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ABSTRACT

The purpose of this work was to study the giant strong component (GSC) of B. thuringiensis metabolic
network by structural and functional analysis. Based on so-called “bow tie” structure, we extracted and
studied GSC with its functional significance. Global structural properties such as degree distribution and
average path length were computed and indicated that the GSC is also a small-world and scale-free network.
Furthermore, the GSC was decomposed and functional significant for metabolism of these divisions were
investigated by comparing to KEGG metabolic pathways.
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INTRODUCTION

Advancements in the emerging systems biology in recent
years fuelled the expectation that we could understand cellular
behaviors by discovering how function arises in the interactions
of cellular components (19). Thanks to the high-throughput
(HT) technologies, which allow us to list all of these cellular
components for an organism on the genome scale, and thus
more and more biochemical networks are reconstructed, such
as metabolic networks (8-10), transcriptional regulatory
networks (15) and signaling networks (28).

However, due to combinatorial explosion of pathways, it is
difficult or even impossible to apply traditional pathway analysis
methods (33-34) to these reconstructed networks. Help forward
the way is provided by the rapidly developing complex networks,
in which graph representation is widely used (1,3,5,16,23,26).
For instance, the metabolic network could be represented by
so-called metabolite graph in which the nodes are metabolites
and the links are reactions. Then, the fundamental organizational
principles that underlie networks could be discovered based
global topological structural properties such as so-called “small-
world” (36), “scale-free” (2) etc. Furthermore, to discover

functional units involved in metabolic networks, it is suggested
that metabolic networks should have modularity (29,31,32) which
is similar to other complex networks, such as social networks,
Internet, Worldwide Web etc.

In this article, the use of metabolic reaction data to generate
a metabolic network with 830 nodes and 1132 links of an
important insecticidal bacterium B. thuringiensis (11,22) is
achieved firstly. Subsequently, structural analysis of B.
thuringiensis metabolic networks is explained and discussed
based “bow tie” structure which is proposed by Ma and Zeng
(24), emphasis is placed on the giant strong component (GSC)
part. At last, the functional significance, global structural
properties and modularity of GSC of B. thuringiensis metabolic
networks are studied.

MATERIALS AND METHODS

Data Acquisition and Representation
To investigate the topological properties of metabolism of

B. thuringiensis, we first obtained all metabolic reactions
involved in metabolic network of B. thuringiensis from KEGG
database (17), and use number of each metabolite correspond
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to compounds in the KEGG LIGAND database. For instance,
metabolite 246 corresponds to compound C00246 (butanoate)
in the KEGG database. Subsequently, all of the reactions are
revised based a KEGG-based database developed by Ma and
Zeng (25): 1) corrected obvious inconsistencies; 2) confirmed
the reversibility of every reaction; 3) excluded the current
metabolites and small molecules such as ATP, ADP, NADH and
H2O etc, with the purpose of reflecting biologically meaningful
transformations. At last, the metabolic network reconstructed
is represented by so-called metabolite graph in which the nodes
are metabolites and the links are reactions. For example, the
irreversible reaction, 64 + 26 � 25 is represented by two directed
arcs 64 � 25 and 26 � 25.

Bow Tie Structure
Since Ma and Zeng proposed (24) the “bow tie” structure of

metabolic networks, it is increasingly recognized as being a
conserved property of complex networks, as highlighted by
recent studies (6,20,21,37), and the results suggest that this
structure property is functional meaningful for metabolism,
disease and the design principle of biological robustness.

Generally speaking, a network with the “bow tie” structure
could be decomposed into four parts: 1) giant strong component
(GSC), 2) substrate subset (S), 3) product subset (P), and 4)
isolated subset (IS) (24). The GSC is the biggest strongly
connected components of a metabolic network.

Degree Distribution and Average Path Length
The direct reflection of difference among numerous

metabolites in metabolic networks is the connection degree k,
which is the links that the node has to others, and the degree
distribution P(k) gives the probability of a node with degree k.
One of the most important properties of metabolic networks is
the power law degree distribution, i.e. P(k) ~ k-r (r≈2.2), which
means that most of the nodes in the network have a low degree,
while a few nodes have a very high degree (16, 35). In other
words, metabolic network is a sort of typical scale-free network
(2). It is suggested that average path length of metabolic
networks is very small (16,25), shown itself the property of “small-
world”. Another structure parameter is network diameter, which
is defined as the path length of the longest pathway among all
of the shortest pathways (4).

Modularity and Simulated Annealing Algorithm
An important properties related to detection of modules is

modularity. For a presumptive partition of the nodes of a network
into modules, the modularity M of this partition is defined as
following (14,27):

(1)

where r is the number of modules, ls is the number of links
between nodes in modules, ds is the sum of the degrees of the
nodes in module s, and L is the total number of links in the
network. It is suggested that maximization of the modularity
function would yield the most accurate results for random
networks and widely used for identification of modules (12,13).

Simulated annealing (18) is a stochastic optimization
technique that could find ‘low cost’ configuration without
getting trapped in ‘high cost’ local minima. As mentioned above,
the method based on simulated annealing tries to find the
optimal partitions of modules by maximizing the network
modularity (12,13), and thus the cost is C= − M herein, where
M is the modularity defined in equation (1). At each temperature
T, some random updates are performed and accepted with
probability:

(2)

where C2 and C1 are respectively the cost after the update and
before the update, while T is computational temperature.
Specifically, at each temperature T there would be ni = fS2 nodes
individual movements from one module to another, and nc = f S
nodes collective movements, where S is the number of nodes in
the network, and f with the recommended range of 0.1 to 1. At
each certain temperature T, the system would be cooled down
to T ’= cT.

RESULTS AND DISCUSSION

Bow Tie Structure and Extraction of GSC
The metabolic network of B. thuringiensis is reconstructed

based the methods which is introduced in section 2.1. The
network contains 830 nodes and 1132 links, and the global
topology structure is shown in Fig. 1. It is clearly that the whole
network is far from strong component and included many
isolated reactions. Then the whole metabolic network of B.
thuringiensis is decomposed into four parts based the “bow
tie” structure (Table 1). It should be noted that most nodes in S,
P and IS part are connected by some single link which are not
interested herein, while the metabolites and reactions involved
in the GSC part is clearly much less than the whole network, and
would be used to reduce the complexity of applying other
pathway analysis methods such as extreme pathways and
elementary modes (33,34). Furthermore, the GSC is the biggest
strongly connected components of a metabolic network and
determined structure of the entire network at a certain extent
(24,37), thus it would be more detailed analysis herein.

All of the 268 metabolic reactions are compared to KEGG
pathways, and show that they are mainly concentrated on
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carbohydrate metabolism and amino acid metabolism (Table 2).
The reactions of carbohydrate metabolism accurately
correspond to glycolysis, TCA cycle, pentose phosphate
pathway, and partly correspond to pyruvate metabolism and
butanoate metabolism. From the point of view of network
topological, the results show that metabolites in carbohydrate
metabolism (in particular glycolysis, TCA cycle and pentose
phosphate pathway, i.e. the central metabolism) have the higher
probability of much more links and stronger robustness in
network, and thus might have higher attack tolerance despite
external cues, genetic variation and stochastic noise. While
reactions of amino acid metabolism are mainly concentrated on
urea cycle and metabolism of amino groups, arginine and proline
metabolism, and glycerophospholipid metabolism, these might
reveal the nutrient requirement in B. thuringiensis.

Degree Distribution and Average Path Length
We first checked the scale-free property of the GSC of B.

thuringiensis metabolic network (Fig. 2). As it known, the nodes
with high degree of scale-free network would dominate the

network structure, and make the network robust against random
errors such as mutation and environmental changes. Ma and
Zeng have identified 20 primary metabolites with the highest
degree for 80 fully sequenced organisms and suggested these
metabolites are almost the same (25). The result is partly
reaffirmed in this study (Table 3), 6 of 10 hub metabolites of the
GSC of B. thuringiensis metabolic network are present in their
list (PYR, GLU, AcCoA, ICIT, ASP and SUC), while the remained
4 metabolites are not. Among these 4 metabolites, BuCoA is the
key metabolite linking butanoate metabolism and fatty acid
metabolism, and it suggested that it is a key role related to
novel pathway about PHB metabolism (7). 2HPP is the metabolite
linking glycolysis pathway, pentose phosphate pathway and
carbon fixation, E4P is the metabolite linking pentose phosphate
pathway, aminosugars metabolism and carbon fixation, and GlyP
play a key role among glycolysis pathway, fructose and mannose
metabolism, glycerophospholipid metabolism, carbon fixation,
nicotinate and nicotinamide metabolism. As links among different
functional metabolic payhways, these hub metabolites
(especially those 4 which are differ from Ma’s universal hub

Table 1. The bow tie structure of B. thuringiensis metabolic
network. GSC (giant strong component), S (substrate subset),
P (product subset) and IS (isolated subset).

         Subsets GSC S P IS Total

No. of metabolites 118 73 190 449 830
Percentage of

14.2% 8.8% 22.9% 54.1% 100%
metabolites
No. of reactions 268 82 252 530 1132
Percentage of

23.7% 7.2% 22.3% 46.8% 100%
reactions

Table 2. Reactions in GSC of B. thuringiensis metabolic network.

         Reactions in GSC No. of Percentage
reactions of reactions

Carbohydrate Metabolism 140 52.2%
Amino Acid Metabolism 84 31.3%
Energy Metabolism 24 9.0%
Lipid Metabolism 8 3.0%
Others 12 4.5%

Total 268 100%

Table 3. The first 10 hub metabolites of the GSC of B.
thuringiensis metabolic network.

Degree Metabolite name Abbreviation

16 Pyruvate PYR
16 (2R)-2-Hydroxy-3-

(phosphonooxy)-propanal 2HPP
14 Glycerone phosphate GlyP
13 L-Glutamate GLU
12 Acetyl-CoA AcCoA
12 Isocitrate ICIT
10 D-Erythrose 4-phosphate E4P
9 L-Aspartate ASP
9 Butanoyl-CoA BuCoA
8 Succinate SUC

Figure 1. Metabolic network topology structure of B.
thuringiensis, the nodes correspond to metabolites and the
lines correspond to reactions. The picture was drawn using the
Pajek program.
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metabolites) with their corresponding reactions play a key role
in metabolic regulation and may helpful to reveal the biological
significance about B. thuringiensis metabolism. The average
path length is 8.63 and network diameter is 24 for the GSC of B.

thuringiensis metabolic network, which is similar to other multi-
bacteria via Pathway Hunter Tool (PHT) (30) and Ma and Zeng
(25) (Table 4).

Modules of GSC
Various of decomposed results of the giant strong

component of B. thuringiensis metabolic network based on
simulated annealing algorithm are obtained due to different
iteration factor (f ) and cooling factor (c) as mentioned in section
2, at last we chosen the best decomposed result (Table 5, Fig. 3)
after a number of computing. The result gives clearly partition
with the number of metabolites, total links, within-module links
and between-module links in each module and the modularity

Figure 3. Modules in the GSC of B. thuringiensis metabolic network, the picture was drawn using the Pajek program.

Table 4. Average path length (AL) and diameter (D) of multi-
bacteria.

           Organisms Abbreviation AL D

Bacillus subtilis bsu 8.48 23
Escherichia coli eco 8.16 23
Haemophilus influenzae hin 8.35 27
Helicobacter pylori hpj 7.91 24
Salmonella typhimurium stm 8.22 24Figure 2. Log-log plot of the degree distributions for the GSC

of B. thuringiensis metabolic network.
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in the partition of the network is 0.752183. Then the decomposed
result is also reaffirmed by compared to KEGG metabolic
pathways, i.e. most modules are mainly corresponding to one
or two KEGG pathways (Table 6). For instance, 11 of 12 within
links in module 4 are corresponding to Glycerophospholipid
metabolism and 11 of 15 within links in module 1 are
corresponding to butanoate metabolism would demonstrate the
anterior one. As for the latter one, 10 of 24 and 8 of 24 within
links in module 7 are corresponding to arginine and proline
metabolism, urea cycle and metabolism of amino groups,
respectively.

Table 5. Decomposed results of the GSC of B. thuringiensis
metabolic network.

Module Nodes Total Within Between
links links links

1 14 16 15 1
2 9 16 10 6
3 20 32 28 4
4 10 14 12 2
5 8 11 7 4
6 17 27 19 8
7 18 26 24 2
8 9 13 8 5
9 13 22 16 6

Modularity 0.752183

Table 6. The decomposed results of the GSC of B. thuringiensis
metabolic network is reaffirmed by compared to KEGG metabolic
pathways.

Module                     Pathways in KEGG

1 butanoate metabolism
2 pyruvate metabolism
3 glycolysis, pentose phosphate pathway,

carbon fixation
4 glycerophospholipid metabolism
5 ——
6 pyruvate metabolism, several amino

acid biosynthesis
7 arginine and proline metabolism, urea

cycle and metabolism of amino groups
8 ——
9 TCA cycle

—— represents that the corresponding module includes several
pathways and it is difficult to assign it one or two simple pathways.

CONCLUSION

With the explosion of knowledge in ‘X-mics’ and systems
biology, more and more genome-scale metabolic networks being
reconstructed (8-10). To discover functional information
involved in metabolic networks, a number of topological
structural based approaches have already been developed, and
it suggested that these computational modeling and analysis
could contribute a lot to the understanding of the structure and
function of these systems (1,3,5,16,23,26).

Taken together, this study provides an attempt at exploring
the fundamental organizational principles that underlie B.
thuringiensis metabolic network. We have initiated the study
by integrating data from KEGG and correlative database, then
the metabolic network reconstructed is represented by metabolite
graph. Considering many isolated reactions are included in the
whole metabolic networks, we extracted the most important part
giant strong component (GSC) and analyzed its global structural
properties and biological implication. We validated the “small-
world” and “scale-free” characters and analyzed the first 10 hub
metabolites of the GSC accordingly. Finally, the functional
modules in GSC were studied with their biological significance.
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RESUMO

Análise estrutural de funcional do GSC (Giant
Strong Component) da rede metabólica de

Bacillus thurigiensis

O objetivo deste trabalho foi realizar uma análise estrutural
e funcional do GSC (Giant Strong Component) da rede
metabólica de Bacillus thurigiensis. Baseando-se na estrutura
bow-tie, o GSC foi extraído e analisado quanto ao sue significado
funcional. Propriedades estruturais globais tais como grau de
distribuição e tamanho médio da via metabólica foram
mensuradas, concluindo-se que o GSC é também uma rede small
world e scale–free. Além disso, a rede GSC foi decomposta e as
divisões com significância funcional no metabolismo foram
comparadas às vias metabólicas KEGG.

Palavras-chave: Bacillus thurigiensis, Giant Strong
Component, rede metabólica
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