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Modeling Chaotic Current Oscillations in Semi-Insulating GaAs with
Rate-Equations of Impact Ionization and Field-Enhanced Trapping
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We investigated the effect of adding the field-dependent recombination process, namely field-enhanced trap-
ping, to the generation-recombination processes of charge carriers that model current oscillations in semicon-
ductors. The main new features arising from this modification are identified in bifurcation diagrams with the
electric field as the control parameter. The characteristic of the bifurcation diagrams is a function of impurity
energy. Thus, we generated a set of bifurcation diagrams for a range of the impurity energy and applied bias.
The energy dependence of the bifurcation diagrams is discussed considering the context of the competition
between the generation-recombination mechanisms impact ionization and field-enhanced trapping.
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I. INTRODUCTION

Low-frequency current oscillations (LFO) in semi-
insulating (SI) GaAs were observed in many works since the
60’s [1-4]. Theoretical models have been proposed to explain
the LFOs and the chaotic behavior in GaAs, (Si) and in other
semiconductors [5-7].

In a recent work [4], we carried out analyses on experimen-
tal LFO, measured in semi-insulating GaAs samples. Those
analyses were carried out considering some methods of non-
linear dynamics analysis applied to time series [8,9]. Such
procedures work as if the system under investigation were
“ black boxes”, i.e. systems in which there is no direct ac-
cess to their dynamical equations. This means that it cannot
provide all the needed information contained in its dynamical
equations. Besides, for experimental systems contaminated
by noise, as in our case, time series measures are inconclu-
sive. In order to understand experimental systems like ours
[3,4], that present nonlinear characteristics and even deter-
ministic chaos, we are now trying to develop the theory un-
derlying the physical processes responsible for these chaotic
characteristics. This is carried out by defining and building
the system’s dynamical equations and numerically integrating
them to study its dynamics.

Current oscillations in semiconductors are in most cases
originated from Negative Differential Conductivity (NDC),
which occurs due to various physical mechanisms. The re-
combination instability is one of them, and is closely related
with field-enhanced trapping effect. It was suggested that this
effect could lead the system to NDC, and this type of NDC
was observed in GaAs Si [10-12]. This negative type of non-
linearity leads to the nucleation and propagation of field do-
mains. Current oscillations occur as a result of cyclic propa-
gation of domain nucleating at the cathode and vanishing at
the anode. A review about field domains in GaAs Si can be
found in Ref. [10].

The present work concerns the investigation of the effect of
including in the rate-equations firstly proposed by Schöll for

the generation-recombination (g-r) processes of charge car-
riers [5], the field-dependent recombination process, namely
field-enhanced trapping [11,12]. These equations were ap-
plied to explain the self-generated chaos in semiconductors.
In this model, Schöll used the field-dependent impact ioniza-
tion process in a two-impurity levels model plus the conduc-
tion band. In our model, we included the field-enhanced trap-
ping process. The main new features arising from this modi-
fication are identified in bifurcation diagrams for the electric
field as a function of the control parameter, i.e. the applied
bias. The characteristics of the bifurcation diagrams of the
modified model are impurity energy dependent. We gener-
ated a set of bifurcation diagrams for a range of the impurity
energy and applied bias. The energy dependence of the bi-
furcation diagrams is discussed considering the competition
between the g-r mechanisms impact ionization and field en-
hanced trapping.

II. MODELING THE PHYSICAL SYSTEM

FIG. 1: Generation-recombination model involving the conduction
band (CB) and the defects levels – ground state (GS) and the first
ionized state (FIS) [5].

The model studied in this work was initially proposed by
Schöll [5]. The model consists of three rate equations for the
g-r processes of charge carrier in a simplified extrinsic n-type
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semiconductor. The dynamic equations represent two defect
energy levels, i.e., its ground and first ionized states, and the
conduction band. The valence band is omitted because the re-
combination rates involving it are negligible when compared
with the processes involving the impurity states and the con-
duction band. The scheme of this model is represented in Fig.
1, where the g-r coefficients are shown. The up arrows rep-
resent the generation and the down arrows, the recombination
processes of the electrons. Some g-r coefficients depend, on
the electric field [11-13]. In the present model the coefficients
of generation processes (X∗

1 ,X1), due impact ionization, and
of recombination process (T1), due field-enhanced trapping,
depend on the electric field. All other coefficients were con-
sidered field independent. The impact ionization phenomenon
is assumed to follow the Schockley’s model [13], which is
given by X∗

1 ,X1 ∝ exp [−E0/(eλE)], where E0 is the threshold
ionization energy, e is the electron charge, λ is the mean free
path, and E is the electric field. The field-enhanced trapping
phenomenon is assumed to follow the same model except by a
signal change and the use of proper carriers on the differential
equation since it is a recombination process. Thus T1 is given
by T1 ∝ exp [−E1/(eλE)], where E1 is the threshold capture
energy [11,12]. The rate equations can then be built from Fig.
1, as well the constitutive equations [5-7].

Following Schöll [5], the set of differential rate equations
for the normalized variables (n,n1,ε) is:

ṅ = XS
1 n2 −T n

1 pt +X1nn1 +X∗
1 nn2,

ṅ1 = T ∗n2 −X∗n1 −X1nn1, (1)

ε̇ = J−nV (ε).

Where n is the carrier density in the conduction band, n1
is the trapped carrier density in the donor ground state and
ε is the electrical field. The electron density of the excited
state, n2, was eliminated due to the charge neutrality condi-
tion given by n2 = N∗

D − n1 − n. The unoccupied defect den-
sity, pt , is given by pt = NA + n. The effective donor density
and the acceptor density are represented by N∗

D and NA, re-
spectively. The coefficient XS

1 stands for thermal ionization
coefficient, T ∗ and X∗ are the coefficients for transitions from
the ground state to the excited state and vice versa, respec-
tively (Fig. 1). The coefficients X1 and X∗

1 are the generation
coefficients via impact ionization for the ground and excited
state, respectively, which are electric field dependent follow-
ing the Schockley’s model. T1 is the recombination coefficient
via field-enhanced trapping, which is electric field dependent.
The coefficients XS

1 , T ∗ and X∗ are considered independent
of the electric field. The dimensionless parameter V(ε) is the
field-dependent drift velocity and will be defined in the next
section. The control parameter, ε0, is given by the steady-state
current-density-field characteristic when Eqs. (1) is equal to
zero, i.e., J = nV (ε0).

In this work we have studied normalized versions of Eqs.
(1), i.e. electric field ε, carrier density n in the conduction
band and trapped carrier density n1 in the donor ground state
were normalized according to Refs. [5-7]. We have performed
a study of bifurcation and chaos of electric field oscillations
obtained by numerical integration of the set of equations, Eqs.
(1). The control parameter considered for the bifurcation dia-
grams is the applied bias, i.e., ε0.

III. NUMERICAL RESULTS

By integrating Eqs. (1), tuning the control parameter ε0 and
the capture energy E1, a period doubling bifurcation route to
chaos and other types of bifurcation were found.

The values of the dimensionless g-r coefficients used for in-
tegrating the set of equations, Eqs. (1), are shown in Table 1.
The impact ionization coefficients X1 and X∗

1 have a nonlinear
dependence with the normalized electric field ε and are given

by: X1 = X0
1 exp

(−6.0Et
/
ε
)

and X∗
1 = X∗0

1 exp
(−1.5Et

/
ε
)

,

respectively. The energy Et is a normalized impurity ground-
state value and is unitary. The field-enhanced trapping coeffi-
cient T1 has a nonlinear dependence with the normalized elec-

tric field ε and is given by: T1 = T 0
1 exp

(−E1
/
ε
)

. The NA/N∗
D

ratio is a compensation factor and is equal 0.3. The parameter
r2 is a saturation value that is related to the dimensionless em-
pirical drift velocity [14] V(ε) as: V (ε) = arctan(r2ε)/r2. Its
value is equal 0.3. These parameters and coefficients depend
on the semiconductor material and sample geometry. Schöll
[6] worked with a set of parameters that he proposed for high-
purity n-type direct gap materials with hydrogen-like shallow
donors presenting “ S” shaped negative differential conductiv-
ity (SNDC) at low temperatures. For comparison of the simi-
larities we keep the same values of the parameters of Schöll’s
work. The only changes considered regard the threshold ener-
gies.

TABLE I: Dimensionless g-r coefficients for the Eqs. (1). After
Schöll [5-7].

T 0
1 T ∗ XS

1 X∗ X0
1 X∗0

1
10−2 10−5 10−7 10−7 5×10−4 10−2

For values presented in Table 1 and for E1 equal to 1.7Et
we obtained the bifurcation diagram shown in Fig. 2. The
horizontal axis is the control parameter ε0 and the vertical axis
is the sequence of maxima for the electric field time series. In
the range of ε0 showed in Fig. 2, we found only electric field
oscillations with fundamental period (period-1). For values of
ε0 below 38 and above 43, the system, represented by Eqs. 1,
converge to fixed points.

Figure 3 shows bifurcation diagram for E1 = 1.55Et . Here
the system, Eqs. (1), bifurcates from period-1 to period-2 with
two fundamental frequency and return to period-1, for ε0 in
the range 50.0 to 55.2. Fig.4 (a) shows bifurcation diagram
for E1 = 1.5Et . Here the system presents a period-doubling
bifurcation cascade followed by period-halving cascade. In
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FIG. 2: Bifurcation diagram for E1 = 1.7Et .

Fig. 4 (b) we present an enlargement of the Fig. 4 (a) in the
range 56.15 to 57.20 for ε0. Here we have period-doubling
bifurcation and interior crisis. This type of bifurcation is char-
acterized by abrupt changes from chaotic cycle to a period-1
cycle. Fig. 5 shows bifurcation diagram for E1 = 1.0Et . Here
the system, Eqs. (1), bifurcates from period-1 to period-2 fol-
lowed by period-4 and returns to period-2 and bifurcates again
following a period-doubling bifurcation. This bifurcation se-
quence, i.e., period-1 to period-2 to period-4 to period-2, is
observed in our experimental measurements of current oscil-
lations as we can observe in Fig. 6.

FIG. 3: Bifurcation diagram for E1 = 1.55Et .

Figure 7 shows bifurcation diagram for E1 = 0.1Et . Here,
the sequence period-1 to period-2 to period-4 to period-2 dis-
appeared in the second branch, compare with Fig. 5, and a
same sequence emerged in the third branch followed by a nor-
mal period-doubling bifurcation.

In our model, we generated electric field oscillations in-
stead of current oscillations as in experimental measurements
[1-4]. However, the relation between the variables can be ob-
tained by the equation J = n(ε)V (ε), where n(ε) is the dynam-

FIG. 4: Bifurcation diagram for E1 = 1.5Et .

FIG. 5: Bifurcation diagram for E1 = 1.0Et .

ical variable presented in Eqs. (1) and V(ε) is the dynamical
drift velocity as defined above.

All variables and parameters in Eqs. (1) and Table 1 are
normalized. The carrier densities are normalized by effective
donor density N∗

D = ND −NA, all lengths by the effective De-
bye length LD = (D0τM)1/2, the time by the effective dielectric
relaxation time τM = εS/(4πeµ0N∗

D), and the electric field by
kT/eLD, where ND, NA are the donor and compensating accep-
tor concentrations, respectively, µ0 and D0 are the low-field
mobility and the diffusion constant, and εS is the static dielec-
tric constant. For the sample of Fig. 6 at 300 K with µ0 = 670
cm2/Vs, εS = 12.9, N∗

D = 1019 cm−3 and trap level at 0.7eV,
τM ∼ 10 µs and kTEt /eLD ∼ 1V/cm.
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FIG. 6: Bifurcation diagram for the minima of the current time series
as a function of the applied bias in the sample [3].

FIG. 7: Bifurcation diagram for E1 = 0.1Et .

It was found that the recombination instability, field-
enhanced trapping, with generation instability, impact ioniza-
tion, brought the system, Eqs. (1), to exhibit not only current
oscillations with fundamental period, but also those with var-

ious kind of period including chaos, which were associated
with motion of domains [10]. The complexity of the bifur-
cation diagrams, presented here, is associated with the trap
energy level responsible for the field-enhanced trapping ef-
fect. For high value of E1, Fig. 2, the system showed a peri-
odic behavior for all values of electric field. In this case, the
field-enhanced trapping effect is not a predominant effect and
can be negligible. For values between 1.55Et ≤ E1 ≤ 0.3Et ,
Fig. 3-5, we found a variety of bifurcation including period-
doubling, crisis and bifurcation with the sequence: period-1 –
period-2 – period-4 – period-2. In this range of E1 the field-
enhanced trapping effect dominates or there is a competition
with impact ionization effect. Below 0.3Et , Fig. 7, the sys-
tem returns to period-doubling bifurcation where the impact
ionization effect dominates.

IV. SUMMARY

We included, in a model of rate-equations for the g-r
processes of charge carriers, the field-enhanced trapping ef-
fect. We obtained a set of bifurcation diagrams with electric
field and trap energy level as control parameters. Depending
on the trap energy level, the system can bifurcate by period-
doubling, crisis, period-1 to period-4 and return to period-1 or
no bifurcations at all. The field-enhanced trapping effect plays
an important role in the process of bifurcation through the
competition with the impact ionization effect. Further studies
will be carried out in this model to better elucidate its relation
with experimental data.
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