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Abstract
Bacillus thuringiensis is the most commonly used entomopathogen in the control of Aedes aegypti, which is a vector 
for different etiological agents that cause serious infections in humans. Several studies aim to isolate strains of this 
bacterium from different environments, with the perspective of selecting isolates with larvicidal activity for mosquitoes. 
Aiming at the insecticidal action of B. thuringiensis, the present study aimed to prospect B. thuringiensis of restinga and 
mangrove soils from the state of Maranhão, Brazil, with toxic potential for use in the biological control of Ae. aegypti. 
Bioassays were performed to determine the entomopathogenic activity of the bacilli against Ae. aegypti and lethal 
concentrations (LC50 and CL90) were estimated after the tests. Polymerase Chain Reaction and SDS-PAGE techniques 
were performed to verify the gene and protein content of the isolates, respectively. The soil of the mangrove and restinga 
ecosystems showed potential for obtaining B. thuringiensis. This isolate, in addition to having proteins with molecular 
mass similar to the toxins Cry and Cyt, also presented several diptera-specific genes cry and cyt, demonstrating that it 
has high potential to be used in the biological control of Ae. aegypti.

Keywords: biological control, bacteria, ecosystem, vector.

Estirpe de Bacillus thuringiensis da restinga, tóxico ao 
Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae)

Resumo
Bacillus thuringiensis é o entomopatógeno mais utilizado no controle do Aedes aegypti, vetor de diferentes agentes 
etiológicos que causam infecções graves em humanos. Diversos estudos têm como objetivo isolar cepas dessa bactéria de 
diferentes ambientes, com a perspectiva de selecionar isolados com atividade larvicida para mosquitos. Visando a ação 
inseticida de B. thuringiensis, o presente estudo teve como objetivo prospectar B. thuringiensis de solos de restinga e 
mangue do estado do Maranhão, Brasil, com potencial tóxico para uso no controle biológico de Ae. aegypti. Bioensaios 
foram realizados para determinar a atividade entomopatogênica do bacilo contra Ae. aegypti e as concentrações letais 
(CL50 e CL90) foram estimadas após os testes. As técnicas de Reação em Cadeia da Polimerase e SDS-PAGE foram 
realizadas para verificar o conteúdo de genes e proteínas dos isolados, respectivamente. Os solos dos ecossistemas de 
mangue e restinga apresentaram potencial para obtenção de B. thuringiensis. O isolado BtMA-750, obtido a partir da 
amostra de solo da restinga, foi interessantemente distinguido por sua alta toxicidade para Ae. aegypti. Este isolado, 
além de apresentar proteínas com massa molecular semelhante às toxinas Cry e Cyt, apresentou também diversos genes 
díptero-específicos cry e cyt, demonstrando que tem alto potencial para ser usado no controle biológico de Ae. aegypti.

Palavras-chave: controle biológico, bactéria, ecossistema, vetor.
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1. Introduction

The Aedes (Stegomyia) aegypti (Linnaeus 1762), 
considered a cosmopolitan mosquito, is widely distributed 
among tropical and subtropical regions. This mosquito is 
the main vector for DENV, ZIKA and CHIKV arbovirus, 
which unleash infections in human, such as dengue fever, 
zika fever and chikungunya fever, respectively (Gubler 
and Clark, 1995; Donalisio and Freitas, 2015; Vasconcelos, 
2015; Valle et al., 2016; Roundy et al., 2017; Brasil, 2020). 
These arboviruses currently represent one of the biggest 
public health problems in Brazil, because the vector shows 
a broad spread among its territory (Brasil, 2020).

The main strategies for the Ae. aegypti density reduction 
are: reducing larval density by eliminating breeding sites, 
such as artificial breeding sites (Bezerra et al., 2017; 
Montagner et al., 2018; Andrade et al., 2020); biological 
or chemical control, using entomopathogenic bacteria 
(Soares-da-Silva et al., 2017; Lobo et al., 2018) and 
insecticides, respectively (Dusfour et al., 2019). However, 
the insecticides contribute to the emergence of resistant 
mosquitoes populations, that being a latter disadvantage, 
for it is one of the main problems that affect the vector’s 
control strategies (David et al., 2018; Dusfour et al., 2019).

The biological control is a sustainable alternative to 
reduce the vector population indexes (Huang et al., 2017). 
The Bacillus thuringiensis (Berliner, 1911) is an important 
insects’ pathogen and exhibits high toxicity for diptera 
larvae (Campanini et al., 2012; Soares-da-Silva et al., 2017; 
Lobo et al., 2018; Zghal et al., 2018; Viana et al., 2020).

The B. thuringiensis produces protein crystals during the 
sporulation phase; these crystals are made of δ-endotoxins 
or Cry and Cyt proteins (Soberón et al., 2018), encoded 
by cry and cyt genes, located at conjugative plasmids 
(Berry et al., 2002). The proteins become toxic to the larvae 
after they ingest them, because in the larvae’s medium 
intestine the proteins are solubilized, due to the alkaline 
pH, freeing protoxins that bind to specific receptors in 
the intestinal epithelium, causing the pore formation on 
the cellular membrane, which leads to a ionic imbalance 
and larval death (Soberón et al., 2018; Viana et al., 2020).

In addition to the δ-endotoxins, the B. thuringiensis 
presents other toxicity mechanisms, such as quitinase enzyme 
production, which can enhance the bacillus’ insecticide 
action, because this exoenzyme interrupts the membrane 
integrity and favors the Cry toxins’ insertion on the intestinal 
epithelium receptors (Juárez-Hernández et al., 2015).

The B. thuringiensis var. israelensis (Bti) is the most 
powerful biological alternative for controlling some 
diseases’ vectors around the world (Polanczyk et al., 2009; 
Ben-Dov, 2014). This species’ larvicidal activity resides in 
toxic proteins encoded by the cry4Aa, cry4Ba, cry10Aa, 
cry11Aa, cyt1Aa, cyt1Ca and cyt2Ba genes (Berry et al., 
2002; Costa et al., 2010; Ben-Dov, 2014), which are used 
in many commercial products indicated to the Ae. aegypti 
control (Ben-Dov, 2014). However, most of the Bti-based 
products are imported, which causes an increase in the 
final price for the customer and decreased competition 

for these products compared to the chemical insecticides 
(Angelo et al., 2010).

Despite the diversity of Bti’s Cry and Cyt proteins, 
which leads to the multiple complex of actions and to 
several levels of synergistic interactions, the decrease of 
Ae. aegypti’s susceptibility to this bacterium is a probability, 
suggesting that, in the future, the constant use of Bti may 
lead to the emergence of resistant populations (Camacho-
Millán et al., 2017).

In this context, the present study investigated the 
toxicity, the protein content and genic content of one 
B. thuringiensis isolate against Ae. aegypti larvae, obtained 
from the restinga ecosystem, to the search for a lineage 
with genetic variability greater than Bti.

2. Material and Methods
2.1. Study area

The collections were performed between August and 
September 2014, in three cities located at Maranhão’s 
seacoast, Brazil: São José de Ribamar, Raposa and São Luís. 
The cities are formed of restinga and mangrove ecosystems. 
Restinga are a typical kind of vegetation of the tropical and 
subtropical coast areas, with sandy soil (Serra et al., 2016). 
The mangrove is made of a vegetation with fluviomarine 
influence, exhibiting oily soils from estuarine regions and 
discontinuous dispersion (Brasil, 2018).

2.1.1. Collection, isolation and identification of Bacillus 
thuringiensis

Fifteen samples of soils from the restinga and the 
mangrove ecosystems, were collected for the isolation of 
B. thuringiensis. The collection points were georeferenced 
using the GPS (Global Positioning System) and the collects 
of soil, isolation, identification of B. thuringiensis were 
realized according to Soares-da-Silva et al. (2017). All the 
strains of B. thuringiensis are stored in the Entomopathogenic 
Bacilli Bank of Maranhão (BBENMA), located in Caxias 
City, Maranhão, Brazil. The isolates were labeled using 
the standard BBENMA nomenclature, being identified as 
BtMA (Bt for B. thuringiensis and MA for Maranhão), 
followed by the identification number of the isolation.

2.2. Bioassays
To determine pathogenicity against larvae of Ae. aegypti, 

100 isolates of B. thuringiensis (50 from restinga ecosystem 
and 50 from mangrove ecosystem) were grown in liquid 
T3-medium (Bacto-tryptone, 1.5 g; Bacto-tryptose, 1 g; yeast 
extract, 0.75 g; MnCl2, 0.0025 g; and 50 mM phosphate 
buffer, pH 6.8, 0.5 L) in 250 mL Erlenmeyer flasks for 5 
days at 180 rpm and 28 °C, for complete sporulation and 
release of the crystal proteins. After that, the suspensions 
were used to prepare suspensions by serial dilution 
(10−1 and 10−2). The 10−2 suspension was counted using a 
Neubauer hemocytometer, to standardize a concentration 
of 1×108 spores/mL. Three replicates of each isolate were 
prepared in plastic cups containing 10 mL of distilled 
water, 10 third-instar larvae of Ae. aegypti and 1 mL of 
the suspension of bacillus. For each bioassay, a replicate 
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with no bacteria was prepared as the negative control. 
After 24 hours and 48 hours of the bacillus suspension 
addition, larval mortality was verified by counting living 
and dead larvae, being considered as dead the totally inert 
larvae. The larvae that did not move when touched with 
a sterile stick were considered dead (Costa et al., 2010).

For quantitative bioassays to the determination of LC50 and 
LC90, only one isolate, that caused 100% of mortality in 
the pathogenicity assays, were grown in NYSM medium 
incubated at 28 °C for 5 days, at 180 rpm, for complete 
sporulation and release of the crystal proteins. The obtained 
cultures were centrifuged at 10,000 x g for 30 min at 4 °C, 
washed with autoclaved distilled water, frozen, and 
lyophilized for approximately 16 h (Santos et al., 2012). 
Quantitative bioassays were performed according to the 
recommendations guidelines for laboratory and field testing 
of mosquito larvicides (WHO, 2005).

Initially, ten concentrations (0.04, 0.03, 0.02, 0.01, 
0.008, 0.005, 0.004, 0.003, 0.002, 0.001 mg/L) were tested. 
For each concentration, three replicates were done and for 
each replicate, one negative control was done. The strain 
Bti T04001 (Laboratory of Genetics of Bacteria, UNESP 
- Jaboticabal, SP) was used as positive control, testing for 
the same conditions of the other strains of B. thuringiensis. 
The bioassays were monitored at intervals of 24, 48, 
and 72 hours after the application of B. thuringiensis.

2.3. Statistical analyses
The B. thuringiensis index was calculated according 

to Hossain et al. (1997). Mortality data were corrected 
using the mortality in the control treatment (Abbott, 1925), 
which was always < 10%. After this correction the data 
were submitted to Probit analysis at P < 0.05 (Finney, 
1971) through the statistical program POLO-PLUS (LeOra 

Software Company, 2003, Petaluna, USA) for determination 
of LC50 and LC90.

2.4. DNA extraction and PCR analysis
The InstaGene Matrix kit (Bio-Rad, São Paulo, SP, 

Brazil) was used to extract the genomic DNA, following the 
manufacturer’s instructions. The PCR technique was used 
to detect the larvicidal presence (for dipterous), cry4Aa, 
cry4Ba, cry10Aa, cry11Aa, cry11Ba, cyt1Aa, cyt1Ab, 
cyt2Aa and chi genes in the B. thuringiensis isolate that 
caused higher mortality for larvae of Ae. aegypti (Table 1).

The PCR assays were run in a final volume of 25 μL, 
containing 1X buffer, 2 mM MgCl2, 0.2 mM dNTPs, 1.0 μM 
of each primer, 1 U Taq DNA polymerase, and 2.0 μL of 
the DNA template. The standard Bti T04001 was used as 
a positive control, and for the negative control, the DNA 
was replaced by ultrapure water. The genes were amplified 
in a Gencycler-G96G thermocycler (Biosystems, Curitiba, 
PR, Brazil).

To genes cry and cyt, the initial denaturation 
was 5 min at 94 °C, followed by 35 cycles of 1 min 
at 94 °C for denaturation, 30s at 50-53 °C for annealing, 
and 1 min at 72 °C for polymerization, with a final extension 
of 7 min at 72 °C. Initial denaturation was 5 min at 94 °C, 
followed by 35 cycles of 1 min at 94 °C for denaturation, 
30 s at 50-54 °C for annealing, and 1 min at 72 °C for 
polymerization, with a final extension of 7 min at 72 °C. To 
gene chi the initial denaturation was 5 min at 94 °C, 
followed by 30 cycles of 1 min at 94 °C for denaturation, 
1 min at 45 °C for annealing, and 1.5 min at 72 °C for 
polymerization, with a final extension of 10 min at 72 °C.

Following amplification, 3 μL of the PCR product was 
mixed with 3 μL of blue/orange Loading Dye (Promega, São 
Paulo, SP, Brazil) and run in a 1% agarose gel containing 

Table 1. Primers sequences used in the PCR to amplify cry, cyt and chi genes of Bacillus thuringiensis in the strain with toxic 
activity against Aedes aegypti, the size of the target fragment, and the annealing temperature.

Genes Sequence FS (bp) T (°C)
cry4Aa* 5’-GGGTATGGCACTCAACCCCACTT 777 50

3’-GCGTGACATACCCATTTCCAGGTC
cry4Ba* 5’-GAGAACACACCTAATCAACCAAT 347 52

3’-GCGTGACATACCCATTTCCAGGTC
cry410A* 5’-ATTGTTGGAGTTAGTGCAGG 995 48

3’-AATACTTTGGATGTGTCTTGAG
cry11A* 5’-CCGAACCTACTATTGCGCCA 470 50

3’-CTCCCTGCTAGGATTCCGTC
cry11Ba* 5’-CCGAACCTACTATTGCGCCA 608 52

3’-TGTTCCTTTACTGCTGATAC
cyt1Aa* 5’-AACTCAAACGAATAACCAAG 300 53

3’-TGTTCCTTTACTGCTGATAC
cyt1Ab* 5’-AAGCAAGGGTTATTACATTACG 698 54

3’-CCAATACTAAGATCAGAGGG
cyt2Aa* 5’-GCATTAGGAAGACCATTTG 361 53

3’-AAGGCTAAGAGTTGATATCG
chi# 5’-ATGGTCATGAGGTCTC 2027 45

3’-CTATTTCGCTAATGAGC
FS (bp): Fragment size in base pairs; T: Temperature. *Primers designed by Costa et al. (2010); #Primers designed by Lin and 
Xiong (2004).
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GelRed charged at 90 V, in a TBE 1X (Tris/Borate/EDTA) 
solution at a basic pH. A 1kb DNA Ladder (Promega) was 
used as a marker of molecular weight. The amplification 
products were visualized and photographed under UV 
light (L-PIX EX Loccus photodocumentator system, São 
Paulo, SP, Brazil).

2.5. Protein characterization of Bacillus thuringiensis 
isolate

The proteins were extracted according to the protocol 
of Lecadet et al. (1992) and stored in a protease inhibitor 
solution at -20 °C. The samples were prepared using 25 μL 
of the spore/crystal complex, to which 25 μL of sample 
buffer (0.5M Tris-HCl pH 6.8, 25% glycerol, 1% blue of 
bromophenol, 10% SDS and 1% β-mercaptoethanol) was 
added. This mixture was then boiled at 100 °C for 10 min. 
An aliquot of 40 μL was extracted from sample and run in 
a 12% polyacrylamide gel alongside a standard Broad Range 
Protein Molecular marker (Promega, São Paulo, SP, Brazil) 
as a reference for the determination of the molecular weight 
of the proteins. The protein profile of the B. thuringiensis 
isolate was obtained by denaturing sodium dodecyl sulfate 
polyacrylamide gel for electrophoresis (SDS-PAGE 12%) 
(Laemmli, 1970). Bti T04001 standard was used as positive 
control. The sample was obtained by growing the isolate in 
nutrient agar, kept for five days in a bacteriological growth 
oven at 28 °C. The electrophoresis was run in a vertical 
system (Kasvi) filled with 1x run buffer (25 mM Tris-base, 

35 mM SDS and 1.92 mM glycine) and charged at 150 V 
for 2:30 h. After the run, the gel was stained in Comassie 
Brilliant Blue solution (50% methanol, 10% acetic acid 
and 0.1% Comassie Brilliant Blue R-250) for 1 h at room 
temperature, and then discolored in a 4:1 methanol: acetic 
acid solution for 24 h, until visualization of the protein 
bands corresponding to the toxins. The gel was digitized 
and analyzed for the presence of proteins of interest, 
that is, those with insecticidal potential, based on the 
published data.

3. Results

Of the 15 samples, 284 bacterial colonies were isolated, 
of which 232 (81.7%) were identified as B. thuringiensis. 
Of this total, 110 (47.4%) were from the restinga soil 
and 122 (52.6%) from the mangrove soil (Table 2). 
The highest number of isolates of B. thuringiensis per 
sample was verified in samples seven and fourteen from 
the cities of São Luís (30) and Raposa (31), respectively. 
The B. thuringiensis colonies index varied from 0 to 1.0, 
with an overall average of 0.80 (Table 2).

Of the 100 isolates of B. thuringiensis, only the BtMA-
750 isolate presented pathogenicity (100% in less than 24 hours) 
against Ae. aegypti larvae and underwent toxicity tests. The data 
on concentration-mortality fit the probity model (χ2 was not 
significant, P > 0.05) (Table 3) and the LC50 was obtained 
at 0.004 mg/mL and CL90 at 0.010 mg/mL (Table 3). Compared 

Table 2. Bacillus thuringiensis isolates index obtained from soil samples from the restinga and mangrove ecosystems of 
three cities in the state of Maranhão.

Ecosystem Soil Sample City nBC1 nBtC2 Bt index3 (%)
Restinga 1 São José de Ribamar 33 20 0.60

2 São José de Ribamar 16 16 1.00
3 São José de Ribamar 4 0 0.00
4 São José de Ribamar 2 1 0.50
5 São José de Ribamar 2 0 0.00
6 São Luís 25 24 0.96
7 São Luís 30 30 1.00
8 São Luís 30 19 0.63

Mangrove 9 São José de Ribamar 18 18 1.00
10 São José de Ribamar 5 4 0.80
11 São Luís 22 20 0.90
12 Raposa 25 25 1.00
13 Raposa 1 1 1.00
14 Raposa 31 31 1.00
15 Raposa 40 23 0.57

Total 284 232 0.81
1Number of Bacterial Colony; 2Number of Bacillus thuringiensis Colony; 3Bacillus thuringiensis isolates index calculed by 
n(BtC/BC)*100.

Table 3. Lethal concentrations LC50 and LC90 in mg/L of isolate BtMA-750 pathogenic to Aedes aegypti.
Isolates N1 Slope ± SE2 LC50 (CI 95%)3 LC90 (CI 95%)3 Χ2 (DF)4

Bti T04 0015 1.000 2.03±0.09 0.003 (0.002-0.004) 0.012 (0.009-0.018) 6.68(3)
BtMA-750 1.000 3.74±0.18 0.004 (0.003-0.005) 0.010 (0.008-0.012) 7.52(3)

1Total number of tested insects; 2Slope±Standard Error; 3Confidence Intervals; 4Chi-square and degrees of freedom; 5Bacillus 
thuringiensis var. israelensis T14 001.



Vieira-Neta, M.R.A. et al.

Braz. J. Biol., 2021 , vol. 81, no. 4 pp.872-880876   876/880

to the LC50 and CL90 found for Bti T14 001 (0.003 mg/mL 
and 0.012 mg/mL, respectively), it is observed that this 
values were very close (Table 3), which suggests the 
potential of the BtMA-750 isolate to be applied in the 
biological control of vectors.

The molecular analysis showed that the BtMA-
750 isolate amplified for all nine genes cyt1Aa, cyt1Ab, 
cyt2Aa, cry10Aa, cry11Aa, cry11Ba (Figure 1A), cry4Aa, 
cry4Ba (Figure 1B) and chi (Figure 1C), with expected band 
sizes. As for the protein profile, proteins of molecular mass 
of 140 kDa and 72 kDa were observed, being compatible 
with the size of Cry4 and Cry11, respectively. Regarding 
the Cyt class, the isolate showed proteins of molecular 
mass less than 50kDa similar to Cyt1 and Cyt2 toxins 
(Figure 2). It can be verified that the BtMA-750 isolate 
presented a protein profile similar to that of the reference 
strain; however, a band bigger than 150kDa was verified 
for the isolate (Figure 2).

4. Discussion

The soil is the most used substrate for the isolation of 
B. thuringiensis (Soares-da-Silva et al., 2015; Lobo et al., 
2018). In the present study, the soil of the mangrove and 
restinga ecosystems showed a potential to obtain this bacilli, 
with high variation of the B. thuringiensis index regarding 
the soil samples of the ecosystems of which they were 
isolated, being the average B. thuringiensis index of 0.81.

This index showed that the restinga and mangrove 
soil had the potential to prospect the B. thuringiensis. As a 
ubiquitous bacterium, B. thuringiensis has been recorded 

Figure 1. Amplification products obtained for isolate BtMA-750 active to Aedes aegypti using the primers: cyt1Aa, cyt1Ab, 
cyt2Aa, cry11Aa, cry11Ba e cry10Aa (A), cry4Aa, cry4Ba (B) and chi (C). CP: positive control; CN: negative control; MM: 
molecular marker (1 Kb DNA Ladder).

Figure 2. SDS-PAGE protein profile from active isolate 
BtMA-750 against Aedes aegypti. MM: molecular weight 
marker; Bti: Bacillus thuringiensis var. israelensis T14 001.
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as distributed in the soil of all types of habitats. However, 
most of the research report B. thuringiensis index lower 
than that shown in the present study. Soares-da-Silva et al. 
(2015) obtained only 11.8% of B. thuringiensis isolate’s 
occurrence in loamy and sandy soils in the Amazon region 
and Lobo et al. (2018) reported 31.26% of B. thuringiensis 
isolate in Savannah forests’ soil, which are acid and have low 
nutrients availability (Lopes and Cox, 1977; Lopes, 1996).

The B. thuringiensis’ isolates index variation from the 
soil samples may be related to the soil’s chemical proprieties, 
such as type of nutrients, acidity and soil oxygenation, 
that can influence the B. thuringiensis prospection and 
the bacterium’s toxins production (Yao et al., 2002; 
Polanczyk et al., 2009).

Despite the high B. thuringiensis index, a few isolates 
showed high toxicity to Ae. aegyti larvae. Therefore, several 
studies are frequently performed aiming to isolate strains 
with high toxicity and greater genetic variability regarding 
the B. thuringiensis var. israelensis pattern (Soares-da- 
Silva et al., 2015; Lobo et al., 2018; Zghal et al., 2018).

However, interestingly, despite the restinga ecosystems’ 
soil to be sandy, chemically poor and has as its main 
source of nutrients the seawater (Leão and Dominguez, 
2000; Almeida Júnior et al., 2009), it was from a sample 
of this soil, the isolate BtMA-750, the high potential for 
the control of Ae. aegypti.

The toxic potential of the BtMA-750 isolate, similar to 
the Bti T04 001 standard strain, is related to the presence of 
the cry and cyt genes (cry4Aa, cry4Ba, cry10Aa, cry11Aa, 
cry11Ba, cyt1Aa, cyt1Ab and cyt2Aa), which was confirmed 
by protein content analysis, in which it was possible to 
verify proteins with molecular mass similar to the toxins 
Cry4, Cry11 and Cyt, that are codified by these genes.

This combination of toxins is highly lethal for different 
species of mosquitoes, and is reported to act in synergism 
in mosquito larvae of medical importance (Pérez et al., 
2005). Cry4A and Cry4B proteins are widely reported 
in isolates that exhibit toxic activity against mosquito 
vectors, but Cry4Ba is highly toxic to Aedes larvae, while 
Cry4Aa is less toxic (Beltrão and Silva-Filha, 2007; 
Campanini et al., 2012).

The Cry10Aa toxin presents high toxicity for Ae. 
agypti, when it acts synergistically with the toxin Cyt1Aa. 
Cry11Aa is also highly toxic for the gender of mosquitos 
Aedes and Culex, lower for Anopheles (Revina et al., 2004; 
Hernández-Soto et al., 2009). B. thuringiensis isolates that 
are toxic for Ae. aegypti frequently presented the cry11Aa 
gene (Costa et al., 2010).

The larvicidal activity of the Cyt1Aa toxin is low 
against mosquito larvae. However, Pérez et al. (2005) 
and Hernández-Soto et al. (2009) reported that this toxin 
has the ability to act in synergism with the Cry proteins, 
which improves the insecticidal potential of the isolates that 
express these proteins. The Cyt1Aa toxin has the property 
of inserting itself directly into the cell membrane, without 
being mediated by specific receptors; in this way, this toxin 
acts as a receptor molecule of the Cry toxin. Evidence has 

shown that the synergism between Cry11Aa and Cyt1Aa is 
of high toxicity to Ae. aegypti larvae (Pérez et al., 2005).

In this way, Cyt toxins not only increase the toxicity of 
certain Cry toxins, but also play a critical role in delaying 
selection for resistance to Bti’s Cry proteins (Soberón et al., 
2018). The Cyt2Aa protein also exhibits high synergistic 
activity with Cry proteins (Promdonkoy et al., 2005). 
The co-expression of the toxins Cry4Ba and Cyt2Aa, made 
by Escherichia coli, enhanced the toxicity for Ae. aegypti 
and Culex quinquefasciatus, demonstrating high synergic 
activity between the toxins (Promdonkoy et al., 2005).

The presence of the chi gene in the BtMA-750 isolate 
may be contributing to the toxicity of this isolate, because 
this gene encodes the chitinase enzyme (damaging the 
peritrophic membrane), which is another mechanism of 
insecticidal action of B. thuringiensis and may be acting 
in synergism with δ-endotoxins increasing their toxicity 
(Juárez-Hernández et al., 2015).

The BtMA-750 isolate presented dipteran-specific genes 
which are responsible for encoding insecticidal toxins. 
These genes are found in Bti, which is the most efficient 
strain used in formulations to control this mosquito in 
different parts of the world (Ben-Dov, 2014; Sajid et al., 
2018; Soberón et al., 2018). These findings show that 
BtMA-750 is promising to be used in the biological control 
of mosquito vectors.

Therefore, it is of extreme relevance the continuous 
search for new isolates in the attempt to control the 
diseases whose vector is Ae. aegypti. The production of 
biopesticides formulations from lineages that are adapted 
to the conditions of each region would provide a highly 
efficient and low-cost product, and is a viable alternative 
to reduce the use of chemical insecticides that are harmful 
to man and environment, which is a problem extensively 
discussed. Therefore, it is of extreme relevance to obtain 
new isolates in an attempt to control Ae. aegypti.

New Israeli-based liquid formulated Bacillus thuringiensis, 
designated as BioUel, manufactured in Brazil, presented 
toxicity to Ae. aegypti and Cx. quinquefasciatus larvae 
and also presented high efficiency compared to most of the 
tested commercial products. The bio-insecticide stability 
is 90 days, approximately, therefore, its production is 
viable (Lopes et al., 2010).

As seen, the B. thuringiensis is a bacterium that is very 
efficient in controlling mosquito vectors, and prospection 
for new strains makes it possible to obtain isolates with 
greater genetic variability. The soil of the restinga and 
mangrove ecosystems of the State of Maranhão proved to 
be favorable for the prospection of B. thuringiensis isolates. 
In addition, this isolate, carrying different cry and cyt genes 
can be used to avoid resistance in Ae. aegypti in the field, 
a fact already confirmed by the excessive use of chemical 
insecticides (David et al., 2018; Dusfour et al., 2019).

In addition to the advantage of B. thuringiensis over 
chemical insecticides, it is also harmless to humans, even 
in extremely high doses. The bacterium is a biological 
insecticide highly secure (Raymond and Federici, 2017). 
However, in the present study, it was evidenced that, despite 
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of high amount of isolates gotten from soil samples, the 
number of isolates with toxicity for Ae. aegypti is relatively 
low. Therefore, the search for new strains with greater 
genetic variability is a challenging activity.

Considering the high cost for the microbial insecticides 
production, in addition to the problem related to the loss 
of effectiveness of larvicides due to climatic conditions 
in the northern and northeastern regions of Brazil, it is 
important to obtain isolates of regional B. thuringiensis, 
which can be used as a biotechnological tool, using the 
natural resources of the studied region.
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