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One typically characterizes the transformation kinetics of a parent phase, α, into a single phase, 
β, by measuring the volume fraction transformed, VV β , against time. Sometimes one also reports 
the interfacial area density between the new and the parent phase, VSαβ , against the volume fraction 
transformed. VSαβ  is a dynamic interface. It migrates as the growth of the new phase takes place. 
Interfaces between transformed phases might be called static interfaces. These may be present before 
transformation starts, for example, grain boundaries of a polycrystalline parent phase. Alternatively, 
static interfaces, , VSββ , may appear during the transformation because of impingement. Therefore, one 
may better understand the microstructural evolution following the behavior of the volume fraction, 
dynamic and static interfaces. A more complicated situation occurs if the parent phase transforms into 
two or more product phases, for example, α→β,γ. In this work, we apply parameters to describe the 
transformation of a parent phase into a single phase, the contiguity and the dispersion, to the situation 
in which the parent phase transforms into two or more phases. We tested these parameters against 
computer simulations and concluded that they combine a good description of the behavior of the 
simulated transformations and simplicity.

Keywords: phase transformations, recrystallization, simultaneous and sequential transformations, 
computer simulation, microstructures, quantitative parameters.

1. Introduction
One typically characterizes transformation kinetics 

by measuring the volume fraction transformed, VV , as a 
function of time. The analysis of the kinetics is the basis 
for understanding the transformation. Still, one may gather 
substantial information about the transformation from its 
microstructural evolution over time. Therefore, a more 
thorough understanding of the transformation requires 
additional microstructural parameters. Considerable progress 
has been made in characterization techniques, notably 
3-d techniques. Nonetheless, quantitative metallographic 
measurements on a planar section are still widely employed 
for their simplicity and low cost.

Specifically, the most common situation is transforming 
a polycrystalline parent phase, p, into several single-phase 
regions, denoted phase 1. In this case, in addition to VV , 
quantities related to the interfaces between the phases may be 
easily obtained. Namely, the interfacial area density between 
a) parent phase and phase 1, VS  or 1p

VS ; b) In a polycrystal, 
parent phase and parent phase, pp

VS ; c) phase 1 and phase 1, 11
VS .

By far the most commonly reported measurement, 
after VV , is that of VS . A plot of VS  against VV  is the so-called 
microstructural path1,2. VS  or 1p

VS  is the interface between phase 
1 and the parent phase. It is a dynamic interface. It migrates 

as phase 1 growth takes place. There is also another kind of 
interface: the static interface. They may be present before the 
transformation starts, as is the case of the grain boundaries, 
 pp

VS , of a polycrystalline parent phase. Alternatively, they may 
appear during transformation because of the impingement. 
For example, growing regions of phases 1 and 1 may impinge 
on each other. From this impingement, a static interface 
between phase 1 and phase 1, 11

VS , appears. The behavior of 
these static interfaces during the transformation may provide 
valuable information on the microstructural evolution. The 
behavior of 11

VS  shows how the impingement is taking place. 
The impingement is related to the location of the nuclei of 
phase 1 within the parent phase.

One may define several parameters by considering these 
static interfaces3.

In a previous work4, with the help of computer simulation, 
we examined a situation in which a single phase formed on 
the grain boundaries of a parent phase. That work4 concluded 
that in addition to VV  and VS  two other parameters were good 
choices for a more thorough description of the microstructural 
evolution. One is the so-called contiguity of phase 1
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is formally identical to the dispersion parameter proposed 
by Hornbogen3, Equation 2.
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The parameters defined by Equations 3-5a are applied 
to distinguish between:

a)	 two simultaneous transformations in which each 
phase has the same number of nuclei and the same 
velocity. This simulation will be our “baseline,” as all 
parameters should be equal in this case;

b)	 two simultaneous transformations in which phase 2 
has ten times more nuclei than phase 1. In this case, 
we keep the 1 2 V VV V=  compensating the growth velocity 
of the phases;

c)	 two sequential transformations with the same 
considerations of the case “a”; the only difference was 
that phase 2 started when phase 1 reached 1 0.1VV = .

It is worthy of note that the question is not only to measure 
and define parameters to characterize a transformation but 
parameters that are sensitive enough that their differences 
are above the experimental errors.

It is interesting to remark that some transformations 
might not be very sensitive to the kinetics curve,  vs. VV t or 
to the microstructural path,  vs. V VS V  curve. Our previous 
work4 shows this. Therefore, it is essential to be more precise 
about what the “sensitivity” of a parameter means in this 
context. If we were dealing with a purely mathematical 
issue, two numbers are either equal or not. If two numbers 
differ by any amount, say, by 0.1% or 0.001%, they are not 
equal. However, when one is talking about experimentally 
determined quantities, the situation is different. That is so 
because experimental quantities exhibit experimental errors. 
For example, ±5% is a reasonable experimental error for 
good metallographic practice. Therefore, if a parameter 
differs from another by 2% for two transformations, it is not 
very useful to distinguish between them as this difference is 
well below the experimental errors. Therefore, the question 
is not only to measure and define parameters to characterize a 
transformation but parameters that are sensitive enough that 
their differences are above the experimental errors. In this 
regard, determining parameters from computer simulations 
can be helpful. This is because computer simulations are 
free from experimental errors.

3. Computer Simulation Methodology
Nucleation and growth transformations were computer-

simulated in 3-d using the causal cone method10,11. The simulations 
employed a cubic matrix comprising 300 µm x 300 µm x 
300 µm with periodic boundary conditions. Each cubic cell 
edge length was equal to 1 µm. 128 nuclei distributed in space 
by a homogeneous Poisson point process12,13 generated the 
polycrystalline parent phase. Therefore, the parent phase had 
128 grains with a mean grain size of 60 µm. We did three 
simulations corresponding to cases a to c of the previous 

The contiguity essentially captures the behavior of 
the interfaces between the same phase. The contiguity 
has interesting properties, especially regarding the onset 
of impingement, see4–7. Equation 1, the contiguity, varies 
from zero to one as the volume fraction transformed varies 
from zero to one.

The second is the dispersion parameter, δ , defined by 
Hornbogen3:
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The dispersion parameter measures the ratio of interfaces 
between distinct phases to interfaces between the parent 
phase. The inconvenience of the above definition is that the 
dispersion tends to infinity as the volume fraction transformed 
tends to one. Equation 2 behaves in this way because pp

VS  
tends to zero4.

A more complicated situation is when two or more 
phases form from a parent phase. The formation of those two 
new phases may take place by simultaneous or sequential 
transformations8,9. For example, consider the situation in 
which three phases are present: parent, phase 1, and phase 2. 
The main difference from the case where only one phase 
forms from a parent phase is that one now has significantly 
more interfaces. Indeed, in addition to the volume fractions of 
phases 1 and 2, there are six interfacial area densities instead 
of two. Those interfacial area densities are: 11

VS , between 
phase 1 and phase 1; 22

VS , between phase 2 and phase 2; 12 VS , 
between phase 1 and phase 2; 1p

VS , between phase 1 and the 
parent phase; 2 p

VS  between phase 2 and the parent phase and 
pp

VS , the grain boundary area of the parent phase.
This article aims to generalize our previously published 

paper4. Here we suggest the application of the parameters 
defined above for the situation in which two or more phases 
form from a parent phase. We test these parameters applying 
to the situation in which a parent phase forms two phases. 
Three computer simulations of simple simultaneous and 
sequential transformations generated distinct microstructures 
used to perform the test.

2. Microstructural Descriptors for 
Multiphase Transformations
The first two parameters proposed are the contiguity 

of the same phase, iiC , and the contiguity between different 
phases, ijC . Our definitions here essentially retain the form 
of Equation 1. Thus, a natural extension of Equation 1 would 
be to keep its form and apply it to the other interfaces:
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Where “i” and “j≠i” correspond to a product phase numbered 
from 1 to N.

In the same way, the following parameter proposed is the 
dispersion of each phase, iδ . As one can see, this parameter 
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section. It is essential to mention that for all simulations 
presented in this work, one carried out 50 simulation runs. 
The plots shown below were the mean value of the data 
of those 50 simulations. We used 50 simulations as our 
previous computer simulation experience has shown this to 
be a sufficiently high number of runs for reliable statistical 
means. The following section includes more details about 
the simulations themselves.

4. Simulated Microstructures for the Cases 
in Which the Parent Phase Transforms 
into Two Phases
Figures 1a and 1b show the simulated microstructure 

of the parent phase, “p,” before transforming into the two 
product phases. The transformation of the parent phase 
into two product phases may take place simultaneously 
or sequentially8,9. In the simulations carried out here, the 
nucleation was always site-saturated. Furthermore, the 
nuclei were distributed according to a homogeneous Poisson 
point process12,13.

Two simulations of simultaneous transformations and one 
of the sequential transformations were carried out. Thus, the 
parent phase “p” depicted in Figures 1a and 1b transformed 
into phases “1” and “2”. Therefore, at the beginning of the 
transformation, one had a single phase: the parent phase; 
during the transformation, one had three phases: p, 1, and 2; 
and finally, as the matrix transformation ended, only phases 
1 and 2 remained.

The simulation of the first simultaneous transformation 
was carried out for reference purposes. The product phases, 
phases 1 and 2, had the same number of initial nuclei, 
N1 and N2, equal to 64. These values were chosen to obtain 
a grain size of phases 1 and 2 (mean intercept length) in the 
fully transformed matrix approximately equal to 60 µm. 
The phases also have the same growth velocities, G1 and G2, 

Figure 1. Representation of simulated microstructure of the polycrystalline parent phase before transforming into the product phases. (a) 
3-d simulated microstructure. (b) 2-d cross-section when the matrix is fully transformed where the grain boundaries correspond to  pp

VS .

equal to 1 µm/unit of time. Notice that each phase, 1 and 2, 
obeys the JMAK equation for site-saturated nucleation in 
the simultaneous transformations. Phase 1 kinetics, 1

VV  vs. 
time, t, is given by:

1 3 3
1 1

41 exp
3VV N G tπ 

= − − 
 

	 (6)

with a similar expression for 2 VV . Evidently, in this case, the 
kinetics was the same for both phases, resulting in 1 2

V VV V= . 
The simulation of the sequential transformation used the 
same parameters. The significant difference between the 
simultaneous and sequential transformation was that in 
the sequential transformation, phase 2 started to form only 
when phase 1 reached 1 üVV = . The second simultaneous 
transformation simulation used parameters chosen in such a 
way that phases 1 and 2 would have the same kinetics with 

1 2
V VV V=  but a different microstructure. Thus, in the simulation 

of the simultaneous transformation described in “b” above, 
the initial number of nuclei was N1 = 64 and N2 = 640, with 

G1 = 1 µm/unit of time and 3
3

1 1
2

2
 0.46N GG

N
= ≅  µm/unit of 

time. This choice of parameters meant that 3 3
1 1 2 2N G N G=  and 

therefore 1 2
V VV V=  (see Equation 6). The smaller velocity and 

higher number of nuclei of phase 2 meant that phase 2 had 
a higher number of smaller transformed regions than phase 
1. Consequently, this resulted in phase 1 and phase 2 having 
identical kinetics but distinct microstructures. By contrast, 
in the first simulation of simultaneous transformations, 
the kinetics and the microstructures were identical. The 
simulation of the simultaneous transformations was that 
the parameters could be compared, keeping the kinetics the 
same for both phases.

Figures  2a-c show the simulated microstructures for 
simultaneous and sequential transformations. Again, the 
difference between the microstructures of the three simulated 
cases is noticeable.
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5. Application of the Microstructural 
Descriptors for the Cases in Which the 
Parent Phase Transforms into Two Phases
We limit our discussion to the parameters presented in 

the introduction. However, of course, many other parameters 
may be defined. Therefore, we provide a list of possible 
parameters in the Appendix. We plotted the curves for all 
those listed parameters for the simulated cases. The conclusion 
was that the parameters defined by Equations 3-5 were 
better suited for their simplicity and ability to distinguish 
the microstructures. Thus, in what follows, we focus on the 
parameters defined by Equations 3-5.

Figures  3a-c show the kinetics of simultaneous and 
sequential transformations. For a more detailed study 
of sequential transformations, the reader is referred to 
Alves et al.8. As was mentioned above, in both simultaneous 
transformations, one had 1 2 V VV V= , so the kinetics curves were 
very similar. Figure 3a and 3b show that phases 1 and 2 have 
the same kinetics, as expected. In contrast, in Figure 3c, even if 
phase 2 starts to transform after phase 1 reaches only 1 0.1VV = , 
the kinetics of phase 1 and 2 were significantly different.

Figures  4a-c show the microstructural path of the 
simultaneous and sequential transformations. As expected, 
the microstructural path of phases 1 and 2 from the first 
simulation of simultaneous transformations are identical. 
Figure 4b is more critical as it shows the difference between 

the microstructural path of phases 1 and 2 for the second 
simultaneous transformation. Both phases 1 and 2 always have 
the same volume fraction. However, phase 2 has more nuclei, 
so its volume fraction is composed of a higher number of 
smaller regions than the volume fraction of phase 1. Therefore, 
the interfacial area of phase 2 is always above that of phase 
1, as shown in Figure 4b. Phase 2 has a higher interfacial 
area density than phase 1. Hence, the total interfacial area for 
both phases is higher in Figure 4b than in Figure 4a. Apart 
from that, all curves in Figure 4b are typical site-saturated 
transformations. The curves are symmetrical, with a maximum 
very close to the midpoint of the transformation. In Figure 4c, 
the behavior is different. Phase 1 started earlier and has a 
much larger volume fraction and a much larger surface area 
(recall that in this simulation, the number of nuclei is the 
same for both phases). Even though the deviation is slight, 
the curves are not exactly symmetrical. The total interface 
area curve in Figure 4c tilts towards larger volume fractions. 
The effect is small, probably undetectable experimentally 
under the same conditions. However, it shows that the total 
volume fraction of the sequential transformation behaves 
differently from the exact site-saturation model, even if 
phases 1 and 2 nucleation are site-saturated.

Figures 5a-c show the behavior of the contiguity as a 
function of volume fraction for the three simulations carried 
out here. Note that there are two product phases; therefore, 
Equation 3 takes the form of 11C  and 22C  and Equation 4 takes 

Figure 2. Representation of simulated microstructures showing a 2-d cross-section when the 3-d matrix is fully transformed. (a) simultaneous 
transformation with N1 = N2 = 64 and G1 = G2 = 1 µm/unit of time. (b) simultaneous transformation with N1 = 64 and N2 = 640 and 
G1 = 1 µm/unit of time and G2 ≅ 0.46 µm/unit of time. (c) sequential transformation, the only difference from the case shown in (a) is that 
phase 2 starts when phase 1 reaches 1 0.1VV = .

Figure 3. VV versus time. (a) simultaneous transformation with N1 = N2 = 64 and G1 = G2 = 1 µm/unit of time. (b) simultaneous transformation 
with N1 = 64 and N2 = 640 and G1 = 1 µm/unit of time and G2 ≅ 0.46 µm/unit of time. (c) sequential transformation, the only difference 
from the case shown in (a) is that phase 2 starts when phase 1 reaches 1 0.1VV = .
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the form of 12C . Figure  5a shows the result of the first 
simulation. Of course, as in this case, the number of nuclei is 
the same, and the velocity is the same, one would expect the 
contiguities 11C  and 22C  to be equal, as shown in Figure 5a. 
Nonetheless, Figure 5a depicts important information: 12C  
is the same as 11C  and 22C . The contiguity resulting from the 
impingement between phases 1 and 2 has the same value as 
the contiguity resulting from the impingement between the 
same phase. Figure 5b shows that this behavior is similar to 
the second simultaneous transformation. The only discrepancy 
is that 12C  is slightly higher than 11C  and 22C . Figure 5b also 
shows that the contiguity 22C  is also equal to 11C  even though 
phase 2 has a higher area per unit of volume than phase 1. 
The contiguity relates to the arrangement of a phase in space. 
The contiguity should be the same if all regions are uniform 
randomly dispersed within the parent phase. However, if 
there is clustering, one observes a significant difference in 
contiguity5. In Figure 5c, the situation changes: 12C  is higher 
than 22C  but smaller than 11C . One possible reason for this is 
that in contrast with the simultaneous transformations the 
behavior of the volume fraction of the individual phases 
during the sequential transformation is very different. 
The volume fraction contribution of phase 1 to the total 
volume fraction is much higher than the corresponding 
volume fraction contribution of phase 2. This is a consequence 
of phase 2 starting to form later, see Figure 3b. Also, even 
though the nuclei are uniform randomly located in space, 
the fact that phase 1 starts earlier influences the spatial 
arrangement of phase 2 and, thus, its contiguity. We see 12C  
significantly higher than 22C  because when phase 2 forms, 

phase 1 is already there. Therefore, impingement between 
1 and 2 starts earlier than between phase 2 and phase 2, 
leading to a higher 12C .

Figure  5 shows that the behavior of the multiphase 
contiguity is consistent with our definition and expected 
properties of the contiguity of two phases. Therefore, it 
shows that the generalization proposed here works well. 
For the present purposes, the main point is the ability of the 
contiguities to distinguish the behavior of the three kinds 
of interfaces.

Figures 6a-c show the dispersion parameter as a function 
of the total volume fraction. For these cases, Equation 5 takes 
the form of 1δ  and 2δ . Figure 6a needs no comment as the 
number of nuclei and velocity of phases 1 and 2 are the same. 
Consequently, the value of the dispersion parameter must be 
the same for both phases. The situation changes in Figure 6b. 
In Figure 6b, the dispersion parameter of phase 2 reflects 
that phase 2 has more interfaces than phase 1. Therefore, the 
dispersion parameter of phase 2 is higher than the dispersion 
parameter of phase 1. In contrast with Figures 6a and 6b, 
Figure 6c shows that the dispersion of phase 1 is higher 
than the dispersion of phase 2. This is because the volume 
fraction of phase 1 is much higher than phase 2. A much 
higher volume fraction of phase 1 than of phase 2 means 
that the interfacial area density between phase 1 and the 
parent phase is much higher than the interfacial area density 
between phase 2 and the parent phase.

Notice that the dispersion parameter, Equation 5, also 
includes the grain boundary of the parent phase in the 
denominator so that it is sensitive to how or the rate the new 

Figure 4. Microstructural Path. (a) simultaneous transformation with N1 = N2 = 64 and G1 = G2 = 1 µm/unit of time. (b) simultaneous 
transformation with N1 = 64 and N2 = 640 and G1 = 1 µm/unit of time and G2 ≅ 0.46 µm/unit of time. (c) sequential transformation, the 
only difference from the case shown in (a) is that phase 2 starts when phase 1 reaches 1 0.1VV = .

Figure 5. Contiguity of each phase versus VV. (a) simultaneous transformation with N1 = N2 = 64 and G1 = G2 = 1 µm/unit of time. 
(b) simultaneous transformation with N1 = 64 and N2 = 640 and G1 = 1 µm/unit of time and G2 ≅ 0.46 µm/unit of time. (c) sequential 
transformation, the only difference from the case shown in (a) is that phase 2 starts when phase 1 reaches 1 0.1VV = .
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phases consume the grain boundaries. It is worthy of note 
that if one phase were nucleated on the grain boundaries, the 
grain boundaries of the parent phase would disappear much 
faster, with a substantial effect on the dispersion parameter.

It is worth mentioning that since there is a more significant 
number of interfacial area densities, it is possible to define 
the contiguity, the dispersion, and additional parameters in 
other ways. Other definitions of these parameters were used in 
previous work8. The problem of using definitions too far from 
the definitions presented in Equations 1-2 is how to interpret 
them. By using the definitions presented by Equations 3-5, 
based on Equations 1-2, the behavior of a microstructure 
containing two phases can be taken as the starting point for 
interpreting the microstructures containing three or more phases.

6. Conclusions
This work proposed several quantitative metallographic 

parameters to describe the microstructure and its behavior. 
Besides, there were other parameters that also apparently 
gave reasonable results, see Appendix. However, the ones 
defined in the body of the text were able to characterize 
and distinguish the multiphase transformations, combining 
reliable results, simplicity, and straightforward interpretation. 
In addition, our results permit the following conclusions:

•	 Two new parameters, contiguity, and dispersion, 
were defined here specifically for the situation in 
which a parent phase decomposes into two phases. 
For example, this decomposition could occur 
with phases 1 and 2 forming simultaneously or 
sequentially.

•	 We tested these parameters using microstructures 
generated by three computer simulations of simple 
cases. In all cases, the parameters behaved well and 
were quite distinct for each phase.

•	 We believe that the parameters defined here 
satisfactorily extend the parameters defined for 
a single phase forming from a parent phase and 
employed in previous work4.
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Supplementary material
The following online material is available for this article:
Appendix


