapping positions
generating invisible areas (see arrows). Figure 1(b) shows a solution for this problem where
some points are not labeled.

Although it can be better to label only some points to produce a cleaner map, there are some
geographic applications where all points must be labeled. Thus, we need approaches and
algorithms to generate the best possible maps.

(@) ()

Figure 1 — Map of Brazilian Railway Stations. An example of a map with some overlapping labels.

PFCLP seeks to place point labels in positions in such a way that a set of constraints are
satisfied, minimizing or maximizing an objective function. However, a list of candidate
positions is presented for each point, indicating where a label can be placed. The list is
chosen in accordance to cartographic standards (Christensen et al., 1995) that prioritize
certain positions. Figure 2(a) shows a group of 8 candidate positions for a point, where the
numbers indicate the cartographic preference in an increasing order.
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Figure 2 — Set of 8 candidate positions for one point (Christensen et al., 1995).

Placing labels in candidate positions can generate overlaps (conflicts) compromising the map
visibility. Thus, due to these potential overlaps, the PFCLP with N points can be represented
through a graph G={V,E}, where V is a set of the candidate positions (vertices) and £ a set of
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edges representing overlaps or conflicts. Figure 3(b) shows the conflict graph of the example
shown in Figure 3(a). This example has three points, each one with 4 candidate positions.
The candidate position v; has potential conflicts with positions v;, v;, v, and vg, v, has
potential conflicts with v;, v,, v;, vs and vg, and so on. Figure 3(c) shows a solution composed
by v;, vs and v that is optimal for this problem because it does not present conflicts between
labels.

Starting from this conflict graph representation, two different approaches are usually
considered for PFCLP. This problem can be considered as a Maximum Independent Vertex
Set Problem (MIVSP) (Zoraster, 1990; Strijk et al., 2000) or as a Maximum Number of
Conflict Free Labels Problem (MNCFLP) (Christensen et al., 1995). In both problems, the
optimal value refers to the number of points in the final solution whose labels are not
conflicting. However, the constraints requiring the labeling of a point are treated differently.
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Figure 3 — Candidate positions (a), conflicts graph (b) and optimal solution (c).
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Figure 4 — A labeling problem with 4 points and 2 candidate position for each one (a).
Two possible solutions are shown at (b) and (c).

The MNCFLP is more useful under the cartographic point of view than the MIVSP but the
map visibility is not fully explored (Ribeiro, 2005). Figure 4 shows two possible solutions
for the same instance. The cost of the both solutions is the same for MNCFLP while, if we
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count the number of conflicts (edges) in their graphs, they differ by three units. At right of
this figure we have an example that shows the difference between these solutions.

Considering the map visibility above and that some cartographic problems need to label all
points in maps, diagrams or graphs, this paper proposes a variant of the problem in which
one has to minimize the number of overlaps while all points are labeled in a map. We
propose for this variant an integer linear programming model and present a Lagrangean
heuristic that is based on a decomposition of the conflict graph. Computational experiments
showed that for instances up to 500 points, this new model can be easily computed by a
commercial solver. Consequently, for such situations, these packages can be used in
cartographic centers.

The rest of the paper is described as follows. Next section presents a brief review about
PFCLP, followed by Section 3 that presents the mathematical model proposed. Section 4
presents the Lagrangean relaxation proposed and some heuristics that are used in the
subgradient algorithm. Section 5 shows the computational results using instances formed by
standard sets of randomly generated points suggested in the literature, and Section 6 has our
conclusions and suggestions for further research.

2. Literature Review

The Maximal Independent Vertex Set Problem (MIVSP) presents a substantial research
considering algorithms and heuristics. Besides, the MIVSP has several applications in
different fields such as in DNA sequencing (Joseph et al., 1992), location of military
defenses (Chaudhry et al., 1986), location-allocation models (Gerrard & Church, 1996),
anti-covering location (Murray & Church, 1996a), forest planning (Murray & Church,
1996b) and Church ef al. (1998), cut and packing (Beasley, 1985) and pallet loading
(Dowsland, 1987).

Specifically considering the MIVSP as a PFCLP, Zoraster (1986, 1990 and 1991) formulated
mathematically the PFCLP working with conflict constraints and dummy candidate positions
of high cost if the points could not be labeled. He also proposed a Lagrangean relaxation for
the problem and obtained some computational results on small-scale instances. Strijk et al.
(2000) proposed new mathematical formulations and examined a Tabu Search algorithm,
obtaining interesting results for their instances. The authors explored some kind of
constraints that are known as cut constraints, presented previously by Murray & Church
(1996¢) and Moon & Chaudhry (1984).

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in
several works. Christensen et al. (1993; 1995) proposed an Exhaustive Search Approach,
alternating positions of the labels that were previously positioned. Christensen et al. (1995)
also proposed a Greedy Algorithm and a Discrete Gradient Descent Algorithm. These
algorithms have difficulty to escape from local maxima. Hirsh (1982) developed a Dynamic
Algorithm of label repulsion, where labels in conflicts are moved trying to remove a conflict.
Verner et al. (1997) applied a Genetic Algorithm with mask such that if a label is in conflict
the changing of positions are allowed by crossover operators.

Yamamoto et al. (2002) proposed a Tabu Search algorithm for the MNCFLP that provides
good results compared to other methods from the literature. Yamamoto & Lorena (2003)
developed an exact algorithm for small instances of PFCLP and applied the Constructive
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Genetic Algorithm (CGA) proposed by Lorena & Furtado (2001) to a set of large-scale
instances. The exact algorithm was applied to instances of 25 points and the CGA was
applied to instances up to 1000 points, providing the best results of the literature. However,
the authors can not prove the optimality of these results because CGA is a metaheuristic.

Although the MNCFLP presents several different algorithms, it has not a mathematical
formulation like the model proposed by Zoraster (1991). However, almost all heuristics
proposed for solving the MNCFLP uses the conflict graph as a base for their mechanism.

Thus, considering these characteristics, in the next section we propose a new mathematical
model that combines the conflict graph and the Zoraster’s formulation for constructing a new
approach that minimizes the number of conflicts (edges) in a conflict graph. This new
mathematical model allows us to label all points.

3. Mathematical Formulation

This section presents a new approach and a mathematical formulation for the PCFLP that
minimizes the number of conflicts. This approach can be used in problems where we have to
label all points.

Considering that each point 7 has a set P; of candidate positions, as shown at Figure 2(a), we
start by defining the variables used in the model. So, each candidate position is represented
by a binary variable x;; where i € {1,...,N}, je{l,..,P}, and N is the number of points that
will be labeled. If x;; = I the candidate position j for the point 7 will be used (it will receive
the label of point 7), otherwise, x;; = 0. Besides, for each possible candidate position of the
point #, a cost (a penalty) w;; is assigned. It represents the cartographic preferences as shown
at Figure 2(b).

For each candidate position x;; there is a set S;; of index pairs (k) that corresponds to
candidate positions x, that present potential conflicts with x;;. For all (k,7)€ S, ;, where

ke{l,.,N}:k>i and te{l,.,R}, there is a binary variable y, 6 representing the
conflict (an edge) in the conflict graph G.

Now, considering the information above, the objective function of the Minimum Number of
Conlflicts Problem (MNCP) for the PFCLP can be represented by:

N b
V(MNCP)=Min 3\ w X+ D Viii (1)

i=1 j=I (k.0)<S;

For each point 7 exactly one of its candidate positions must be chosen. This set of constraints
can be written as:

P’,
dx,;=1 Vi=lL.N 2
Jj=1

We also must take into account that when a label is chosen, it can be overlapping the other
ones. So, a new set of constraints is necessary:
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xi,j+xk,,—yi,jﬂkjlsl Vi=I1..N
Vj=1.P 3)

1

kyes,,

Thus, the MNCP can be formulated as a binary integer linear programming problem:

N B
W(MNCP) = Min Zz[w,,,x,-ﬁ > y,-,A,-,k,tJ @

i=l j=1 (k0)eS;

Subject to x,.=1 Vi=I.N (&)

Vji=1.P 6)
(k,0) €S, ;
X X, and y, 4, €{0,1}  Vi=1.N
Vj=1.P %
(k1) €S,

Constraint (7) ensures that all decision variables of the problem are binaries. Depending on
the values assigned for the costs w;;, the conflict variables y can be reduced to zero and a
cleaner map is obtained.

We tested the formulation above with CPLEX 7.5 (ILOG, 2001) on a set of standard
problems with four candidate positions for each point, proposed by Yamamoto & Lorena
(2003). The optimal solution could be found in few seconds for the instances up to 500
points. For larger instances (750 and 1000 points), CPLEX could not obtain the optimal
solutions in few hours reaching an out of memory state in a computer with Pentium IV
2.66 GHz processor and 512 MB of RAM memory.

Thus, to provide bounds for the MNCP, we show in next section a Lagrangean relaxation
that differs from the literature. It works with several sub-problems (clusters) that are
generated by partitioning of the conflict graph.

4. Lagrangean Relaxation With Clusters

Prior to explain the Lagrangean relaxation, we start by observing that the conflict graph
generated by PFCLP, provides clusters of candidate positions. For example, Figure 5 shows
a conflict graph generated by a problem with 250 points where each one has four candidate
positions. The black vertices represent the maximum independent set (Strijk et al., 2000). It
is easy to see that this graph is sparse and presents well-defined clusters of candidate
positions (see stippled lines). So, if we relax the edges that are connecting the clusters, raise
sub-problems (clusters) that can be solved independently.
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Figure 5 — Clusters provided by a conflict graph of a map labeling problem on 250 points.
(Strijk et al., 2000)

Thus, considering this PFCLP characteristic, the Lagrangean relaxation proposed here has
two distinct phases. The first one divides the conflict graph into clusters and in the second
one, the edges connecting the clusters are relaxed in a Lagrangean fashion. Depending on the
size of these sub-problems, each one sub-problem can be hard to solve and thereby the
number of clusters is essential to obtain good bounds in a reasonable time.

Figure 6 details the Lagrangean relaxation. The graph obtained for the problem shown in
Figure 6(a) is partitioned into two clusters (b). Note that for each point, the clique generated
by their candidate positions is initially ignored. In this partition some constraints represented
by edges inter clusters are removed (¢) and two small problems (d) can be independently
solved. Thus, the edges inter clusters and those that compose the clique for each point, are
relaxed in a Lagrangean fashion.

So, after this decomposition, each cluster has only conflict constraints (6) and even so, the
clusters can be hard problems to be solved. These sub-problems are solved in a subgradient
algorithm, providing bounds for the problem. Depending on the number of clusters
considered this Lagrangean relaxation can be more or less stronger.

Cluster 1

o

Cluster 2

Figure 6 — Partitioning the conflict graph. Problem (a), conflict graph and the clusters (b),
(c) the edges inter clusters; and (d) two sub-problems.
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Therefore, considering the original problem P, this Lagrangean relaxation must be applied
following these steps:

i. Apply a graph partitioning heuristic to divide G into m clusters. The problem P can be
written through the objective function defined in (4) subject to (5), (6) and (7), where, the
conflict constraints (6) is now divided into two groups: one with conflict constraints
corresponding to edges intra clusters and other formed by conflict constraints that
correspond to edges connecting the clusters.

ii. Using two distinct multipliers, relax in a Lagrangean way, the constraints (5) and the
conflict constraints corresponding to edges connecting the clusters.

iii. The resulted Lagrangean relaxation is decomposed into m sub-problems and solved. This
Lagrangean relaxation will be denoted by LagClus hereafter.

Relaxing constraints (5), the relaxed solution cannot be feasible to P because it is possible
that for a point, no one candidate position is assigned or even more than one. So, the
following heuristics CH and IH are used to obtain and improve a feasible solution.

Constructive Heuristic — CH
Let:
e Sol_point_i be a set of candidate positions of the point /.

1. FOR j=1to NDO
2. Sol_point_i < Find in relaxed solution all candidate positions different from zero for
the point /.
3. IF | Sol_point_i| <> 0 THEN
4. Select for feasible solution the candidate position j € Sol_point i that
presents the smallest number of conflicts with the current feasible solution.
In case of tie, select the candidate position with the smallest cardinality set
S/,j.
ELSE
5. Select the candidate position j € P; with the smallest cardinality set S;;.
END FOR

Improvement Heuristic — IH
Let:
e Conflict_Array be an array with N positions that stores the number of overlaps for
each point i related to the current feasible solution;
e Curr_Feasible_Solution be an array with the current feasible solution;
e Best _Candidate_i be an integer variable that stores the best candidate position of
the point i to enter in the Curr_Feasible_Solution.

1. Compute Conflict_Array.
2. FOR/=1to NDO
3. IF Conflict_Array[ i ][<>0 THEN
4. Best_Candidate_i < Select the candidate position j € P; that presents the
smallest number of conflicts with the current solution
Curr_Feasible_Solution.
5. Update Curr_Feasible_Solution with Best_Candidate_i.
6. Compute Conflict_Array.
END FOR
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For the computational experiments, the sub-problems were solved by CPLEX in reasonable
times. The number of clusters was defined experimentally. The partitioning of graph G was
obtained using METIS (Karyps & Kumar, 1998), a well-known heuristic for Graph
Partitioning Problems. Given a conflict graph G and a pre-defined number m of clusters,
METIS divides the graph into m clusters minimizing the number of edges with extremities in
different clusters. Recently Hicks et al. (2004) found good results applying this technique in
a Branch-and-Price algorithm to Maximum Weight Independent Set Problems.

A subgradient algorithm is used for solving the Lagrangean dual (Parker & Rardin, 1988).
The subgradient method is similar to the one proposed by Held & Karp (1971) and updates
the multipliers considering step sizes based on the relaxed solutions and the feasible
solutions obtained by heuristics CH and IH. We implemented the subgradient algorithm
described by Narciso & Lorena (1999) and the stopping tests used were: step size less or
equal than 0.005, difference between upper and lower bounds less or equal than 1 or
subgradient norm equals to 0.

5. Computational Results

The computational tests are performed over standard sets of randomly generated
points  proposed by Yamamoto & Lorena (2003), available at
http://www.lac.inpe.br/~lorena/instancias.html. These sets are composed of twenty five
instances for each number of points Ne&{25, 100, 250, 500, 750, 1000}. We considered as
Zoraster (1990), Yamamoto et al. (2002) and Yamamoto & Lorena (2003), cost or penalty
equal to 1 for all the candidate positions, being the number of those positions equal to 4.
Observe that the particular case of w;;=/ in (4)-(7) has a trivial lower bound equal to N,
when all points are labeled without conflicts.

We implemented the subgradient algorithm in C++ and the tests were performed in a
computer with Pentium IV 2.66 GHz processor and 512 MB of RAM memory.

Table 1 shows the clustering information for each instance class. The first column presents
the number of points, followed by the number of clusters considered and the number of
possible vertices in each cluster. Those numbers of clusters reported at Table 1 were defined
based on prior experiments of the authors, see Ribeiro (2005).

Table 1 — Cluster information for each instance class.

Instance Number of Number of Possible
Clusters Positions in each Cluster

25 2 50

100 4 100

250 10 100

500 20 100

750 25 120
1000 60 ~67
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Table 2 reports the LagClus average results over twenty five instances for each number of
points. We used CPLEX 7.5 for solving the binary integer linear sub-problems.

The information in columns are: Problem — Number of points to be labeled; Optimal
Solution and Time; (s) — The optimal solution and time elapsed by CPLEX applied over
formulation (4) — (7); Lower bound — The best dual limit found by relaxation; Upper bound —
The best upper bound (feasible solution) found by heuristics CH and IH; Gap ub —
Percentage deviation from optimal solution to the best wupper bound:

Gap ub— (Upper bound — Solution

j*lOO; Gap_Ib — Percentage deviation from optimal
Solution

Solution — Lower bound

solution to the best lower bound: Gap lbz(
- Solution

j*lOO; Iter —
Number of the iterations used by subgradient algorithm and Time;(s) — The total
computational time elapsed by subgradient algorithm reaching some stop condition.

The computational results for LagClus shown in Table 2 are very promising. The large
problems (750 and 1000 points) were solved, in average, in 337,80 and 817,00 seconds,
respectively. The upper bound gaps varied from 0,00% to 0,46%, very close to the optimal
solution. The lower bound gaps varied from 0,00% to 9,27% and some of them improved the
trivial number of points limit (see 25 and 1000 points). The problems with 100 and 250
points are simple and solutions without conflicts are obtained quickly. In these cases, the
subgradient algorithm stops and we considered that the lower bounds are equal to the upper
bounds.

Table 2 — Average results for LagClus — Bounds, Gaps, Iterations and Computational Times.

CPLEX 7.5 LAGCLUS
Problem | Optimal | Time, | Lower | Upper Gap Gap Tter Time,
Solution (s) bound | bound | UB (%) | LB (%) (s)

25 27.75 1.60 25.13 27.88 0.46 9.27| 148.50 23.88
100 100.00 0.02| 100.00 | 100.00 0.00 0.00 1.00 0.16
250 250.00 0.06 | 250.00 | 250.00 0.00 0.00 7.12 2.36
500 500.84 3.12 | 498.43 | 501.52 0.14 0.48 | 103.16 82.72
750 - -| 749.41| 767.08 - -| 14528 | 337.80

1000 - -1 1002.11 | 1070.60 - -| 14596 | 817.00

Table 3 — Average results for LagClus — Bounds, Iterations and Computational Times.

LAGCLUS
Problem Number of -
clusters Lower | Upper Tter Time
bound bound (s)
750 20 | 749.63 767.28 145,48 | 436.04
750 25 749.41 767.08 145.28 337.80
750 30 | 749.57 | 767.32 145.40 123.12
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To show what happens when we consider different number of clusters, we performed some
experiments for instances with 750 points and Table 3 reports the average results provided
by LagClus. Note that when the number of cluster increases, the computational time
decreases although the bounds remain practically constant.

Table 4 shows the results obtained for a simple Lagrangean relaxation over the set of
constraints (5). CPLEX 7.5 was also used for solving the Lagrangean relaxations. The
computational times increased drastically. The upper bound was not improved and the large-
scale instances (of 500, 750, and 1000 points) could not be solved. For example, the instance
number 7 of problems with 25 points elapsed 444 seconds to be completed.

Table 4 — Average results for a Lagrangean relaxation of constraints (5).

Lagrangean relaxation over constraint set (5)

Problem Lower Upper Gap Gap
bound bound UB (%) LB (%)

Iter Time (s)

25 25.13 28.38 2.29 9.27 151.63 104.63
100 100.00 100.00 0.00 0.00 1.00 0.16
250 250.00 250.00 0.00 0.00 1.48 0.92

PS: The solutions were not obtained for problems with 500, 750 and 1000 points
due to time-consuming conditions.

Relaxations of constraints (6) were also tested. The dual bounds were always smaller than the
trivial limit imposed by the number of points (size) of the problem. So, relaxing the constraint
set (6) could be considered weak for these instances. For more details, see Ribeiro (2005).

It is important to note that all approaches revised in section 2 have different objectives of that
in MNCP and consequently the computational results are not comparable.

6. Conclusions

This paper presented a new approach and a new mathematical model for point-feature
cartographic label placement problem aiming a better map legibility. This model seeks
minimize the number of existing overlaps, labeling all points on a map.

A new relaxation heuristic was also proposed. This relaxation works with clusters and
presented tight bounds on a set of instances varying from 25 up to 1000 points. For many
instances the results found are very close to the optimal solutions.

We believe that this work contributes for point-feature cartographic label placement
problems and the LagClus can be useful in related problems, for instance, the Maximal
Vertex Independent Set Problem.
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