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ABSTRACT: Soil CO2 emissions (fCO2) in agricultural areas have been widely studied in global climate 
change research, but its characterization and quantification are restricted to small areas. Because 
spatial and time variability affect emissions, tools need to be developed to predict fCO2 for large 
areas. This study aimed to investigate soil magnetic susceptibility (MS) and its correlation with fCO2 in 
an agricultural environment. The experiment was carried out on a Typic Eutrudox located in Guariba-
SP, Brazil. Results showed that there was negative spatial correlation between fCO2 and the magnetic 
susceptibility of Air Dried Soil (MSADS) up to 34.3 m distant. However, the fCO2 had no significant 
correlation with MSADS, magnetic susceptibility of sand (MSSAND) nor clay (MSCLAY). However, MSADS 
could be a supplemental mean of identifying regions of high fCO2 potential over large areas.
Keywords: magnetism, soil respiration, spatial variability, geostatistics

to evaluation (Teixeira et al., 2013). Larger scale eddy 
covariance and associated plume methodologies assume 
that the source strength is constant, a feature that has 
already been demonstrated to be heterogeneous. In the 
search for potential covariates, MS is ideal for studies 
with a large number of samples since it is rapid and inex-
pensive (Dearing et al., 1996). Our hypothesis was based 
on a cause and effect relationship between iron oxides 
and fCO2 (Bahia et al., 2014). Moreover, MS is directly 
related to iron oxide mineralogy (Balsam et al., 2004). 
Thus, because of the different mineralogical composi-
tion of soils, MS could be an important property with 
potential application in the study of the cause and effect 
relationship between soil mineralogy and fCO2.

Materials and Methods

The experiment was conducted in Guariba, SP, 
Brazil (21°21’ S; 48°11’ W). According to the revised 
Thornthwaite climate classification system (1948), the 
local climate is mesothermal humid (B1rB'4a' type) with 
little water deficiency (mean annual precipitation = 
1,432 mm). The experimental area was set up on a Typic 
Eutrudox (Soil Survey Staff, 1999) with very clayey tex-
ture (clay content > 600 g kg−1). The soil had been culti-
vated with raw sugarcane under mechanical harvesting 
for the past 8 years and had generated a large amount of 
crop residue left on the soil surface (12,000 kg ha−1 yr−1). 
The experimental area is inserted in a lithostratigraphic 
division of sandstone-basalt. Geological material in the 
study area is associated with sandstones of the Bauru 
Group - Adamantina Formation and basalt of Serra Geral 
Formation. An irregular 60 × 60 m grid with 141 sample 
points was installed within the area with distances of 
0.50 to 10.0 m between points (Figure 1). Soil samples 
were collected at a depth of 0-15 cm.
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Introduction

Soil CO2 emissions (fCO2) are dependent on soil car-
bon stock (Scharlemann et al., 2014) which can be easily 
increased or decreased by the adoption of different ag-
ricultural practices (Boeckx et al., 2011). Consequently, 
spatial and temporal variability for fCO2 are high, which 
complicates efforts to monitor them. The fCO2 is con-
trolled by soil CO2 production and transportation to the 
atmosphere (Fang and Moncrieff, 1999), processes which 
are affected by factors that determine spatial (physical, 
chemical, mineralogical and microbiological character-
istics of soil) (Saiz et al., 2006; Allaire et al., 2012) and 
temporal variation in fCO2. Time variability is mainly 
influenced by temperature and soil moisture, and their 
corresponding impact on microbial processes, or their 
interaction (Yuste et al., 2007). Since soil characteristics 
that influence fCO2 vary across the landscape, strategies 
to map and identify locations with different emission po-
tentials are needed. A number of authors have explored 
emission models for different locations focusing on topo-
graphic features (Barrios et al., 2012) and spatial variabil-
ity of cause and effect relationships for soil properties and 
fCO2 using geostatistics and fractal techniques (Panosso 
et al., 2012). Both methods need information that is not 
acquired quickly and accurately across the field.

In this context, magnetic susceptibility (MS) is a 
rapid technique that can be performed in the field or 
laboratory which decreases the amount of reagents in 
mineralogical analysis (Bahia et al., 2014). MS is the de-
gree of magnetization of certain materials (minerals in 
rocks and soils) in response to a magnetic field applica-
tion (Dearing, 1994). La Scala et al. (2000) found that the 
mineralogy of soils influences the potential of fCO2.

The methods for characterizing locations with dif-
ferent fCO2 potentials are limited by the time allocated 
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The fCO2 flux was measured by means of a por-
table system that monitors changes in CO2 concentration 
through infrared radiation analysis inside a chamber 
placed on the PVC soil collars during the field measure-
ments (Healy et al., 1996). Evaluations were done for 7 
days during mornings (8:00 a.m. to 9:30 a.m.), on Julian 
days 195, 196, 197, 200, 201, 204 and 207 in 2010. 

In order to obtain sand and clay fractions for MS 
evaluation, a treatment with 0.5 N NaOH and mechani-
cal stirring for 10 minutes to disperse the particles was 
first carried out. Then, the sand fraction was removed 
through sifting with a 0.05-mm sieve. Silt and clay were 
separated by centrifugation (1,600 rpm) for a period de-
termined by sample temperatures ranging from 16 to 30 
°C. After centrifugation, the suspended clay was floccu-
lated with concentrated HCl, and centrifuged (2,000 rpm 
for 2 minutes) to yield decanted clay and a supernatant 
solution with silt. The supernatant solution was discard-
ed and the clay dried in an oven at 105 °C for 24 hours. 

MS determinations for ADS (Air Dried Soil) (MSADS) 
and sand (MSSAND) and clay (MSCLAY) fractions were made 
using Bartington MS2 equipment coupled to a Barting-
ton MS2B sensor. The evaluation was done at low fre-
quency (0.47 kHz).

A descriptive statistics was conducted (average 
± standard error; standard deviation; coefficient of 
variation; minimum; maximum; asymmetry; and 
kurtosis). Linear and polynomial regressions between 
MSADS, MSSAND, MSCLAY and fCO2 were analyzed. 
Spatial variability was evaluated by GS+ 9.0 software. 
Experimental semivariogram modeling was based on 
the theory of regionalized variables, estimated by the 
following equation: 
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where:γ^ (h) is the experimental semi variance for an h 
distance; z (xi) is the property value at the I point; and 
N (h) is the number of pairs of points separated by an h 
distance. The semi-variogram represents variable spatial 
continuity as a function of the distance between two lo-
cations. Spatial dependency between fCO2 and magnetic 
susceptibilities of MSADS, MSSAND, and MSCLAY were mod-
eled by means of cross-semivariograms, and estimated 
by means of the following equation: 
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where: γ̂ Zy h( ) is the experimental cross semi variance for 
an h distance; z (xi) the value of the main variable (the 
one to be estimated) at point I; y (xi) the value of the 
secondary variable at i point; and N (h) the number of 
pairs of points separated by an h distance. Note that a 
simple variogram is a particular case of a cross variogram 
wherein the semi-variance is calculated for one property 
only. Consequently, it is considered a measurement tool 
of variable spatial autocorrelation. In this study, we used 
adjusted spherical and Gaussian models; the best-fitted 
model to the variogram was set up in a lower Residual 
Sum of Squares (RSS), and a Coefficient of determination 
(R2) obtained for model adjustment. 

Results and Discussion

The fCO2 had an average of 1.69 ± 0.08 µmol m−2 
s−1, with a minimum value of 0.34 µmol m−2 s−1 and a 
maximum of 4.49 µmol m−2 s−1 (Table 1) which is lower 
than that of Panosso et al. (2012) who studied sugarcane 
cultivation in red Oxisols. The lack of rainfall prior to 
the experimental period, the low soil organic matter con-
tent (4.75 ± 0.05 g dm−3), and the high soil compaction 
represented by a bulk density average of 1.50 ± 0.01 

Figure 1 – Sampling scheme used to collect soil samples and evaluate soil CO2 emissions (fCO2). 
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g cm−3 as was noted by Teixeira et al. (2013), could be 
an explanation for the low average emission. The fCO2 
coefficient of variation (CV) was 57 %, which is typi-
cal for this property (La Scala et al., 2000). Brito et al. 
(2009), who obtained similar results in sugarcane areas, 
observed a mean CV of 55 % for fCO2.

For MSADS, an average of 2,064 ± 9 × 10−8 m3 kg−1 
was obtained, with a minimum value of 1,844 × 10−8 
m3 kg−1 and a maximum of 2,522 × 10−8 m3 kg−1. The 
MSSAND had an average of 2,426 ± 352 × 10−8 m3 kg−1, 
with a minimum value of 1,703 × 10−8 m3 kg−1 and a 
maximum of 4,202 × 10−8 m3 kg−1. Whereas for MSCLAY, 
the average was of 1,452 ± 94 × 10−8 m3 kg−1 with a 
minimum of 1,029 × 10−8 m3 kg−1 and a maximum of 
1,729 × 10−8 m3 kg−1. The highest average value of MS-

SAND is attributable to the primary mineral, magnetite, in 
the soil fine sand fraction, which have magnetic behav-
ior more evident compared to the second mineral ma-
ghemite, found in the clay fraction (Fabris et al., 1998) 
and produced by oxidation with its formation intensi-
fied by fire (Ketterings et al., 2000; Terefe et al., 2008). 
Thus, the variations of MS values can be explained by 
minerals in soils derived from basalt and the historical 
management of sugar cane burning in the harvesting 
system. 

The MSADS was lower than MSSAND, since the first 
resulted from the interaction of various magnetic fields 
with different intensities, some even with negative in-
tensity. While for MSSAND, only the MS of these minerals 
in this fraction is accounted for, and there was no inter-
action with other magnetism types, which resulted in 
the highest value. Matias et al. (2014) observed similar 
results in Oxisols and found MSADS average values be-
tween 2,300 × 10−8 m3 kg−1 and 2,700 × 10−8 m3 kg−1. 

We noted that the CVs of MSADS, MSSAND, and 
MSCLAY are much lower when compared to fCO2, which 
can be explained by a greater uniformity of MS within 
the area studied. Barrios et al. (2012), studying the poten-
tial of MS in identifying of landscape compartments on a 
detailed scale in Jaboticabal-SP, reported similar CVs for 
MSADS, MSSAND and MSCLAY that were, respectively, from 
5 to 13 %, 11 to 18 %, and 5 to 12 %, depending on the 
landscape segment. -

No models of linear and polynomial regression (p 
> 0.05) were found between fCO2 and MSADS, MSSAND and 
MSCLAY. This fact may be related to the high coefficients 
of variation found for fCO2 (La Scala et al., 2000; Ray-

ment and Jarvis, 2000; Adachi et al., 2009), which make 
it difficult to establish linear and polynomial relations. 
Consequently, the use of geostatistics is of great impor-
tance, when recording spatial correlations between soil 
attributes, in the production of the most accurate map-
pings for fCO2. Bahia et al. (2014) illustrated the spatial 
dependence between mineralogy and fCO2.

The simple semivariogram models that best fit 
were the spherical (fCO2, MSSAND and MSCLAY) and the 
Gaussian (MSADS) as revealed by low values for RSS and 
high values for R2 (Table 2). Kosugi et al. (2007) and San-
tos et al. (2013) adjusted similar semivariogram models 
for fCO2 and MSADS. In addition, the spherical model is 
associated with abrupt changes in the pattern of vari-
ability (Teixeira et al., 2012), especially in relation to 
more distal points. On the contrary, the Gaussian model 
is related to small changes in the pattern of variability 
(Teixeira et al., 2012).

Range values were for fCO2 (37.3 m), MSADS (37.7 
m), MSSAND (5.3 m) and MSCLAY (5.6 m) (Table 2). Similar 
range values were also found by Brito et al. (2010) in a 
soil derived from similar geologic parent material. The 
fCO2 and MSADS showed very tight range values, suggest-
ing a potentially similar pattern of variability, which was 
not observed for MSCLAY and MSSAND, that attained range 
values quite different from fCO2. According to the classi-
fication proposed by Cambardella et al. (1994), when the 
ratio is lower than or equal to 25 %, spatial dependence 
is considered strong; between 25 and 75 %, moderate; 
and higher than 75 %, weak. In this study, we found a 
strong degree of spatial dependence for MSADS and mod-
erate for fCO2, MSSAND and MSCLAY. 

Furthermore, negative spatial dependence was 
found between fCO2 and MSADS for a distance of 34.3 m 
(Figure 2A). The Gaussian model was the best fit to the 
fCO2 × MSADS cross semivariogram, while other values of 
MSSAND and MSCLAY were not correlated with fCO2, which 
is indicated by the absence of spatial dependence (pure 
nugget effect). However, even this study had shown spa-
tial correlation between MSADS and fCO2, isotropic mod-
els were found for all properties studied, which can be 
verified in studies conducted by Teixeira et al. (2013) and 
Bicalho et al. (2014). However, these results differ from 
studies conducted by Bahia et al. (2014). 

The fCO2 and MSADS spatial dependence could be 
associated with soil porosity and bulk density, which are 
dependent on sand and clay contents. Higher values for 
total porosity and lower bulk density promote enhanced 
capacity for gas to diffuse throughout the soil and, con-
sequently, increase fCO2. The literature has shown that 
MSADS is an excellent pedological indicator of clay con-
tent in tropical soils for areas with iron content of soil 
between 4 and 18 % (Siqueira et al., 2010, 2014; Ma-
tias et al., 2014). Clay content is related to microporos-
ity (Aringhieri, 2004) and consequently to total poros-
ity. According to Cambardella et al. (1994), the higher 
spatial dependence in soil attributes is correlated with 
interactions between parental material, climate and to-

Table 1 − Descriptive statistics for fCO2, MSADS, MSSAND and MSCLAY.
  Mean ASE SD CV Min. Max. Asymmetry Kurtosis
fCO2 1.69 0.08 0.97 57 0.34 4.49 1.03 0.33
MSADS 2064 9.43 112 5 1844 2522 0.80 2.00
MSSAND 2426 29.64 352 15 1703 4202 0.99 3.91
MSCLAY 1452 7.92 94 6 1029 1729 0.68 2.67
fCO2 = soil CO2 emissions (µmol m−2 s−1); MS = Magnetic Susceptibility (10−8 × 
m3 kg−1); ADS = Air Dried Soil; ASE = standard error of mean; SD = Standard 
Deviation; CV = coefficient of variation (%); Min = minimum value; Max = 
maximum value.
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Conclusions

Air Dried Soil Magnetic Suceptibility (MSADS) had 
spatial dependence on fCO2 up to a distance of 34 meters 
indicating that this information may be used to define 
fCO2 spatial variability, especially for research projects 
that study the cause and effect of the relationship be-
tween mineralogy and fCO2.
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