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Abstract - In the process industry, advanced controllers usually aim at an economic objective, which usually 
requires closed-loop stability and constraints satisfaction. In this paper, the application of a MPC in the 
optimization structure of an industrial Propylene/Propane (PP) splitter is tested with a controller based on a 
state space model, which is suitable for heavily disturbed environments. The simulation platform is based on 
the integration of the commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer 
ROMeo® with the real-time facilities of Matlab. The predictive controller is the Infinite Horizon Model 
Predictive Control (IHMPC), based on a state-space model that that does not require the use of a state 
observer because the non-minimum state is built with the past inputs and outputs. The controller considers the 
existence of zone control of the outputs and optimizing targets for the inputs. We verify that the controller is 
efficient to control the propylene distillation system in a disturbed scenario when compared with a 
conventional controller based on a state observer. The simulation results show a good performance in terms of 
stability of the controller and rejection of large disturbances in the composition of the feed of the propylene 
distillation column. 
Keywords: Model Predictive Control; Process Optimization; Dynamic simulation; Propylene distillation. 

 
 
 

INTRODUCTION 
 

Since the early applications of Model Predictive 
Control (MPC) in industry, more than three decades 
ago, this control method has shown a continuous de-
velopment. It has been largely implemented in areas 
such as oil refining, chemical, food processing, auto-
motive and aerospace industries (Qin and Badgwell, 
2003) and, nowadays, continues to gain the interest 
in other fields such as in medical research (Lee and 
Bequette, 2009). 

As is usual in the process industry, there is a hier-
archical control structure (Engell, 2007) in which, 
based on a complex non-linear stationary model of 
the plant and on an economic criteria, a Real Time 
Optimization (RTO) layer computes optimizing tar-
gets, which are sent to a MPC layer. In the MPC layer, 
at each sample time, an optimal sequence of control 

inputs is calculated so that the system is driven to the 
RTO targets through the minimization of a control 
cost function. This optimization problem includes con-
straints for the outputs and inputs. Two essential in-
gredients of this complex structure are stability and 
offset-free control. One of the usual forms to obtain 
guaranteed nominal stability in MPC is to adopt an 
infinite prediction horizon (Rawlings and Muske, 
1993). However, to produce an offset-free tracking 
operation, the model can be written in the incremental 
form in the inputs, which adds integrating modes to 
the system output. The drawback of this formulation 
is that the integrating modes must be zeroed at the 
end of the control horizon to keep the infinite horizon 
cost bounded (Rodrigues and Odloak, 2003; Gonzáles 
and Odloak, 2009).  

Several successful MPC implementations are cited 
in the literature. Pinheiro et al. (2012) studied the 
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implementation of APC in a Fluid Catalytic Cracking 
(FCC) Unit through rigorous modeling and simula-
tion of the process. Hinojosa and Odloak (2013, 2014) 
studied the implementation of state-observer-based 
MPC’s in the Propylene/Propane splitter. Carrapiço 
et al. (2009) implemented an IHMPC in an industrial 
deisobutanizer column, using a space-state model 
that reproduces the step response of the transfer 
function model and takes into account time delays 
and integrating modes. This sort of state-observer-
based advanced controller has been successfully im-
plemented in industrial applications. 

Nowadays, several researchers propose to inte-
grate an economical term into the controller cost func-
tion, so that the controller drives the process system 
to an economical optimum. The classical approach 
corresponds to the multi-layer structure in which Real 
Time Optimization (RTO) and MPC are executed in 
different layers of the control structure. There are 
several approaches to integrate RTO into the MPC 
structure, the so called Economic MPC or one-layer 
approach. First, the inclusion of an economic func-
tion term (feco) and the nonlinear steady-state model 
in the advanced controller was proposed, producing 
what was called the optimizing controller (Zanin et 
al., 2002). The main disadvantage of this strategy is 
that the optimization problem that defines the con-
troller is a non-linear one, which becomes difficult to 
solve within the controller sampling time. It may re-
quire a high computational effort and does not guar-
antee the convergence to a global optimum. 

To circumvent that problem, different approaches 
were proposed for the Economic MPC controller 
where the gradient, reduced gradient or Lyapunov-
based techniques were used to provide a controller 
that ensures stability, constraint satisfaction and a low 
computational cost solution (Adetola and Guay, 2010; 
Alamo et al., 2014; Amrit et al., 2011; De Souza et 
al., 2010; Ellis et al., 2013).  

Alongside with performance, the closed-loop sta-
bility of the system is another concern when one de-
signs a model predictive controller. Stability is often 
proved assuming that the state is measured or ex-
ploiting the separation principle. In the usual case, 
the system state is not measured and the separation 
principle is only applicable when the control law 
calculated by the controller is linear (Zheng and 
Morari, 1995; Maciejowski, 2002). So, the approach 
cannot be applied when the control optimization prob-
lem is constrained. A method to overcome this issue 
consists in avoiding the use of a state observer by 
considering a non-minimal realigned model where 
the state is composed of the past measured outputs 
and inputs of the system (Maciejowski, 2002). 

One can expect that a controller based on such a 
realignment model would be more robust and effi-
cient in terms of stability and non-measured distur-
bance rejection than a controller in which a state 
observer is required. Nevertheless, to our knowledge, 
no such study can be found in the MPC literature. 

Recent papers dealing with model predictive con-
trol based on such realigned models include Wang 
and Young (2006), González et al. (2009), Perez et 
al. (2014) and Zhang et al. (2011). In this work, the 
model representation proposed in González et al. 
(2009) is also adopted. 

As plant designs are becoming more complex, 
integrated and interactive, they tend to represent a 
challenge of increasing complexity for dynamic con-
trol (Svrcek et al., 2000). Nevertheless, the use of a 
first principles-based dynamic simulation can help in 
the understanding of process dynamics and the de-
sign of control strategies, especially in processes 
with many variables and/or long settling time. In this 
way, commercial advanced process controllers (APC) 
can be implemented using dynamic simulation in or-
der to reduce plant step-tests and to minimize the im-
plementation time. Besides, rigorous steady-state and 
dynamic models are useful to analyze new control 
strategies, to develop inferences, to train the operat-
ing personal and to tune new APC strategies (Alsop 
and Ferrer, 2006). 

The main scope of this work is the implementa-
tion of an advanced control strategy, based on the 
Infinite Horizon Model Predictive Control (IHMPC) 
in the highly non-linear industrial Propylene/Propane 
(PP) splitter. The approach considers a model repre-
sentation that does not require a state observer/esti-
mator. The closed-loop performance of this control-
ler is tested through the dynamic simulation of the 
process for typical disturbed operating scenarios and 
compared with the performance of a conventional 
state-estimator-based controller. The control scheme 
considered here assumes that a RTO layer is present 
in the control structure and provides targets for the 
manipulated inputs of the distillation system and that 
the outputs are controlled inside zones instead of at 
fixed set points. 
 
 

THE CONTROL PROBLEM OF THE 
PROPYLENE/PROPANE SPLITTER 

 
The industrial Propylene/Propane splitter studied 

here is schematically represented in Dynsim in Figure 
1. This system is designed to produce high-purity pro-
pylene (99.5%), which is separated from the propane 
stream that contains other hydrocarbons with four 
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atoms of carbon. A typical description of the feed 
composition usually involves about ten components 
and the propylene stream is produced as the top stream 
of the splitter, while the propane stream is obtained 
as the bottom product of the splitter. 

The distillation system considered in this study is 
a heavy energy consumer, and to reduce the operat-
ing costs, it includes an energy recovery system (heat 
pump) where the top vapor is recompressed and con-
densed in the reboilers at the bottom of the column. 
The heat transfer area of the reboilers depends on the 
liquid level inside the bottom drum and can be modi-
fied through the manipulation of the liquid level. 

The required high purity of the propylene product  

implies that a high reflux ratio is necessary, which 
means that a large amount of energy is transferred 
through the variable heat transfer area of the bottom 
reboilers. The high consumption of energy is one of 
the typical ingredients that justify the implementa-
tion of advanced control and optimization strategies 
in refining processes. The main purpose of this study 
is to verify if a multivariable advanced controller based 
on a state-space representation that does not require a 
state observer/estimator can give a good performance 
in terms of producing an economic benefit while main-
taining the product qualities. In the controller consid-
ered here, the manipulated inputs are the feed flow 
rate, the reflux flow rate and the heat pump flow rate.  

 

 

Figure 1: Schematic representation of the Propylene/Propane splitter. 
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The controlled outputs are the molar concentra-
tion of propane in the propylene stream, the propyl-
ene molar concentration in the propane stream and 
the level of liquid in the bottom separator, which af-
fects the heat transfer area in the bottom reboilers. 
The controller is expected to provide a good per-
formance in terms of driving the system inputs to the 
optimum targets produced by the RTO layer, while 
keeping the system outputs inside the control zones 
that are defined by the operators. Stability is an addi-
tional issue that will be observed. 
 
 
FORMULATION OF THE REALIGNED MODEL 
 

Consider the system with nu inputs and ny out-
puts, which can be represented by the following 

difference equation model (Maciejowski, 2002; 
Perez, 2006): 
 

1 1

( ) ( ) ( )
na nb

i i
i i

y k A y k i B u k i
 

             (1) 

 

where na and nb are the number of poles and zeros 
of the system respectively. Then, the model repre-
sented in Eq. (1) corresponds to the following state 
space model in the output realigned form (González 
et al., 2009): 
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  ( 1)0 0 0 nu nb
uC 

    
 

The state of the model defined in (2) then splits as 
follows: 
 

( )
( ) , ( 1) ( 1)

( )

y nx

u

x k
x k nx na ny nb nu

x k

 
      
 

 

where, 
 

( ) ( 1) ( 1) ( )
TT T T T

yx y k y k y k na y k na       (3) 

 

( ) ( 1) ( 2) ( 1)
TT T T

ux k u k u k u k nb           (4) 

 
The partition of the state defined in (3) and (4) is 

convenient in order to separate the state components 
related to the system output at past sampling steps 
from those related to the input. Also, since the model 
is written in terms of the input increment, model (2) 
contains the modes of model (1) plus ny integrating 
modes. 
 
 

IHMPC WITH ZONE CONTROL AND 
OPTIMIZING TARGETS 

 
The controller with infinite prediction horizon 

(IHMPC) presented in González et al. (2009) was 
extended here to include economic targets for the in-
puts and zone control for the outputs. This controller 
was considered in the simulation of the control of a 
Propylene/Propane splitter in order to evaluate the 
effect of considering a realigned model based con-
troller instead of a controller that requires the use of 
a state observer as in the conventional IHMPC, which 
usually results in a slower closed-loop system. Next, 
how this controller was built is briefly described. The 
cost function of the controller is the following one: 
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(5) 

where  |u k j k  is the control move computed at 

time k to be applied at time k+j and m is the control 
or input horizon. Qy, Qu, R, Sy, Su are positive weight-
ing matrices of appropriate dimension, ysp,k and udes,k 

are respectively the output set point and input opti-
mizing target. Finally, ,y k  and ,u k are slack vari-

ables that extend the attraction domain of the con-
troller to the whole definition set of the states.  

If the system defined in (1) is open loop stable, 

then one can define lim j

j
A A


  and the infinite ho-

rizon cost function defined in (5) can be reduced to 
the following finite horizon cost: 
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where yQ  is obtained from the solution to the fol-

lowing equation 
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and the following equations are assumed to be satis-
fied: 
 

, ,( | ) 0sp k y kCA x k m k y                (5b) 
 

, ,( 1| ) 0des k u ku k m k u            (5c) 
 

In the proposed approach, the output set-point ysp,k 
becomes a decision variable of the control problem 
as the output has no optimizing target and, conse-
quently, the output needs only to be kept within its 
operating zone. The cost defined in (5) explicitly 
incorporates an input deviation penalty that tries to 
accommodate the system into an optimal economic 
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stationary point. It is easy to show that the cost de-
fined in Eq. (5) will be equivalent to the cost (5a) if 
the terminal constraints (5b) and (5c), which are re-
lated with the infinite sums, are included in the control 
problem. As it is not always possible to satisfy these 
constraints after a finite number of time steps, one 
needs to include the slack variables ,y k  and ,u k  to 

guarantee the feasibility of the control problem. Never-
theless, the system has time delays and it is necessary 
to wait maxm   time intervals until the effect of the 
last control action starts to be detected by the output 
with the largest time delay. 

Like any model predictive controller, the IHMPC 
also allows for the inclusion of operating constraints 
such as actuator bound limits. It is also usual to in-
clude constraints in the input moves as follows: 
 

 

 

min max

min max

| , 0,1, , 1

| , 0,1, , 1

u u k j k u j m

u u k j k u j m

       
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


   (6) 

 
Since the proposed controller considers the exis-

tence of input targets, udes, and, in order to assure that 
the term that penalizes the distance to this target is 
bounded even when the target is unreachable, one 
should not impose the exact value of the inputs at the 
end of the control horizon. Then, the relaxed con-
straint is used as shown in Eq. (5c). 

The slack variable ,u k , by definition, is unre-

stricted and guarantees feasibility of Equation (5c) 
under any condition. As is typically done, the use of 
this slack variable is heavily penalized in the objec-
tive function to prevent the controller from choosing 

, 0u k   instead of a possible control move. 

As explained before, in the MPC considered here, 
there are no fixed set-points for the outputs as in the 
conventional MPC formulations. Instead, there is a 
control zone to where the controller must drive the 
output variables. As a result, the value of ysp,k is not a 
fixed parameter proposed by the real time optimiza-
tion layer and it becomes a constrained decision vari-
able of the control optimization problem. The con-
straint that must be imposed to these set-points corre-
sponds to the definition of the control zone: 
 

min , maxsp ky y y              (7) 
 

Finally, the problem that defines the controller cor-
responds to the minimization of the cost function (5a) 
subject to a terminal constraint that forces the infinite 
sum of the squared output error to be bounded and 
subject to constraints (5b), (5c), (6) and (7). 

PROCESS SIMULATION AND 
OPTIMIZATION 

 
In order to calculate the optimum operating point 

of the Propylene/Propane splitter, the steady-state simu-
lation of the process is performed using the software 
ROMeo, which is a rigorous equation-based steady-
state optimizer. The dynamic simulation is developed 
in Dynsim, which is a first-principles dynamic simu-
lation software. ROMeo and Dynsim are trademarks 
of Invensys.  
 
Steady-State Simulation and Optimization 
 

Initially, one simulates the steady-state process 
with ROMeo’s simulation mode based on informa-
tion of the real process and equipmental data. After 
that, the optimization mode is triggered considering 
the selected controlled and manipulated variables and 
their respective constraints. The input optimizing 
targets ,des ku  are then determined by ROMeo, which 

considers the rigorous steady-state model of the 
process in the calculation of the optimum operation 
point of the plant, based on the economic function 
that is defined as: 
 

1 1

1

products feeds

eco i i i i
i i

utilities

i i
i

f PPS PFR PFS FFR

PU UC

 



   

 

 


     (8) 

 
where 
 
PPS: Price of Product [$/ton], PFR: Product Flow 
Rate [ton/h],  
PFS: Price of Feed [$/ton], FFR: Feed Flow Rate 
[ton/h], PU: Price of electricity [$/kW-h], and UC: 
Electricity consumption [kW-h/h]. 

The economic function defined in Eq. (8) is maxi-
mized, producing the optimum input targets subject 
to the following constraints: 
 The rigorous steady-state model that relates the 
system inputs and measured disturbances to the 
outputs. 
 Lower and upper bounds to the input targets. 
 Lower and upper bounds to the controlled outputs. 

The hierarchical structure that integrates the RTO 
and MPC layers via the optimizing targets to the 
MPC layer and, subsequently, the set-point to the 
regulatory loops of the Distributed Control System 
(DCS) is shown in Figure 2. 
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Figure 2: Hierarchical control structure of the Pro-
pylene system. 
 
Dynamic Simulation 
 

The dynamic simulation of the propylene distilla-
tion column is developed in the simulation package 
Dynsim. The idea is to use the rigorous dynamic 
simulation as a virtual plant in order to reduce the 
costs related with the implementation of the ad-
vanced control, the controller tuning and the identi-
fication of the linear model to be included in the 
MPC. All the real plant equipment data and regula-
tory PID control loops are included in the simulation 
in order to make the simulation as close as possible 
to the real plant. This dynamic simulation also helps 
to identify the system model corresponding to the 
most common operating point. This identification 
experiment in the real plant would be difficult and 
expensive because of the large settling time of the 
distillation column (about 20 to 30h). 
 
 

REAL-TIME DATA TRANSFER 
 

In the simulation framework considered here, the 
MPC controller is supposed to run in Matlab and the 
steady-state optimization in ROMeo. The dynamic 
simulation that represents the true plant is performed 
in Dynsim and, consequently, it is necessary to in-
clude a communication interface using OPC technol-
ogy to allow the real-time data transfer between 
Dynsim, MATLAB and ROMeo. The OPC facility 
was developed to provide a common bridge for 
Windows-based software applications and process 
control hardware. To obtain a successful communica-
tion, there must be at least one OPC server and one 

or several OPC clients. In this case, the OPC server 
is the OPC Gateway, which lies in Dynsim and the 
OPC clients are the OPC DA, which is part of the 
OPC toolbox of MATLAB, and the OPC EDI (Exter-
nal Data Interface) of ROMeo. Once the data transfer 
is established, reading and writing of data can be 
configured according to the controller sample time 
and the real-time dynamic simulation pace. A repre-
sentative scheme of this communication structure is 
shown in Figure. 3. Moreover, in order to implement 
the control action in the dynamic simulation at each 
time interval that corresponds to the sampling time 
of the advanced controller, the code was adapted to 
use the "timer" function of Matlab. 
 

 
 
Figure 3: Matlab, Dynsim and ROMeo OPC interface. 
 
 

SIMULATION RESULTS 
 

The system considered in this study is the 
Propylene/Propane splitter of the propylene produc-
tion unit of the Capuava Refinery (RECAP/PETRO-
BRAS) located in São Paulo, Brazil. The controlled 
variables are the following: y1 is the liquid level in 
the main reboiler (LC-5), y2 is the propane molar 
percentage in the propylene product (AC-1) and y3 is 
the propylene molar percentage in the propane prod-
uct (AC-2). The manipulated variables correspond 
to: u1 the heat pump flow rate (FC-3), u2 the feed 
flow rate (FC-1) and u3 the reflux flow rate (FC-2) as 
represented in Figure 1. 

The transfer functions relating the inputs and the 
outputs of the system are shown in Table 1. 

It is important to explain the stable transfer func-
tions of the first controlled variable. Most of the 
liquid levels can be described by an integrating be-
havior, but it is not the case for this system. This 
particular behavior was also verified by step tests for 
model identification in the real PP splitter.  
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Table 1: Transfer functions of the Propylene system. 
 

 u1 u2 u3 

y1 

 
1.035467

29 1s




 

 

 
11.3033140 10

118.72 1s




 

 

 
11.45008 10

118.6 1s




 

 

y2 

 
5 6

2 2 5

5.589 10 2.73 10

2.156 10 7.439 10

s

s

 

 

   

   
 

 

 
6

2 2 5

1.496 10

1.688 10 9.857 10s



 



   
 

 

 
6

2 2 5

3.141 10 exp( 111 )

0.6 1.355 10 7.557 10

s

s s



 

  

   
 

 

y3 

 
4 5

2 2 5

3.027 10 3.267 10

0.2 1.034 10 7.56 10

s

s

 

 

  

   
 

 

 
4

2 2 4

1.35 10

1.4 4.418 10 4.425 10s



 



   
 

 

 
5

2 2 5

1.942 10

1.49 10 5.535 10s



 



   
 

 

 
 
The output zones and input constraints provided 

by the process operators, as well as the maximum 
input increments, are shown in Tables 2 and 3. 

The tuning parameters of the controller consid-
ered here are shown in Table 4. 

 
Table 2: Output zones of the PP splitter. 

 
Output ymin ymax 

y1 (% level) 4 80 
y2 (%molar) 0 0.45
y3 (%molar) 0 2 

 
Table 3: Input constraints of the PP splitter. 

 
Input ∆umax umin umax 

u1 (ton/h) 1.5 220 350 
u2 (ton/h) 0.2 10 45 
u3 (ton/h) 1.3 200 320 

 
Table 4: Tuning parameters of the IHMPC-RM. 

 
Tuning parameter IHMPC-RM 

T (min.) 10 
m  3 

R    0.5 3 0.5diag  

yQ    6 25 2diag  

uQ    0.01 10 0.1diag  

yS   10 10 1010 10 10diag  
 

 

uS   4 8 510 10 10diag  
 

 

 
The sampling time T=10 min was selected be-

cause of the slow behavior of the system due to its 
large settling time. In order to automate the reading 
and writing of data, from and to the dynamic simula-
tion, the timer function of Matlab is used intensively. 
First, the data from Dynsim is read with a period of 

30 sec and sent to Matlab, where the average of the 
last 20 readings is computed. Next, based on this 
average, the MPC algorithm is run with a sampling 
time of 10 minutes and the new values of the control 
inputs are computed. These inputs are the set-points 
to the PID controllers that are part of the dynamic 
simulation and they are sent to Dynsim through the 
OPC interface mentioned in a previous section. In 
addition, the RTO function is executed to produce a 
new optimum operating point, the transfer of data from 
ROMeo to Dynsim is done through the export func-
tion of OPC EDI, in the same way as the reading of 
data is done using the import and download functions. 

Two simulation cases are presented for the test of 
the proposed controller and compared with a state-
estimator-based controller that is formulated using  
an IHMPC with the OPOM system representation 
(Hinojosa and Odloak, 2013).  

As any MPC controller based on a state-space 
model where the state is not measured, the controller 
needs the inclusion of a state estimator whose basic 
expression can be summarized as follows: 
 

  

ˆ ˆ( 1 ) ( ) ( )

ˆ( )F

x k k A x k k B u k

K y k C x k k

   

   

 
where ˆ( 1 )x k k  is the estimated state at sampling 

time (k+1) computed with information up to sam-
pling time k, ˆ( )x k k  is the estimated state at sam-

pling time (k)  computed with information up to sam-
pling time k, and ( )y k  is the real output of the sys-
tem at sampling time (k)  

In this case, the error estimation measurement is 
the comparison between the real output and the simu-
lated output of the system  ˆ( ) ( )y k C x k k . This 

error is used as a feedback correction. 
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Here, the state estimator is the Kalman filter (KF) 
that is based on the following equations: 
 

    1T T T TP APA W APC CPC V CPA


   
 

 

   1T T
FK APC CPC V


   

 
where P is the error estimation covariance matrix 
and the filter can be tuned through the parameters V 
and W, which are the noise covariances. For a fair 
comparison both controllers use the same tuning 
parameters as shown in Table 4. The state observer 
parameters are: 
 

0.5

0.5

ny ny
ny

nx nx
nx

V I

W I





  

  
 

 
In the first experiment, the IHMPC-RM performs 

in a scenario where the operating objective is to 
maximize the economic benefit and the feed flow 
rate is allowed to be increased. In the second experi-
ment the same controller aims to reject unmeasured 
disturbance in the feed composition. In the first simu-
lation experiment, the closed loop simulation began at 
the normal operating point of the plant, which in 
terms of the manipulated inputs and controlled outputs, 
corresponds to u0 = [302 30 268] and y0=[42 0.27 1], 
respectively. Observe that, at the initial steady state, 
output y2 is slightly above its maximum bound. At 
this initial steady state, the economic function corre-
sponds to the value feco= 14 300$/h. Then with the 
assumed market scenario, ROMeo computes a new 
optimum operating point and defines the optimum 
targets to the MPC layer. The optimum input targets 
are udes = [329.6 34 294.8], which correspond to an 
increment of the feed flow rate while the optimizer 
tends to minimize the heat pump flow rate and the 
reflux flow rate. It can be shown that the new set of 
input targets corresponds to a steady state where out-
puts y2 and y3 lie at the upper boundary of their 
control zones ydes = [23.8 0.45 2]. At this new steady 
state, the value of the economic function is increased 
to feco= 16 000 $/h as shown in Figure 6. 

Figures 4 and 5 show that the controller manages 
to drive outputs y2 and y3 to their output zones while 
the three inputs are led to the targets that maximize 
the economic function at steady state. From Figure 6, 
one can observe that, at the early stages of this simu-
lation, the economic function reaches values below 
the initial value. This behavior indicates a conflict 
between the control objective, which is to bring y2 to 

its control zone, and the economic objective. Also, it 
is clear that the controller is prioritizing the control 
objective that is the correct action to be taken if such 
conflict occurs. Then, this simulation shows that, 
considering the speed of response of the closed loop 
system, the controller based on the realigned model 
(blue dashed line) can be more efficient for the 
control of the propylene system than the IHMPC-
OPOM (red dashed line). 
 

0 20 40 60 80 100 120 140 160 180
20

50

nT (min)

y
1

0 20 40 60 80 100 120 140 160 180
0.35

0.45

0.55

nT (min)

y
2

0 20 40 60 80 100 120 140 160 180
0

2

4

nT (min)

y
3

 
Figure 4: Outputs of the PP system. IHMPC-RM 
(blue dashed line), IHMPC-OPOM (red dashed line) 
and output zone bounds (black dashed lines). 
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Figure 5: Inputs of the PP system. IHMPC-RM 
(blue dashed line), IHMPC-OPOM (red dashed line) 
and input targets (green dashed line). 
 

The second simulation experiment starts when the 
system reaches the new optimum steady-state at the 
end of the first simulation experiment, and a feed 
composition disturbance, unknown to the controller, is 
introduced into the system. This means that at sam-
pling time 180,nT   the feed composition takes the 
new values shown in the second column of Table 5. 
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Figure 6: Economic function with IHMPC-RM (blue 
dashed line) and IHMPC-OPOM (red dashed line). 
 
Table 5: Feed molar composition of the Propylene/ 
Propane splitter. 
 

Component 
First Simulation Second simulation
% molar fraction % molar fraction

Ethane 0.0102 0.0118 
Propylene 64.41 50.37 
Propane 34.77 48.69 
i-Butene 0.337 0.3895 
1-Butene 0.061 0.0705 
Cis-2-Butene 0.0334 0.0386 
Trans-2-Butene 0.0334 0.0386 
1,3-Butadiene 0.012 0.0134 
i-Butane 0.298 0.3442 
n-Butane 0.0334 0.0386 

 
Again, the objective of the controller is to drive 

the inputs to their new targets that correspond to the 
new feed composition and to maintain the outputs 
inside their respective control zones. Assuming that 
the feed disturbance is known to ROMeo, a new 
optimum steady-state is computed in the RTO layer 
and corresponds to the following targets udes = [325.7  
34  295.4] and ydes = [26.1  0.45  0.35]. 

Now, analyzing the IHMPC-RM responses pre-
sented in Figures 7 and 8 it is easy to realize that, in 
this simulation case, the IHMPC-RM has a much 
better performance than in the previous case, also 
when compared with the IHMPC-OPOM perform-
ance. The controlled variables respond faster and can 
be kept inside their control zones more efficiently. 
Basically, in this case there is no conflict between the 
control and the economic objectives. For instance, 
the controlled output y2, which starts the simulation 
at a point already on the upper bound of its control 
zone, tends to be kept inside its control zone along 
the whole simulation time. Figure 8 shows the calcu-

lated inputs for the controller and the optimizing 
input targets (green line) calculated by ROMeo and 
corresponding to the new feed composition shown in 
Table 5. Because of the new feed composition, the 
flow rate of the propylene product needs to be de-
creased while the propane product flow rate is in-
creased. The consequence is that the economic func-
tion tends to decrease, although the optimizer tries to 
increase the propylene production, which represents 
the most valued product. The new steady state corre-
sponds to feco=13 550 $/h as shown in Figure 9. 
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Figure 7: Outputs with IHMPC-RM (blue solid 
line), IHMPC-OPOM (red dashed line) and output 
zone bounds (black dashed lines). 
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Figure 8: Inputs with IHMPC-RM (blue dashed 
line), IHMPC-OPOM (red dashed line) and input tar-
gets (green solid line). 
 

Once more, the simulation of the new scenario 
shows that, with the proposed tuning parameters, the 
IHMPC based on the realigned model can have a 
good performance in terms of speed of disturbance 
rejection and stability.  
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Figure 9: Economic function of the PP process with 
IHMPC-RM (blue dashed line) and IHMPC-OPOM 
(red dashed line). 
 

Table 6 summarizes some performance indicators 
in terms of the time period that the system remains 
outside the product quality specification for the pro-
pylene and propane products using both controllers. 
It is easy to see that the IHMPC-RM had a better per-
formance in terms of stability and robustness as it 
requires a smaller stabilization time and maintains 
the products inside the quality specifications for 
more time when compared with the IHMPC-OPOM 
performance.  
 
Table 6: Feed molar composition of the Propylene/ 
Propane splitter. 

 
 First simulation  

experiment 
Second simulation 

experiment 

2y  
3y  

stt  
2y  

3y  
stt  

IHMPC RM 0.44 0.47 1100 0 0 1000 

IHMPC OPOM 0.5 0.78 1600 0.56 0 1200 

2y is the fraction of simulation time that the controlled variable y2 

remained outside its control zone. 

3
y is the fraction of simulation time that the controlled variable y3 

remained outside its control zone. 

stt  is the time in minutes that the controller required to stabilize the 

process system. 

 
 

CONCLUSIONS 
 

In this work, a study is presented of the imple-
mentation of the IHMPC based on a realigned state-
space model formulation. The realigned model that 
does not require a state observer/estimator, as re-
quired by the majority of the state space model-based 
advanced controllers, is used in this controller. The 

study is performed through simulation of an existing 
Propylene/Propane separation unit of an oil refinery 
using the commercial dynamic simulation software 
(Dynsim) associated with a real time optimizer 
(ROMeo) and the real-time facilities of Matlab. In 
the proposed approach, the controller implements the 
zone control of the outputs and includes optimizing 
targets for the inputs. In the first simulation experi-
ment, the effect on an increment in the feed flow rate 
was simulated. The RTO layer defined optimizing 
targets for the inputs, which were driven to that opti-
mal operating point and the controlled variables were 
stabilized inside their control zones. The IHMPC-
RM showed a better performance than the conven-
tional IHMPC in the control of the controlled vari-
able y3, minimizing the loss of propylene in the 
propane stream. In the second experiment, a non-
measured disturbance, unknown to the controllers, 
was introduced into the system. The IHMPC-RM re-
jected the disturbance and stabilized the system 
faster than the conventional IHMPC, which is a state-
observer-based MPC.  

Based on the simulation examples that were pre-
sented, we reach to the conclusion that, from the eco-
nomic and stability viewpoint, the IHMPC-RM shows 
promising perspectives, particularly for the case of 
rejection of non-measured disturbances in the feed 
stream composition, which is the most common dis-
turbance in the daily operation of the Propylene/ 
Propane separation system. 
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