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Abstract - Two multi-objective optimization based tuning methods for model predictive control are proposed. 
Both methods consider the minimization of the error between the closed-loop response and an output 
reference trajectory as tuning goals. The first approach is based on the ranking of the outputs according to 
their importance to the plant operation and it is solved by a lexicographic optimization algorithm. The second 
method solves a compromise optimization problem. The former is designed for systems in which the number 
of inputs is equal to the number of outputs, while the latter can also be applied to non-square systems. The 
main contribution is an automated tuning framework based on a straightforward goal definition. The proposed 
methods are tested on a finite horizon model predictive controller in closed-loop with a 3x3 subsystem of the 
Shell Heavy Oil Fractionator benchmark system. The simulation results show that the methods proposed here 
can be a useful tool to reduce the commissioning time of the controller. The methods are compared to an 
existing multi-objective optimization based tuning approach. The computational time required to run the 
proposed tuning algorithms is considerably reduced when compared to the existing approach and, moreover, it 
does not need an a posteriori decision to select a solution from a set of Pareto optimal solutions.  
Keywords: Model Predictive Control tuning; Lexicographic optimization tuning; Compromise tuning. 

 
 
 

INTRODUCTION 
 

Model Predictive Control (MPC) has been widely 
used in industry, especially in oil processing and petro-
chemical plants. It is a successful control strategy 
because it accounts for process constraints and can 
be easily extended to Multiple-Input Multiple-Output 
(MIMO) systems. The earliest reported MPC appli-
cation in industry dates back to the 1970’s. Moti-
vated by industrial needs, the academic contributions 
started to improve the early MPC formulations, in-
creasing robustness, enhancing performance and 
stability and reducing computational cost. The usual 
ingredients of MPC formulations are: (i) a process 

model to predict the behavior of the system and (ii) a 
rolling horizon strategy in which the optimum con-
trol moves result from the solution to a constrained 
optimization problem at each sampling time. The 
first control action is injected into the system and the 
procedure is repeated at the next sampling instant. In 
practical implementations, an incremental state-
space model that avoids output offset is frequently 
adopted. The control cost function incorporates at 
least two weighted sum terms; the first one considers 
the deviations between the outputs and the output set 
points along a prediction horizon, weighted by a 
diagonal, positive matrix Qy, and the second one 
considers the control moves along a control horizon, 
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weighted by the diagonal, positive-definite matrix R. 
Closed-loop control performance is affected by a set 
of parameters, including the input and output hori-
zons and the weighting matrices of the control cost 
function. 

Depending to the approach that is followed to ob-
tain the optimum tuning parameters, existing MPC 
tuning methods are usually divided into two major 
groups. The first one encompasses the methods based 
on analytical expressions obtained through some level 
of simplification, either in the process description or 
process model, and additional arbitrary selection of 
some of the parameters. The second group concerns 
the techniques based on multi-objective optimiza-
tion, in which the goals regarding the performance 
metrics are put together into a single tuning objective 
function. In the latter approach, the techniques differ 
according to the goal definition and to which multi-
objective optimization algorithm is used to solve the 
tuning problem. The methods show different tuning 
goal definitions, which may take into consideration 
time domain characteristics (e.g. settling time, rise 
time, overshoot); time domain mathematical metrics 
(e.g. Integral of Square Error (ISE), Integral of Abso-
lute Error (IAE)); frequency domain sensitivity func-
tion norms; or a combination of the previously men-
tioned possibilities. 

Garriga and Soroush (2010) presented a compre-
hensive review of the tuning techniques from the aca-
demic point of view, while Bauer and Craig (2008) 
assessed the MPC implementation and maintenance 
expectations from the industrial point of view. Both 
works pointed out the importance of properly tuning 
the MPC to ensure higher profit and smoother 
operation.  

Shridhar and Cooper (1997, 1998) developed ana-
lytical tuning expressions for Single Input, Single 
Output (SISO) and MIMO Dynamic Matrix Control 
(DMC) applications. They set the conditioning num-
ber of the hessian of the DMC control problem equal 
to 500, which represents a good compromise between 
performance and robustness, and approximate the 
system model by first order plus dead time transfer 
functions, to develop analytical tuning expressions 
for the entries of matrix R. Liu and Wang (2000) 
considered the minimization of the sensitivity func-
tions between the tuning parameters and the closed-
loop performance as the goals of a mixed-integer 
nonlinear optimization problem. 

Al-Ghazzawi et al. (2001) defined the tuning 
goals in terms of the closed-loop output constraining 
envelopes, and a linear approximation of the process 
dynamics allowed the authors to obtain analytical 
sensitivity functions for Qy and R for constrained 

MPCs. When the constraints are active, sensitivity 
functions are calculated based on the Lagrange mul-
tipliers of the active constraints. Wojsznis et al. 
(2003) developed an expression for R based on ex-
perimental data collected from DMC applications. 
Adam and Marchetti (2004) and Vega et al. (2007) 
developed frequency domain tuning techniques 
based on the H∞ -norm of a mixed sensitivity func-
tion for disturbance rejection scenarios. The model 
uncertainty is treated in Adam and Marchetti (2004) 
as minimum and maximum bounds on the parame-
ters of the process transfer function of SISO struc-
tured controllers, while in Vega et al. (2007), uncer-
tainty is considered in the sensitivity functions of 
input disturbances and output disturbances for DMC 
controllers. 

Fuzzy, multi-objective goals based on the ISE 
considering the errors between outputs and reference 
trajectories, and time domain performance specifica-
tions are considered in Van der Lee et al. (2008) to 
define a tuning problem that can be solved through a 
genetic searching algorithm. Time domain goals are 
also considered in Susuki et al. (2008) to define a 
tuning method for unconstrained state-feedback con-
trollers. The authors emphasized the role of the tran-
sient characteristics in process startups and they 
solved the tuning problem using the particle swarm 
optimization approach. Exadaktylos and Taylor 
(2010) developed a tuning technique for a state-
space based MPC in which the cost function was 
defined in terms of the IAE considering the reference 
trajectories and the process outputs. The authors built 
the tuning algorithm as a goal attainment multi-
objective optimization problem. 

Other multi-objective optimization-based tuning 
methods, focusing on the characterization of the set 
of feasible optimum solutions for multi-objective 
optimization problems, known as Pareto set, are 
presented in Reynoso-Meza et al. (2013) and 
Vallerio et al. (2014). Reynoso-Meza et al. (2013) 
suggested several goal definitions: the IAE related 
with the controlled variables and their set points, the 
integral of the absolute values of input increments, 
the measurement of the coupling effects, the robust 
stability based on frequency domain requirements, 
and the control implementation objectives. However, 
a large number of objectives led to complex non-
convex Pareto curves and the optimization problem 
needed to be solved using an evolutionary algorithm. 
Vallerio et al. (2014) considered two different multi-
objective optimization approaches, the Normal 
Boundary Intersection (NBI) and extended normal-
ized constraint method, to obtain a finite representa-
tion of the Pareto curve, from which the decision 
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maker can arbitrarily choose a Pareto optimum solu-
tion that suits the process needs. 

On a different perspective, Cairano and Bemporad 
(2009) used a linear controller gain, chosen by pole-
placement as the tuning goal in a strategy developed 
for constrained state-feedback MPC. Matrices Qy 
and R were chosen as the decision variables, opti-
mized so that the MPC behaves as the target linear 
controller, in the absence of active constraints. The 
tuning problem was solved using Linear Matrix Ine-
qualities; its cost function is the squared norm of the 
difference between the favorite controller gain and 
the unconstrained MPC gain. The same authors also 
proposed to consider, as the tuning goal, that the 
MPC behave as a LQR when the constraints are inac-
tive, making the controller matching optimization 
problem independent of the MPC control horizon. 
Cairano and Bemporad (2010) extended the strategy 
to output-feedback MPC formulations. 

Here we address the problem of how to optimally 
select the controller parameters corresponding to the 
weighting matrices Qy and R to ensure that the given 
performance requirements or desirable control be-
havior are attained. The next section provides a brief 
explanation about the state-space based MPC con-
troller and multi-objective optimization. The under-
lying framework that supports the tuning techniques 
proposed here is then presented. These methods are 
implemented in a 3x3 subsystem of the Heavy Oil 
Fractionator unit simulated in a case study and the 
paper closes with some conclusions. 
 
 

PRELIMINARIES 
 

The controller considered here is a state-space 
based finite horizon MPC. Differently from the 
DMC, its model representation is not as intuitive as a 
step response model, but on the other hand, allows 
for faster computations because it is more compact. 
 
Control Algorithm 
 

The controller assumes that the system is repre-
sented by the following state space model  
 

     
   

1x k Ax k B u k

y k Cx k

   


         (1) 

 

where , ,nx nu nyx u y   . Matrices A, B and 
C are the model matrices that carry all the system 
information required for future output predictions. 

Then, for the system defined in (1), the MPC cost 
function includes the weighted sum of the squared 
deviation of the predicted outputs and the set point 
values over the prediction horizon, and the weighted 
sum of squared input increments over the control 
horizon. The control problem can be summarized as 
follows. 
 
Problem 1 
 

2
1,

0
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0

min ( | )
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k sp
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j
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
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



  

  




       (2) 

 
subject to (1) and  
 

 min max , 0, , 1u u k j u j m           (3) 
 

 max max , 0, , 1u u k j u j m            (4) 
 

where  |y k j k  is the output prediction calculated 

at time instant k+j using the information available 
at time instant k, ny

spy   is the vector of output 

set points, p is the output prediction horizon, 

( | ) nuu k j k    is the control move at time in-
stant k+j calculated using information available at 

time instant k, m is the control horizon, ny ny
yQ   

is a positive semi-definite diagonal matrix, nu nuR   
is a positive-definite diagonal matrix, minu , maxu , 

and maxu  are the lower and upper bounds of the 
system inputs and input increments, respectively. 

The tuning algorithms developed here consider 
the unconstrained version of the MPC, disregarding 
the constraints defined in (3) and (4), so that the 
effects of the bounds on the system inputs and input 
increments do not affect the tuning results. 
 
Multi-Objective Optimization 
 

Multi-objective optimization searches for a single 
solution to problems with competing goals. There are 
two main alternatives to deal with the tradeoff be-
tween competing objectives: properly weighting 
objectives prior to the problem solution or choosing 
an optimum solution based on subjective criteria, 
after obtaining a set of optimum solutions. 

A general multi-objective problem can be posed 
as follows: 
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Problem 2 
 

       1 2min
T

w
x

F x F x F x F x      (5) 

 
subject to 
 

  , 1, ,0jg x j z   (6) 

 

  0, 1, ,lh x l e    (7) 
 

where  F x  is a vector comprised of w objectives 

 iF x . Functions  jg x and  lh x  are related with 

the inequality and equality constraints, respectively, 

 decnx  is the vector of decision variables and decn  
is the number of decision variables. The feasible 
design space is defined as   | 0,decn

jx g x  X  

  1, , ,and 0, 1,lz ej h x l    , and the feasible 

criterion space is defined as   | ,wz z F x  Z  

x X . The objectives  iF x  are defined in terms 

of preferences, imposed by the decision-maker. The 
following statements characterize the optimum solu-
tions in the multi-objective optimization problem. 
 

Definition 1: A point x X is a Pareto optimum iff 
there does not exist another point xX , such that 

   F x F x , and    i iF x F x  for at least one i.  

 

Definition 2: A point  F x Z  is an Utopia point 

iff for each i=1,…,w,     min |i i
x

F x F x x  X . 

 
Lexicographic or Hierarchical Optimization 
 

Lexicographic goals are useful when an optimiza-
tion structure is properly represented by ranking the 
objective functions instead of by a single scalar-valued 
objective function (Luptáčik and Turnovec, 1991). 

In many process systems where the MPC is usu-
ally implemented, the importance of the controlled 
outputs can be ranked and play the role of lexico-
graphic goals. Consequently, the tuning of the con-
troller can be built as a hierarchical optimization 
problem. 

The lexicographic optimization framework used 
here assumes that the goals and their respective rank-
ing are defined by the user. At each step, a single 
objective optimization problem is solved, where a 
single goal is addressed following the ordering of 

importance. In the subsequent steps, the previously 
obtained optimum cost function value is included as 
a constraint in the new optimization problem. The 
latter addresses a new, less important goal while 
preserving the performance of the previous, more 
important goals. 
 
Compromise Optimization 
 

The optimal compromise set has useful character-
istics such as feasibility, Pareto optimality and inde-
pendence of irrelevant alternatives (Ballestero and 
Romero, 1991). Moreover, a compromise solution 
method is attractive because, in real cases, it is virtu-
ally impossible to accurately translate the prefer-
ences of the decision maker into utility functions. 
Then, it is reasonable to suppose that, instead of 
selecting one of such functions, the decision maker 
would rather obtain the feasible point closest to the 
Utopia solution (Zelany, 1974). Compromise optimi-
zation has also been used as the framework of a non-
linear MPC, making the tuning step unnecessary 
altogether (Bemporad and Muñoz de la Peña, 2009; 
Zavala and Flores-Tlacuahuac, 2012). 

The compromise optimization approach used here 
solves a multi-objective optimization problem find-
ing the closest feasible solution, in terms of the 
Euclidian distance, to the Utopia point. Figure 1 
shows the geometric representation of the compro-
mise solution, considering a 2-objective problem. 
 

 
Figure 1: Geometric representation of the compro-
mise optimization method considering two objectives. 
 
 

TUNING APPROACHES 
 

Parameters p, m, Qy and R directly affect the per-
formance of the MPC controller. The control horizon 
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m and the prediction horizon p are integer variables. 
For open stable systems, the effect of m on the con-
troller performance seems to be as follows: small 
values of m usually lead to stable but conservative 
control actions while large values tend to reduce 
robustness and to increase aggressiveness. Choosing 
m between 3 and 5 is a recommended rule-of-thumb 
in the control literature (Garriga and Soroush, 2010). 
The MPC tuning literature recommends that the out-
put prediction horizon p should be large enough to 
encompass the significant dynamics of the process. 
For instance, 80-90% of the open-loop step response 
rise time value is a reasonable value (Maurath et al., 
1988). Since, the rules to select the input and output 
horizons are already well established, in this work, 
we will focus only on obtaining the optimum values 
for parameters Qy and R, to ensure that the controller 
fulfills one or more desired performance goals. 
 
Lexicographic Tuning Technique (LTT) 
 

A tuning technique based on lexicographic opti-
mization, in which the objective functions are ar-
ranged in order of importance, is proposed here to 
address some of the shortcomings of the existing 
approaches. This technique is suitable for several 
formulations of MPC, including step response with 
finite output horizon and state-space based with infi-
nite output horizon controllers. We consider a square 
system where the number of controlled outputs ny is 
the same as the number of inputs nu, represented by 
the linear model defined in (1).  Steps 1 to 4 of Table 
1 summarize the actions required to define the tuning 
goals. Once they are defined, a lexicographic opti-
mum can be obtained by solving the resulting multi-
objective optimization problem.  
 

Table 1: LTT steps summary. 
 

Step Procedure 
1 Define output importance 
2 Specify input-output pairs 
3 Normalize inputs, outputs and model gains 
4 Specify tuning objectives 
5 Lexicographic optimization 

 
First, the user needs to assign the relative impor-

tance of the process outputs. Usually, economic, safety 
or environmental factors are used as guidelines. 
Second, an input-output pair is defined for each 
process output, following the order of importance of 
the outputs. Either the process knowledge or the 
Relative Gain Array (Bristol, 1966) and other similar 
techniques can be used to select the appropriate 
pairs. In the third step, numerical values of the inputs 

and outputs, as well as the gains of system model are 
normalized. This step aims for a better numerical 
conditioning of the tuning problem. Also, the values 
of the tuning cost function for different goals can be 
computed with orders of magnitude that are not too 
different. 

In the fourth step, the tuning goals are defined as 
the minimization of the error between the output 
closed-loop responses and the pre-defined reference 
trajectories. This goal definition strategy has been 
adopted in several MPC tuning methods (Al-
Ghazzawi et al., 2001; Campi et al. 2002; Exadaktylos 
and Taylor, 2010; Shah and Engell, 2010), as it al-
lows for a simple specification of both the desired 
control performance and time-domain objectives. In 
this work, the reference trajectory of a given output 
is defined as the step response of a target transfer 
function that is obtained from the approximation of 
the open-loop transfer function of the corresponding 
input-output pair defined in Step 2, by a first order 
plus dead time transfer function. Once this approxi-
mate transfer function is obtained, the user defines 
the time constant of the target function following the 
importance order of the outputs and the process 
operator specifications. Then, the multi-objective 
goals are defined as follows: 
 

      2
1

,1,
t

ref
i ii

k

F wx y k y k i




        (8) 

 

where θt is the tuning horizon,  ref
iy k  is the dis-

cretized reference trajectory of output i,  iy k  is the 

closed-loop trajectory of output i, k=1,…,θt, calculated 
using the unconstrained version of Problem 1; x is 
the vector of decision variables or tuning parameters, 
and w is the number of input-output pairs. Observe 
that if  1,...,y nyQ diag q q  and  1,..., nuR diag r r , 

then  1 1,..., , ,...,ny nux q q r r . Observe also that since 

 iy k  is the response of the system in closed loop, it 

is a function of the tuning parameters that can be 
obtained by the minimization of the functions de-
fined in (8). Moreover, even though the uncon-
strained MPC is considered, it is not possible to ob-
tain an single analytical solution to the tuning prob-
lem because (8) is a discretized cost function, and the 
non-linearity of (2) with respect to the tuning parame-
ters would lead very cumbersome expressions for the 
partial derivatives of the cost defined in (8). 

The importance of the process outputs defined 
previously also characterizes the lexicographic op-
timization order, and the multi-step optimization 
problem is defined as follows. 
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Problem 3 
 

 
'

3
,

1

min
w

T
i t

x
i

V F x S


 


            (9) 

 
subject to (8) and 
 

  * '0, 1, , 1i i iF x F i w           (10) 
 

'0, 1, , 1i i w              (11) 
 
LB x UB               (12) 
 
where w’ is the current tuning step and defines the 
number of the current output objectives,   is a vec-

tor of slack variables,    ' 1 ' 1w w
tS     is a diago-

nal weighting matrix, LB and UB are the lower and 
upper bounds of the decision variables. The con-
straint defined in (10) tries to force that the optimum 
performance obtained for higher priority outputs 
does not deteriorate when lower priority output goals 
are addressed. The slack variable   is included to 

ensure that Problem 3 is always feasible. *
iF  is the 

optimum value of the objective goal, defined in (8), 
for the variable yi, obtained at the i-th lexicographic 
tuning step. Observe that once a *

iF  is obtained, it re-
mains constant throughout the lexicographic method. 

The proposed lexicographic approach is able to 
pursue as many objectives as the number of system 
inputs, because of the way the lexicographic optimi-
zation structure is constructed. Therefore, this method 
is appropriate mainly for square systems (ny=nu). 
 
Compromise Tuning Technique (CTT) 
 

In this method, we consider that the tuning goals 
are defined in the same way as in the previous sec-
tion. Then, the Utopia solution is obtained by solving 
the optimization problems defined by (13) and (14).  
 

   min , 1,...,i i
x

F x F x i w          (13) 

 
subject to (8) and  
 
LB x UB              (14) 
 

where  1 1,..., , ,...,ny nux q q r r , ny nux  , is the 

vector of decision variables. Observe that the Utopia 
point, 0( )F x , is unfeasible unless all the tuning goals 
share the same optimum solution. Once the Utopia 
solution is obtained, we try to find the closest feasible 

solution to it, in terms of the Euclidian distance. This 
procedure defines the CTT problem: 
 
Problem 4 
 

  2
min

x
F F x             (15) 

 
subject to (8) and 
 
LB x UB               (16) 
 

where wF    is the vector with components  .iF x  

 
 

CASE STUDY 
 

To illustrate the application of the tuning tech-
niques proposed here, a MPC controller to be imple-
mented in a subsystem of the Shell Heavy Oil Frac-
tionator (HOF) benchmark system (Maciejowski, 
2002) is tuned. The inputs of this subsystem are the 
top drawn flow rate (u1), the side drawn flow rate 
(u2) and the bottoms reflux heat duty (u3). The con-
trolled outputs are the top end point composition 
(y1), the side end point composition (y2) and the bot-
toms reflux temperature (y3). Figure 2  shows a sche-
matic representation of the process and Equation 
(17) defines the transfer functions that represent the 
HOF. The tuning strategies proposed above are ap-
plied to the MPC of the HOF and compared to the 
NBI tuning strategy proposed in Vallerio et al. (2014). 
The simulated scenarios involve the output tracking 
and the disturbance rejection. 
 

 
 
Figure 2: Shell Heavy Oil Fractionator 3x3 subsys-
tem schematic representation. 
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  (17) 

 
Tuning Goals 
 

The reference trajectories corresponding to the 
tuning goals were defined according to the input-
output pairing presented in Li et al. (2005). The 
open-loop transfer functions, Gi,j(s) had their time 
constants multiplied by a response factor, fres(i), 
i=1,…,ny, to obtain the reference transfer functions 
and reference trajectories for each output, ( )REF

iG s . 
The input-output pairs were selected as y1-u1, y2-u2 
and y3-u3. Based on the process information available 
in Li et al. (2005), the vector of selected response 
factors was the following fres=[0.10 0.15 0.30]T. Re-
sponse factors smaller than 1 indicate that the refer-
ence trajectory is faster than the corresponding open-
loop response. Considering that the reference trajec-
tory corresponds to a first order plus dead time trans-

fer function,  
 

1

is
REF i

i

K e
G s

s










, the resulting model 

parameters that define the reference trajectories for the 
tuning methods proposed here are given in Table 2.  
 
Table 2: Parameters of the reference transfer 
function. 
 

Output Ki τi θi 
y1 1 5 27
y2 1 9 14
y3 1 5.7 0

 
For all the outputs, the tuning horizon, θt, is as-

sumed to be equal to 450 min, which is large enough 
to include set point moves that drive the closed loop 
system to different directions. For the tuning proce-
dure, the input and output initial values are 

 0 0 0 0
T

y  and  0 0 0 0
T

u  . The output set 

points are changed to  0.2 0.2 0.2 T
spy  at the ini-

tial time instant, to  0.0 0.4 0.1 T
spy  at time in-

stant 150 min and to  0.1 0.3 0.0 T
spy  at time in-

stant 300 min. Observe that this tuning scenario might 
be overly demanding in real applications, because 
only on rare occasions more than one output set 
point is driven towards new values at the same time. 

In the closed loop simulation, the control problem 
(Problem 1) does not include the input constraints (3) 
and (4). Then, an optimum analytical solution could 
be obtained to Problem 1, which reduces the compu-
tational demand of the tuning problem. The control 
horizon is set equal to 5 and the prediction horizon is 
set equal to 70. All the problems pictured here were 
solved using an Intel® Core i5 320 GHz, 4 GB RAM 
computer. We assume that the process model con-
sidered in the controller is perfect and that the sys-
tem states are fully measured. 
 
Tuning the MPC of the HOF System with LTT 
 

The LTT problem (Problem 3) was solved for the 
HOF system with the Matlab routine fmincon, which 
solves a NLP. At any step w’=1,…,nu of the tuning 
method, the vector of decision variables is 

 1 ' 1 ',..., , ,...,w wx q q r r , and the initial guess is 
1

0 1, ' 1 1, '5 1 1 10w wx 
    , with the lower and 

upper bounds of the decision variables equal to 
2 3

1, ' 1 1, '5 1 10 1 10w wLB  
      and 

2 2
1, ' 1 1, '5 1 10 1 10w wUB       respectively. Ob-

serve that the weight corresponding to output y1 is 
kept at a fixed value (q1=5). Otherwise the tuning 
problem shows multiple equivalent solutions. The 
same approach was adopted in the other tuning 
methods considered here. 

The weighting matrix St of the slack variables was 

chosen considering the expression ( ) 2
, 10 ,w i

t is    

i=1,…,w’-1, where st,i denotes the i-th diagonal 
element of matrix St. This approach guarantees that 
the slacks related to the more important goals will be 
more heavily weighted in the tuning cost function. 
Observe that, in the LTT approach, at any step the 
value of w’ corresponds to the size of the subsystem 
that is considered.  

The lexicographic optimization was performed as 
follows: at step 1, the goal defined by the reference 
trajectory of y1 and its closed-loop response was 
minimized, using r1 as a decision variable and a 
fixed q1. At step 2, a cost function comprised of the 
sum of the goals defined by the reference trajectories 
of outputs y1 and y2 and their closed-loop responses 
was minimized. The decision variables of this prob-
lem were r1, r2, q2; q1 was fixed. A constraint was 
included in this optimization problem in order to 
ensure that the optimum cost function value obtained 
in the first step for the goal of y1, which is a fraction 
of the cost function of the tuning problem defined in 
step 2, is kept smaller or equal to the value obtained 
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at step 1. The constraint was softened by the inclu-
sion of the slack variable δ1. This slack was penal-
ized in the cost function, with matrix St. At step 3, a 
similar problem was solved, observing that all three 
goals were included in the tuning function, as well as 
the two slack variables related with the cost function 
constraints corresponding to y1 and y2. 

Tables 3 and 4 show the values of Qy, R and   re-
sulting from the application of the LTT to the con-
troller of the Heavy Oil Fractionator. The required 
computational time for this method was 4.27 hours. 
Observe that in Table 4 the values of   at the third 
step are small, indicating that the LTT was able to 
properly adjust the closed-loop responses of outputs 
y2 and y3 to their reference trajectories without sig-
nificantly degrading the response of y1. This result is 
also observed in Figure 3 which shows the evolution 
of system outputs in closed-loop throughout the LTT 
method. The response related to output y1 improves 
from step 1 to step 2, and degrades only a little from 
step 2 to step 3, while the response related to y2 re-
mains nearly the same from step 2 to step 3. The 
parameters shown in the last row of Table 3 are the 
optimum tuning parameters obtained by the LTT 
method. 
 

Table 3: LTT optimum tuning parameters. 
 

 Qy R 
Step 1 2 3 1 2 3 

1 5   8.63   
2 5 1.32  2.62 6.49  
3 5 1.54 1.57 1.49 7.46 0.50 

 
Table 4: LTT slack variables, δ. 

 
Step 1 2 

1   
2 0  
3 0.013 0.010 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3: Responses of (a) y1, (b) y2 and (c) y3 with 
LTT. 
 
Tuning the MPC of the HOF System with CTT 
 

The same tuning goals as in the LTT method were 
defined, considering the input-output pairs adopted 
in the Tunning Goals section, as well as the transfer 
functions, and response factors are also assumed 
here. In the application of the CTT method to the 
Heavy Oil Fractionator, the individual objectives of 
the multi-objective optimization problem are built 
for each controlled output yi, as follows 
 

 2
1

( ) ( ) 1,...,
t

ref
i ii

k

F x y y k i ny




      (18) 

 
and this function is minimized with respect to all 
the tuning parameters, which means that 

 1 1,..., , ,...,ny nux q q r r . 

The CTT method (Problem 4) is solved for the 
tuning of the MPC of the HOF system using fmincon 
in MATLAB 2013®, with the following initial guess 

for the tuning parameters 1
0 1,2 1,35 1 1 10x     . 
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The lower and upper bounds of the decision vari-
ables are the same as in the LTT method.  

The resulting Utopia vector is 

 0 1.893 0.465 0.004 TF  , where the compo-

nents of F0 correspond to the solution of the problem 
defined by (13) and (14) for the objectives Fi, 
i=1,2,3. The optimum solution was obtained through 
the solution of Problem 4 that minimizes the Euclid-
ian distance between the Utopia point and a feasible 
solution. The resulting computational time was 53 
min. The optimum solution was 
 

  5 4.96 2.91yQ diag   and 

 3 210 2.39 10 0.98R diag      . 

 
Differently from the LTT, the CTT does not de-

pend on the number of inputs and outputs, because 
we can define as many objectives as the number of 
system outputs, and all of them are treated simulta-
neously, independently of the number of inputs. We 
also observe that the values of the parameters ob-
tained with the CTT method are quite different from 
the values of the same parameters obtained with the 
LTT method. Then, the performances of the control-
lers with these two set of tuning parameters need to 
be compared through closed-loop simulations. 
 
Simulation Results 
 

Here, we analyze two different operating scenar-
ios using the MPC controllers with the parameters 
obtained with the tuning techniques presented earlier, 
addressed as LTT and CTT. The first scenario corre-
sponds to nearly the same conditions in which the 
MPC controlling the HOF system was tuned. Out-
puts are subject to set point changes one at a time, 
and finally driven back to the steady-state point, 
following the values defined in Table 5. The second 
simulation considers different set point changes that 
are given in Table 6, as well as unmeasured input 
disturbances. The different scenarios are used to 
validate the tuning results. Unmeasured disturbances

are introduced through the system inputs u2 and u1, 
and affect the system from time instant 50 min to 55 
min and from 220 min to 225 min, respectively. In 
both simulations, the constrained version of the MPC 
problem (Problem 1) is considered. A perfect MPC 
model and fully measured states are assumed, and 
the initial operating point of the system is 

 0 0 0 0
T

y   and  0 0 0 0
T

u  ; the input lower 

and upper bounds and maximum input increments are 

 min 0.5 0.5 0.5 Tu     ,  max 0.5 0.5 0.5 Tu  , 

 max 0.05 0.05 0.05
T

u  . 

The methods proposed here are also compared to 
a recent tuning method of the control literature: the 
NBI tuning method, developed by Vallerio et al. 
(2014). The method is based on an a posteriori 
choice of the optimum solution, from a set of Pareto 
solutions. The set is obtained through the Normal 
Boundary Intersection method, which performs a 
grid search over an evenly spaced parameterized 
segment for each objective. The points lying on the 
(quasi-) normal direction to a plane constituted of 
the individual optimum solutions (Utopia Point) 
and the feasible solution space should be Pareto 
optimum. The reader is referred to Das and Dennis 
(1998) and Vallerio et al. (2014) and the references 
therein for more detailed information. The method 
is implemented using 0.2 as the weight interval 
and the 3 goals defined previously, for the tuning 
techniques developed here. The final solution is 
chosen based on the minimum control cost to drive 
the system to the same targets as defined before and 
comparing the resulting 21 Pareto solutions. The 
approach leads to the following optimum tuning 

parameters:   5 1.13 3.52yQ diag   and 

  0.38 1.0 0.89R diag  . The NBI algorithm 

requires a computational time of 20.1 h to complete 
the tuning procedure, including the time required to 
obtain the Utopia solution. Table 7 summarizes the 
optimum parameters obtained by the tuning ap-
proaches used here and the required computational 
time. 

 
 

Table 5: Simulation I set points. 
 

Time (min) 1
spy  

2
spy  

3
spy  

1 to 80 0.2 0.2 0.2 
80 to 200 0.0 0.4 0.1 
200 to 300 0.1 0.3 0.0 
300 to 400 0 0 0 
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Table 6: Simulation II set points. 
 

Time (min) 1
spy  

2
spy  

3
spy  

1 to 120 -0.2 0 0 
120 to 200 -0.2 0 0.3 
200 to 300 0 -0.2 0.3 
300 to 400 0.3 0 0.2 

 
Table 7: Optimum tuning parameters summary. 

 
Method Qy

* R* Computational Time 

LTT  5 1.54 1.57   1.49 7.46 0.50  4.27h 

CTT  5 4.96 2.91  3 210 2.39 10 0.98   
 53 min 

NBI  5 1.13 3.52   0.38 1.00 0.89  20.1h 

 
Figures 4 and 5 show the output and input re-

sponses corresponding to the scenario defined as 
Simulation I with the set-point changes represented 
in Table 5. These figures compare the behavior of the 
MPC tuned according to methods LTT, CTT and 
NBI. We observe that, although the numerical values 
of the tuning parameters provided by the three meth-
ods are quite different from each other, the responses 
of the closed loop system are not too different. Par-
ticularly the responses of y1 and y3 are quite the same 
for methods CTT and NBI. The responses corre-
sponding to method LTT tend to be not the same as 
in the other methods but they are still close from a 

practical viewpoint. The same considerations can be 
given to the input responses corresponding to the 
three methods. Only the input responses correspond-
ing to LTT seems to be slightly smoother than for the 
other methods. 

The offsets observed in Figure 4a, after the second, 
third and fourth set-point changes are mostly due to 
the slow dynamics of the process. Observe that when 
the value of y1 is driven back to 0 the responses are 
slower than when the variable y1 is near 0 and its set-
point is changed to a larger value. A similar trend is 
observed in Figure 4b, for the time period between 
100 to 200 min and in Figure 4c, from 300 to 400 min. 

 

(a) (b) 

(c)
Figure 4: Simulation I. Response of the HOF output (a) y1, (b) y2 and (c) y3 to set point changes.
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(a) (b) 

(c) 
Figure 5: Simulation I. Response of the HOF input (a) u1 (b) u2 and (c) u3 to set point changes. 

 
 

Figures 6 and 7 show the responses for Simulation 
II with the set-point changes defined in Table 6 and 
unknown pulse disturbances of intensity -0.8 on in-
put u1 from time 221 min to 225 min, and intensity 
0.8 on input u2 from time 51 min to 55 min. In this 
simulation, for the set-point changes, the responses 
of the three controllers seem to follow the same pat-
terns as in the previous case. However, we can ob-
serve some differences in the responses for the dis-
turbance rejection. The overshoots are different for 
the three methods, but the largest overshoot depends 
on the output and on the disturbance, and conse-

quently, there is not a clear superiority of any of the 
methods. Concerning the inputs, the three methods 
seem to perform similarly, but LTT gives smoother 
responses. Tables 8 and 9 show the SSE between the 
system outputs and their set-points, calculated for 
Simulations I and II, respectively. The first table 
supports the same observation drawn from Figures 
4 and 5. The total SSE obtained by the NBI and 
CTT methods are the same, up to the third decimal 
place, whereas the smooth LTT responses are re-
flected in the slightly higher values of the SSE, in 
both simulations. 

 
 

Table 8: Sum of Square Errors between outputs and their set-points, Simulation I. 
 

Simulation I y1 y2 y3 Total 
LTT 3.2331 3.6436 0.4259 7.3026 
CTT 3.3161 3.5484 0.4155 7.2801 
NBI 3.3126 3.549 0.4191 7.2806 

 
Table 9: Sum of Square Errors between outputs and their set-points, Simulation II. 

 
Simulation II y1 y2 y3 Total 

LTT 6.6925 3.1601 2.1992 12.0518 
CTT 7.1799 2.6682 2.002 11.8501 
NBI 7.1587 2.661 2.0217 11.8414 
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(a) (b) 

(c) 
Figure 6: Simulation II. HOF output (a) y1 (b) y2 and (c) y3 response to set point changes and unmeasured 
disturbances.  

(a) (b) 

(c) 
Figure 7: Simulation II. HOF input (a) u1 (b) u2 and (c) u3 response to set point changes and unmeasured 
disturbances.  
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CONCLUSIONS 
 

Two tuning techniques for the conventional finite 
horizon MPC are presented here. In these methods 
the tuning goals are defined in terms of output refer-
ence trajectories, describing the desired time-domain 
characteristics. Two multi-objective optimization 
techniques are proposed to solve the MPC tuning 
problem, namely the lexicographic optimization 
(LTT) and the compromise optimization (CTT). 
These techniques lead to different sets of optimum 
parameters, as was observed in the tuning of the MPC 
implemented in the Shell Heavy Oil Fractionator 
benchmark subsystem. The LTT follows the usual 
tuning guidelines of industry, in which the goals are 
defined according to the number of system inputs 
available as degrees of freedom and is more suitable 
for systems in which the number of outputs is equal 
to the number of inputs, while the CTT can take into 
account as many objectives as necessary and is inde-
pendent of size of the system. The LTT successfully 
prioritizes the more important objectives while the 
latter obtains the best attainable performance con-
sidering all objectives simultaneously. The tuning 
techniques developed here are compared to a multi-
objective optimization based approach from the lit-
erature, which proved to be at least an order of mag-
nitude more time consuming than any of the tech-
niques developed here. Moreover, it requires the 
decision maker to pick out one of the Pareto opti-
mum solution, whereas this selection is done auto-
matically in both approaches developed here, once the 
tuning goals are specified. Regarding the simulation 
results, the existing technique yielded similar results 
compared to the compromise and lexicographic 
approaches. This observation emphasizes the com-
plexity of the MPC tuning problem with its non-con-
vexity and multiplicity of solutions. Besides, in this 
work, only the case of fixed output targets and un-
constrained inputs is considered. In real industrial 
applications, to cope with real time optimization, the 
MPC controller works mainly with output control 
zones and input targets (González and Odloak, 
2009), which implies additional tuning parameters.  
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