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ABSTRACT: Soil CO2 emission (FCO2) is governed by the inherent properties of the soil, such as 
bulk density (BD). Mapping of FCO2 allows the evaluation and identification of areas with different 
accumulation potential of carbon. However, FCO2 mapping over larger areas is not feasible due 
to the period required for evaluation. This study aimed to assess the quality of FCO2 spatial es-
timates using values of BD as secondary information. FCO2 and BD were evaluated on a regular 
sampling grid of 60 m × 60 m comprising 141 points, which was established on a sugarcane 
area. Four scenarios were defined according to the proportion of the number of sampling points 
of FCO2 to those of BD. For these scenarios, 67 (F67), 87 (F87), 107 (F107) and 127 (F127) 
FCO2 sampling points were used in addition to 127 BD sampling points used as supplementary 
information. The use of additional information from the BD provided an increase in the accuracy 
of the estimates only in the F107, F67 and F87 scenarios, respectively. The F87 scenario, with 
the approximate ratio between the FCO2 and BD of 1.00:1.50, presented the best relative 
improvement in the quality of estimates, thereby indicating that the BD should be sampled at 
a density 1.5 time greater than that applied for the FCO2. This procedure avoided problems 
related to the high temporal variability associated with FCO2, which enabled the mapping of this 
variable to be elaborated in large areas.
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Introduction

Soil carbon stock is dependent on the adopted land 
use and agricultural practices, and minor changes in soil 
management lead to major changes (decrease or increase) 
in carbon stocks (Benbi and Brar, 2009; Boeckx et al., 
2011). In 2005, the Brazilian agricultural soils were esti-
mated to be responsible for a net emission of 192.9 Mt 
CO2-eq, mainly in N2O and CH4 forms (Cerri et al., 2009). 
Positioning the contribution of soil CO2 emission (FCO2) 
in this balance is a difficult task due to the large spatial 
and temporal variability of this important component 
(Teixeira et al., 2013). The temporal variability is affected 
mainly by soil moisture and soil temperature (Ball et al., 
1999), and the spatial variability relates to soil properties 
that affect gaseous transport of CO2 or O2 inside soil (Saiz 
et al., 2006; Brito et al., 2010; Allaire et al., 2012).

Geostatistics enables the assessment of soil prop-
erties that exhibit spatial dependence. Ordinary cokrig-
ing (CK) uses secondary information from a covariate 
(BD) with a denser sampling scheme than the main vari-
able (FCO2), provided that the variables are correlated. 
Although many authors have verified the spatial corre-
lation or coregionalization between different variables 
(Stoyan et al., 2000; Wang et al., 2002; Prolingheuer et 
al., 2010), few have studied the use of this relationship 
to improve the quality of FCO2 spatial estimates. The 
estimate of soil properties by CK can be more accurate 
than those obtained by ordinary kriging (OK) when the 
cross-variogram shows dependence between two vari-
ables (Vauclin et al., 1983). 

The main use of CK is where the primary variable 
is sampled less densely because it is either difficult to 
measure or it requires a costly method for its character-
ization, while the covariate is easily obtained by a less 
costly method (Deutsch and Journel, 1998). Although 
the method for FCO2 characterization using a portable 
system has been intensively used (Kosugi et al., 2007; 
Brito et al., 2009; Panosso et al., 2009; Brito et al., 2010; 
Prolingheuer et al., 2010; Panosso et al., 2011; Teixeira 
et al., 2011, 2012), this method is limited by the time 
available for evaluation. The period of FCO2 assessment 
in several places should be as short as possible to avoid 
variations between the initial and final temperatures 
of the evaluation period, limiting the number of sam-
pling points. Although the BD assessment is more com-
plex than the FCO2 assessment, there is no limitation 
regarding the collection period, thereby enabling BD to 
be measured at a larger number of sampling points. In 
this context, the objective of this study was to evaluate 
the quality of FCO2 estimates performed by OK and CK 
techniques when considering BD as a covariate from dif-
ferent sampling scenarios.

Materials and Methods

The field study was conducted in Guariba, São 
Paulo, Brazil (21°21' S; 48°11' W). According to Thorn-
thwaite's classification, the local climate is defined as 
B1rB’4a’, which is mesothermal humid with little water 
stress and less than 48 % annual evapotranspiration in 
the summer. The soil of the area is a clayey Oxisol.
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The area has been cultivated with sugarcane (Sac-
charum officinarum (L.) spp. var. SP86-155) for eight years 
under mechanical harvesting. At the time of study, the 
soil was without apparent vegetation and was covered 
with a large amount of crop residue (12 t ha–1) resulting 
from mechanical harvest performed 28 days before the 
experiment had started. On Jul. 13th 2010, a regular grid 
(60 m × 60 m) containing 141 points spaced at mini-
mum distances ranging from 0.5 to 10 m was installed 
by installing PVC collars used in the FCO2 evaluation 
methodology (Figure 1).

Before the characterization of spatial variability, 
14 points in the grid (10 % of the points) were randomly 
selected (Cerri et al., 2004; Teixeira et al., 2011) and de-
fined to validate the estimation procedures. Four scenari-
os were defined according to the proportion between the 
number of sampling points of FCO2 and BD. In the first 
scenario (F67), 67 points (48 % of the original data) were 
used to provide information on the FCO2. The other sce-

narios considered 87 (F87), 107 (F107) and 127 points 
(F127) representing 62, 76 and 90 % of the original data, 
respectively. In all scenarios, BD was evaluated at 127 
points of the sampling grid (90 % of the original data), 
which was used to provide supplementary information 
on the FCO2 spatial variation.

The FCO2 was evaluated using three portable sys-
tems (LI-COR 8100). The portable system has a chamber 
that measures the CO2 concentration in the captured air 
by means of optical absorption spectroscopy once the 
chamber is placed on the PVC soil collars during the 
field measurements. Before starting the experiment, the 
three machines were tested and calibrated to each other. 
The evaluations were performed over seven days dur-
ing the mornings (8h00 – 9h30) in Julian days 195, 196, 
197, 200, 201, 204 and 207 of the year 2010. A mean 
FCO2 was derived as a result of the average seven day 
assessment. After the FCO2 evaluations, undisturbed 
soil samples (0-0.2 m) were removed in each of the grid 

Figure 1 – Configuration sample used to collect data (FCO2 and bulk density). (▲) Places used for analysis of both properties. (○) Locations 
used in the evaluation of soil bulk density. (x) Places used for external validation.
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lated for a single property. The cross-variogram is calcu-
lated only in places where both variables (primary and 
secondary) are sampled simultaneously (Deutsch and 
Journel, 1998). Before the cross-variogram modeling, we 
verified the presence of coregionalization linear model, 
which is indicated by cross-variograms well structured 
and proportional to auto-variograms (Isaaks and Srivas-
tava, 1989). More details about the cross-variogram and 
CK can be found in Goovaerts (1997).

The choice of the adjusted variogram model is 
based on the sum of squared residuals (SSRs), and the 
coefficient of determination (R2), obtained by adjusting 
a theoretical model to an experimental variogram. In 
cross-validation when using either an auto- or cross-var-
iogram, the value of the target variable at each location 
sampled is estimated by OK or CK, respectively. Sub-
sequently, the estimated and observed values are com-
pared by fitting a linear regression.

Ordinary kriging, which is the most applied geo-
statistical method of interpolation, is a weighted aver-
age of neighboring samples (eq. 3). The weights (λi) 
for each neighbor are determined based on adjusted 
variogram model (eq. 1), so that the variance of the 
estimates is minimized leading to a linear system of 
equations.

					   
		  (3)

where ẑ(x0) is the estimated value of the property at 
point 0; N is the number of values used for prediction; λi 
is the weighting associated with each value; and z(xi) is 
the observed value at the ith point.

If each variable exhibits spatial dependence and 
there is coregionalization between the variables, it is pos-
sible to use CK to estimate values (Deutsch and Journel, 
1998). The CK term is used for spatial estimations using 
linear combinations of n values of principal attributes 
and m values of secondary attributes to the OK calcu-
lations. Similar to OK, CK has the same characteristics 
of non-bias and minimum variance estimations obtained 
by the development of equation 4. The CK estimations 
(eq. 4) are based on the auto-variogram models for each 
variable and on the cross-variogram model.

 (4)

points by the volumetric ring method to determine the 
BD (EMBRAPA, 1997).

Geostatistics provides an appropriate set of tools 
to assess how a property varies from place to place. 
This methodology allows a deeper understanding of 
the spatial relationship between emission and other 
soil properties as well as assisting in the decision-
making process. By mapping the variation, areas with 
higher and lower emissions can be determined and 
indicate where different management systems would 
be needed to avoid further emissions and soil carbon 
losses.

Spatial variability was characterized by computing 
and modeling the experimental variogram (both auto- 
and cross-variograms) by the intrinsic hypothesis princi-
ple. Cross-variograms were modeled by the linear model 
of coregionalization to ensure the positivity of the vari-
ance of any linear combination of the variables (FCO2 
and BD) (Deutsch and Journel, 1998). The experimental 
auto-variogram was used to determine the spatial auto-
correlation of the variable (eq. 1), and was later used in 
the estimations performed by OK.

					   
	

			  (1)

where )(ˆ hγ  is the experimental semivariance at a separa-
tion distance h; z(xi) is the property value of FCO2 at the 
ith point; and N(h) is the number of pairs of points sepa-
rated by the distance h. The auto-variogram describes the 
spatial continuity or dispersion of the studied variables as 
a function of distance between two points in a grid.

The spatial dependence between the FCO2 and 
BD was estimated by means of a cross-variogram, which 
is estimated by the following equation (Deutsch and 
Journel, 1998):

		
 (2)

where ˆ ( )zy hγ is the experimental cross-semivariance at a 
separation distance h; z(xi) is the value of the primary 
variable (to be estimated) at the ith point; and N(h) is the 
number of pairs of points separated by the distance h. 
Note that the variogram is simply a particular case of 
the cross-variogram wherein the semivariance is calcu-

Table 1 – Descriptive statistics of soil CO2 emission (FCO2) and soil bulk density (BD).
Mean SE SD CV Min Max Skew Kurt AD (p)

FCO2 1.57 0.07 0.79 50.02 0.34 4.08 0.86 0.14 < 0.01
Ln(FCO2) 1.23 0.08 0.58 47.15 -0.09 2.20 -0.38 -0.25  0.21
BD 1.50 0.01 0.14 9.50 1.06 1.86 -0.25 0.39  0.35
n = 141; FCO2 = soil CO2 emission (µmol m–2 s–1); Ln(FCO2) = natural logarithmic transformation of soil CO2 emission; BD = soil bulk density (g cm–3); SE = standard 
error of mean; SD = standard deviation; CV = coefficient of variation (%); Min = minimum; Max = maximum; Skew = skewness; Kurt = Kurtosis; AD (p) = p value of 
Anderson-Darling normality test.
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where ẑCK(x0) is the estimated value of the main variable 
(FCO2) by CK at point 0; λi are the weights associated 
with the main variable; λj are the weights associated 
with the secondary variable; z(xi) is the value of the main 
variable observed at the ith point; and z(xj) is the value of 
the secondary variable observed at the jth point. Cokrig-
ing should only be used when there is a correlation be-
tween the primary and secondary variables (Deutsch 
and Journel, 1998). Thus, Pearson's correlation analyses 
were performed to verify the possible correlations be-
tween the FCO2 and BD.

To assess the quality of the estimates of each meth-
od, the predicted values were subjected to external vali-
dation based on root mean square error (RMSE) of the 
data (Teixeira et al., 2012):

			  (5)

where n is the number of values used in the validation 
(n = 14); zest(xi) is the estimated value of the property 
at the ith point; and zobs(xi) is the value of the property at 
the ith point;. The RMSE index provides measures of ac-
curacy. Thus, an index closer to 0 reflects more accurate 
prediction.

Subsequently, the relative improvement (RIRMSE) in 
accuracy caused by the use of secondary information in 
the interpolation procedure was also evaluated using the 
following equation (Bourennane et al., 2007):

				 
			   (6)

where: RMSEOK and RMSECK are the values of RMSE 
obtained by interpolation of values using OK and CK, 
respectively.

The estimates of the variogram models and from 
OK and CK were obtained using GS+ software (version 
9.0; Gamma Software Design, 2008). Surfer software 

(version 9.0; Golden Software, 2009) was used for the 
graphs and mapping. Descriptive statistics were per-
formed using R software (R Development Core Team, 
2010).

Results and Discussion

The mean FCO2 was 12 % less than the mean re-
ported by Brito et al. (2010) under the same soil type 
and culture conditions (Table 1). When evaluating the 
soil respiration in areas of sugarcane with different man-
agement systems, Panosso et al. (2009) observed average 
emission values of 2.06±0.06 and 2.86±0.28 µmol m–2 

s–1 for green and slash-and-burn managements, respec-
tively. The lower emission values observed in the pres-
ent study may be due to higher BD values (approximate-
ly 1.5 g cm–3) compared to those in other studies (Brito et 
al., 2009). The increased BD relates to less FCO2, as gas 
exchange within the soil is more difficult due to either 
oxygen entrance or CO2, which is produced inside the 
soil and diffuses to the atmosphere. When evaluating the 
effect of the interaction between FCO2 and BD in three 
soil types (clay, silt and sand), Novara et al. (2012) found 
that soils with a BD of 1.1 g cm–3 have emissions 32 % 
higher than those with a BD of 1.5 g cm–3.

The high FCO2 CV value (approximately 50 %) is a 
characteristic of this variable indicating the existence of 
large variability even in small areas. The FCO2 CV values 
in the present study were similar to the values reported 
by other authors in different soil types and farming sys-
tems (Kosugi et al., 2007; Brito et al., 2010; Panosso et al., 
2011; Allaire et al., 2012). Although the skewness value 
(Table 1) was outside the recommended range (|skew-
ness| > 1) for the realization of the natural logarithmic 
transformation (Kerry and Oliver, 2007), the transforma-
tion was performed in order to stabilize the semivarianc-
es and, consequently, the accuracy of estimations. Thus, 
the natural logarithmic transformation of FCO2, which 
is a procedure often adopted in soil respiration spatial 
analysis, was used in the present study (Stoyan et al., 
2000; Kosugi et al., 2007; Panosso et al., 2009).

Table 2 – Models and parameters of the auto- and cross-variograms fitted to the soil CO2 emission and soil bulk density data in the different 
scenarios evaluated.

Models C0 C0+C1 |C0/(C0+C1)| A R2 SSR
Cross-validate
a b

BD Exp. 0.01 0.02 0.50 10.70 0.82 6.49E-06 0.48 0.68
F67 Sph. 0.10 0.31 0.32 31.80 0.89 3.83E-03 0.52 0.76
F67 × BD Sph. -1.68E-03 -0.02 0.08 18.95 0.81 3.58E-05 0.00 1.00
F87 Sph. 0.10 0.30 0.33 27.70 0.85 6.15E-03 0.56 0.78
F87 × BD Sph. -1.48E-03 -0.02 0.07 27.28 0.90 9.34E-01 0.00 1.00
F107 Sph. 0.11 0.32 0.34 26.47 0.89 4.98E-03 0.42 0.81
F107 × BD Sph. -5.11E-03 -0.03 0.17 21.49 0.86 7.12E-05 0.00 1.00
F127 Sph. 0.10 0.31 0.32 28.04 0.89 4.59E-03 0.37 0.84
F127 × BD Sph. -2.03E-03 -0.03 0.07 21.37 0.81 1.17E-04 0.00 1.00
C0 = nugget effect; C0+C1 = sill; |C0/(C0+C1)| = degree of spatial dependence; A = range (m); a = intercept coefficient; b = slope coefficient; Exp.= exponential 
model; Sph.= spherical model.
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Based on the classification proposed by Warrick 
and Nielsen (1980), BD presented a small variation char-
acterized by the CV ratio being less than 12 % (Table 1). 
This homogeneity may be related to the management of 
sugarcane adopted in the studied area, which was based 
on eight years of cultivation without field reform. Al-
though the BD presented small variability, there was a 
linear correlation with FCO2 in all evaluated scenarios 
presenting coefficients ranging from -0.26 (p < 0.05) to 
-0.34 (p < 0.01) for the F67 and F127 scenarios, respec-
tively. Increased observation numbers resulted in larger 
coefficients of correlation with significance less than 1 
% of probability because the calculation of the correla-
tion was influenced by increasing the number of obser-
vations considered. As mentioned above, the negative 
coefficients indicated the inverse relationship between 
the FCO2 and BD.

Panosso et al. (2011) evaluated the soil respiration 
under sugarcane in different management systems, and 
they reported a correlation between the FCO2 and the 
interaction of BD with the rate of organic matter humi-
fication. Saiz et al. (2006) presented a multiple linear re-
gression model using BD as the variable, combined with 
other environmental variables, to explain 54 % of the 
total variance of FCO2 under forests of Picea sitchensis. 
However, few studies have reported the influence of BD 
on the spatial patterns of FCO2.

Spherical (Kosugi et al., 2007; Panosso et al., 2009; 
Brito et al., 2010; Teixeira et al., 2011; Allaire et al., 
2012) models were fitted to the FCO2 experimental auto- 
and cross-variograms (Table 2 and Figure 2). For the BD, 
the exponential model (Camargo et al., 2010) presented 
the best fit. The main difference between both models 
is that the variation associated with a spherical model 
has more evenly sized patches whereas those for the 
exponential model have a more random extent. As ob-
served for the linear correlation, the FCO2 and BD were 
negatively correlated in space resulting in negative sill 
and nugget effect values. Stoyan et al. (2000) found posi-
tive spatial correlations among the FCO2, soil moisture 
and carbon content in soil in areas under forests. Pro-
lingheuer et al. (2010) evaluated the spatial correlation 
between soil respiration and the respiration from the 

autotrophic (roots) and heterotrophic organisms in win-
ter wheat crops, and they found a positive spatial cor-
relation between the FCO2 and autotrophic respiration. 
Decreased nugget effect values were observed for the 
cross-variogram in relation to the auto-variogram adjust-
ed for FCO2 in all scenarios (Table 2), which indicated 
that the error due to laboratory tests or sampling error 
was the major constituent of the residual variance over-
lapping that due to the microscale variability (Stoyan et 
al., 2000).

The degree of spatial dependence was classified as 
moderate for all auto-variograms fitted to the FCO2 and 
BD as characterized by the following relation: 0.25<|C0/
(C0+C1)|<0.75 (Cambardella et al., 1994). Excepted the 
F107 × BD cross-variogram, all cross-variograms pre-
sented strong spatial dependence (|C0/(C0+C1)|<0.25) as 
a consequence of the strong spatial correlation between 
the FCO2 and BD.

The FCO2 range values shown in Table 2 were 
similar to those reported by Brito et al. (2010) in dif-
ferent topographic positions. Allaire et al. (2012) evalu-
ated multiscale FCO2 spatial variability in sandy soils 
under a corn/potato rotation, and they found range val-
ues from 24.3 and 28.5 m. Although the BD presented 
spatial dependence only to a distance of 10.70 m, the 
cross-variogram presented an average range of 22.27 
m.

When considering the scenarios in the present 
study, small changes in the intercept and slope coeffi-
cients of the cross-validation adjustments may indicate a 
relative maintenance of the quality of the estimates even 
with the increased number of samples used. In all sce-
narios, the cross-variogram produced intercept and slope 
coefficient values close to 0 and 1, respectively (Table 2), 
indicating the potential use of secondary information for 
FCO2 spatial analysis.

The BD map shows the lowest values (< 1.52 g 
cm–3) predominantly on the left in the same region where 
the highest estimated FCO2 values are shown (Figure 
3). This trend confirmed the negative correlations (both 
linear and spatial) shown in Table 2. As the number of 
samples used to predict FCO2 increased, the map be-
came more heterogeneously detailed. The F67 and F87 
maps presented greater differences from those estimated 
by the F107 and F127 scenarios, which may have been 
related to the number of samples present in the central 
region of those maps (F107 and F127). 

The digital correlation (n = 8836) of maps pro-
duced by different interpolation methods resulted in 
correlations ranging from 0.90 (F67) to 0.98 (F107 and 
F127), which indicated the high contribution of the sec-
ondary information (BD) to the primary information 
(FCO2). Thus, the use of secondary information in the 
F67 and F87 scenarios promoted greater contributions 
than those for the F107 and F127 scenarios. In general, 
the maps produced by CK were more irregular and less 
smoothed than those generated by OK in all scenarios 
(Figure 3). These results were similar to Chai et al. 

Table 3 – Index of accuracy (RMSE) calculated from the external 
validation of the different scenarios used.

RMSE RIRMSE

F67 0.59 -
F67 × BD 0.55 6.78
F87 0.52 -
F87 × BD 0.43 17.31
F107 0.48 -
F107 × BD 0.46 4.16
F127 0.47 -
F127 × BD 0.47 0.00
(n = 14); RMSE = root mean square error (µmol m–2 s–1); RIRMSE = relative 
improvement (%).
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Figure 2 – Auto- and cross-variograms fitted to the soil CO2 emission and soil bulk density data.
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(2007), who studied soil organic matter using elevation 
data as secondary information.

The quality of estimates in different scenarios 
was assessed by accuracy indexes (Table 3). With the in-
creased number of observations considered in the FCO2 
model, the estimation quality was improved, resulting in 
RMSE values closer to 0. The use of additional informa-
tion regarding BD improved the predicted models only 
in the F107 (4.16 %), F67 (6.78 %) and F87 (17.31 %) 
scenarios.

In most studies, the contribution of FCO2 from 
agricultural soils is estimated indirectly. However, the 
direct quantification of FCO2 when considering the ex-
istence of spatial variability is a major task because this 
quantification could be integrated more accurately into 

inventories of greenhouse gases. Such inventories con-
tribute to the understanding of the soil carbon balance 
allowing the identification of the management systems 
and areas that have higher potential of soil carbon stor-
age. 

FCO2 mapping by geostatistical techniques 
should be obtained easily and inexpensively. However, 
the large temporal variation of FCO2 present even in 
short periods (Teixeira et al., 2011) influences their char-
acterization, thereby invalidating the mapping in large 
areas. The increased number of evaluation equipment 
partially solves the impasse however the costs of the 
mapping would be significantly increased. The use of 
data from the BD, which provides additional informa-
tion to the FCO2 data, becomes a viable alternative to 

Figure 3 – Maps of the spatial pattern of the soil bulk density (g cm–3) and soil CO2 emissions (µmol m–2 s–1) in different scenarios with and without 
use of secondary information.
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large area mappings because the sampling BD has no 
restrictions with respect to time. This methodology also 
has the advantage of obtaining more precise and accu-
rate maps.

Conclusions

The use of BD provides additional information 
to FCO2, which is a viable alternative to large area 
mappings, thus resulting in more precise and accurate 
maps. 

Increased amounts of secondary information 
present in locations where no primary information has 
been received result in greater relative improvements 
in CK.

The scenario with a primary (FCO2) and second-
ary (BD) ratio of 1.0:1.5 presented the best relative im-
provement in the quality of the estimates..
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