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1. Introduction

Peacock basses (genus Cichla; Cichliformes: Cichlidae) 
are native to the Amazon, Tocantins and Orinoco basins, as 
well as Atlantic-slope rivers of the Guianas and Suriname 
(Kullander and Ferreira, 2006). They are non-migratory 

carnivorous fish, with parental care, as they build nests 
and protect their offspring (Gomiero et al., 2009). They are 
among the most frequently introduced species in Brazil for 
sport fishing in reservoirs, lakes and rivers (Gomiero and 
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Hashimoto et al., 2016). Mitochondrial markers such as 
cytochrome c oxidase subunit I (COI), 16S ribosomal DNA, 
and control region (CR), are widely used as molecular 
tools to aid in the identification of freshwater fish species 
(Cheng et al., 2012; Pereira et al., 2013; Quraishia et al., 
2015; Saad, 2019).

The purpose of this study was to determine if one or 
more species of Cichla have been introduced into reservoirs 
of the basin using morphometric and genetic data.

2. Material and Methods

2.1. Ethics statement

All biological material used in this research came from 
artisanal fishery and data were collected at landing ports. 
No live specimen was kept in captivity or manipulated. 
Therefore, no ethical approval was necessary.

2.2. Fish sampling and identification

The samples were obtained after the fish were caught 
by artisanal fishermen, at landing sites in three reservoirs, 
Moxotó, Delmiro Gouveia and PA IV, located in the 
submiddle stretch of the São Francisco River (Figure 1).

Species identification was based on coloration, 
meristics, and morphological characteristics including 
presence/absence or placement of bars and spots on 
the body, lateral line scale counts and background side 
coloration, according to Kullander and Ferreira (2006). 
The taxonomical and morphometric analysis was 
performed on 113 specimens (77 females and 36 males), 
selected according to their morphological integrity such 
as undamaged fins and complete scale cover. Nine body 
measurements were taken using a digital caliper (0.1 mm), 
and 11 meristic characters were counted (Table 1) for 
taxonomical identification, following Kullander and Ferreira 
(2006). Body depth, caudal peduncle height, head depth, 
eye diameter and interorbital distance (expressed as 
proportions of standard length (SL)), along with meristic 
data and color were compared with those presented 
by Kullander and Ferreira (2006) for the four species of 
Cichla reported for the São Francisco basin. These authors 
described the living coloration on the side of C. kelberi, 
C. piquiti, C. monoculus and C. temensis, collected in naturally 
occurring basins, as “pale grey”, “greyish”, “dull olivaceous”, 
“yellowish” and “golden”.

2.3. Molecular analysis

Based on extensive molecular data, Willis et al. (2012) 
considered only eight species: C. orinocensis, C. intermedia, 
C. ocellaris, C. temensis, C. melaniae, C. mirianae, C. piquiti, and 
C. pinima in the genus Cichla, instead of the 15 described 
by Kullander and Ferreira (2006). The C. monoculus, 
C. kelberi, C. nigromaculata and C. pleiozona were classified 
as subspecies of C. ocellaris sensu lato. In this study, C. kelberi 
and C. monoculus were considered as valid species, as 
most of the sequences of Cichla deposited in the GenBank 
followed Kullander and Ferreira (2006) classification.

Braga, 2003; Ferrareze and Nogueira, 2015; Marques et al., 
2016), as also in North America, Africa and Asia (Golani et al., 
2019; Sastraprawira et al., 2020), and represent a potential 
threat to the native fish fauna.

The introduction of species causes problems related 
to the dissemination of diseases and/or parasites and 
predator-prey interactions. For example, invasions of 
Cichla spp. in rivers and lakes of Panama have drastically 
reduced fish assemblages (Zaret and Paine, 1973), from 
which they have not yet recovered (even after 45 years) 
(Sharpe et al., 2017), and has been associated to the 
extinction of native species in the Atlantic Forest of Brazil 
(Pelicice and Agostinho, 2009; Fragoso-Moura et al., 
2016). In invasions, aspects such as history of successful 
colonization, high physiological tolerance, an ability to deal 
with anthropogenic impact on a habitat, similar conditions 
between source and recipient environment, and large 
propagule size (>100 individuals) have been described 
as key factors used to predict successful invasions (Moyle 
and Marchetti, 2006).

In the case of peacock bass invasions in reservoirs, 
environmental factors seem to favor this diurnal visual 
predator. Espínola et al. (2010) compared 63 Brazilian 
reservoirs with records of presence/absence of Cichla, 
and corroborated that the deepest, most transparent and 
warmest reservoirs were the most colonized ones. Later, 
Franco et al. (2018) examined other 12 Brazilian reservoirs 
and concluded that the abundance of Cichla was associated 
with warm temperatures and low turbidity, what is due 
to increased water residence time.

One of the primordial aspects when assessing peacock 
bass colonization is the taxonomic identity of the invaders, 
i.e., if there is one dominant species or a group of them. 
The genus Cichla shows an extensive phenotypic variation, 
especially related to the color pattern, which can be very 
confusing for species identification (Reiss et al., 2012; 
Quadros et al., 2020). The misidentification of several 
Cichla species introduced in different regions of Brazil 
was previously reported by Kullander and Ferreira (2006), 
such as for C. kelberi (Kullander & Ferreira, 2006), which 
was erroneously identified as C. monoculus Spix & Agassiz, 
1831 and C. piquiti (Kullander & Ferreira, 2006), due to 
the overlapping morphometric characters and similar 
coloration patterns. Molecular data could be a useful 
complement for more conclusive identification in complex 
genus, such as Cichla, due to conflicting morphometric 
and meristic characteristics.

Four peacock bass species (C. kelberi, C. piquiti, C. temensis 
(Humboldt, 1821), and C. monoculus) have reportedly been 
introduced into lakes, reservoirs, tributaries, and the main 
channel of the São Francisco River Basin (Pompeu and 
Godinho, 2003; Sato and Sampaio, 2005; Carvalho et al., 
2009). However, due to the different morphotypes found 
in this river system, it is unclear whether they represent 
multiple species or a single one.

In this context, molecular data could be a useful 
complement for more conclusive identification in complex 
genus, such as Cichla, due to conflicting morphometric 
and meristic characteristics. The use of molecular tools 
as a method of taxonomic identification of closely related 
species has been previously reported (Carvalho et al., 2009; 
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For molecular analysis, muscle samples from 
135 specimens were collected from the caudal peduncle 
of each specimen and preserved in 95% ethanol for 
subsequent extraction of genetic material. Additionally, 
four muscle samples (from naturally occurring basins) 
of C. piquiti (CP), identified as C. piquiti 01, C. piquiti 02, 
C. piquiti 03, and C. piquiti 05, and two muscle samples 
of C. kelberi, identified as C. kelberi 06 and C. kelberi 07, 
were collected from Tocantins River (TO) by Prof. Alberto 
Akama from the Museum Emílio Goeldi, Belém, Brazil. 

Furthermore, two muscle samples of C. monoculus from 
Xingu River, C. monoculus 02 and C. monoculus 03 (Xingu 
Project), and two muscle samples of C. temensis (C. temensis 
01 and C. temensis 02) from the Negro River (SUDAM – 
Proc. nº CUP 59004/00473/2013-42) were all sequenced.

Total DNA was extracted using the modified phenol-
chloroform-isoamyl alcohol method (Sambrook et al., 
1989). Three mitochondrial markers were amplified: 
Cytochrome c Oxidase subunit I (COI), 16S ribosomal 
DNA (16S), and Control Region (CR). Polymerase chain 

Figure 1. Brazilian hydrographic basins and sampling area in detail.

Table 1. Description of morphometric measurements and meristic data used.

Meristic data Longitudinal morphometric data

1st DS 1st dorsal fin spine number SL Standard length

2nd DS 2nd dorsal fin spine number BD Body depth

2nd DR 2nd dorsal fin ray number CPH Caudal peduncle height

CFR Caudal fin ray number HD Head depth

AFR Anal fin ray number ED Eye diameter

VFR Ventral fin ray number ID Interorbital distance

PFRS Pectoral fin ray and spine number PDD Predorsal distance

CPS Caudal peduncle scale number PVD Preventral distance

ALL Anterior lateral line scale number PAD Preanal distance

PLL Posterior lateral line scale number

MLL Median lateral line scale number
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reaction (PCR) amplification of COI was performed with 
the primers BarcFish11 and BarcFish2, as described by 
Ward et al. (2005). Part of the 16S and CR were amplified 
with the primers 16S-L1987 and 16S-H2909 as described 
by Palumbi et al. (1991), and L (Cronin et al., 1993), and 
H16498 (Meyer et al., 1990), respectively. Amplicons of 
650 bp (COI), 500 bp (16S) and 460 bp (CR) were purified 
with the enzymes ExoI/SAP and sequenced using a Genetic 
Analyzer (3500 Applied Biosystems, CA, USA).

2.4. Data analysis

The morphometric data were linearized in order to 
achieve a normal variance distribution, and transformed 
to eliminate allometric effects (Rohlf, 1990), using the 
equation Y*i = Yi (X0/Xi)

β, which corrected size effects; 
where Y*i = standardized morphometric measurement for 
each individual i; Yi = i-th morphometric measurement 
Y; X0 = average standard length (SL) of all individuals; 
Xi = individual standard length i; and β = allometric 
coefficient from the linearized equation logYi = logα + βlogXi, 
using the entire sample.

All morphometric data were analyzed for normality and 
homoscedasticity. Since they did not meet the parametric 
requirements, the non-parametric Kruskal-Wallis test 
was conducted in order to evaluate differences among 
types and the other four Cichla species reported for this 
river system. All analyses were made using Statistica 6.0.

The DNA sequences were edited and aligned in the 
MEGA 7 program (Kumar et al., 2016), using ClustalW 
(Thompson et al., 1994). After trimming the poor-
quality regions, final alignments of 628 bp (COI), 408 bp 
(16S) and 358 bp (CR) were obtained. The nucleotide 
sequences generated in this study were deposited in 
GenBank under the accession numbers MW248167-
MW248311 (COI), MW255385-MW255471 (16S), and 
MW251997-MW252032 (CR). GenBank sequences, whose 
specimens were taken from the naturally occurring 
basins of each species, were selected for subsequent 
comparisons. For 16S (C. kelberi FJ904290- Tocantins 
River; C. monoculus FJ904288- Solimões River and 
AF049017- Negro River; C. piquiti FJ904286- Tocantins 
River and C. temensis AF049019- Negro River; and for 
CR (C. kelberi JQ926871-JQ926872, FJ890808, FJ890812, 
FJ890813, GU295705-GU295707; C. monoculus GU295709-
GU295732 and DQ841872-DQ841899; C. piquiti JQ926783-
JQ926792 and C. temensis GU295739-GU295740 and 
DQ841909-DQ841929), all from different locations from 
the Amazonas, Orinoco, Essequibo, Maroni and Tocantins 
Rivers. In the phylogenetic trees, GenBank sequences were 
named by a combination of the species names (C. monoculus, 
C. kelberi, C. temensis and C. piquiti), followed by the last 
three digits of their accession numbers.

Phylogenetic analyses for each marker were carried out 
with Maximum Likelihood (ML) and Bayesian Inference 
(BI). The best-fit model (COI = HKY+I, 16S = TIM2+I and 
CR= HKY+I) of nucleotide substitution was identified 
using jModelTest (Posada, 2008). The selected model 
was implemented into PhyML 3.0 (Guindon and 
Gascuel, 2003) to perform ML reconstruction using the 
approximate likelihood ratio test to evaluate node support. 

Additionally, a probabilistic topology was obtained through 
Bayesian inference (BI). The BI analysis was conducted 
in MrBayes v.3.0b4 (Ronquist and Huelsenbeck, 2003) 
using 2,000,000 generations, with sampling every 
100 generations, and a burn-in of 25%. The default values 
of the program were used for the other variables. Support 
for the branches of the BI phylogenies was estimated with 
posterior probability (Huelsenbeck and Ronquist, 2001). 
Geophagus brasiliensis (Quoy & Gaimard, 1824) (KU531434) 
was used as an outgroup for the three markers, considering 
recent phylogenetic evidence (López-Fernández et al., 2010).

The distance model Kimura 2-parameter (K2P) was used 
to estimate the overall mean genetic distance for all the 
COI samples, as implemented in MEGA 7 (Kimura, 1980; 
Kumar et al., 2016). Estimation of haplotypes number, 
frequencies of haplotypes, nucleotide and haplotype 
diversity, were performed using DNAsp v.5.10.00 software 
(Librado and Rozas, 2009). The haplotype network was 
determined using the Network 4.5.6 program and calculated 
using the median-joining algorithm (Bandelt et al., 1999).

3. Results

The morphometric and meristics data overlapped 
between the four reported species for the basin and the 
sampled individuals (Table 2), as well as the presence of a 
conflicting pigmentation pattern in the latter made their 
taxonomic identification unclear. Two distinct patterns 
of color and pigmentation were identified in the sampled 
individuals, what might suggest the presence of more than 
one species. Therefore, they were preliminarily classified 
into “gray-greenish” and “yellowish” types, considering 
the predominant (>50%) background side color (Figure 2).

Out of the 113 individuals included in the morphometric 
analysis, 46 (SL=170-293 mm) belonged to the “gray-
greenish” type, and 67 (SL=200-313 mm) to the “yellowish” 
type (Figure 2). The five body proportions were analyzed 
for differences between the two color types, and compared 
with the data for Cichla monoculus, C. kelberi, C. piquiti and 
C. temensis (Table 2). No significant differences were found 
for any of the body proportions analyzed between types 
alone, nor between types and the four Cichla species. Also, 
the counts of meristic data overlapped between the four 
Cichla species (Table 2).

Peacock bass specimens exhibited two color types 
and considerable morphometric variation, including 
overlapping morphological characters, which prevented 
their identification using the taxonomic keys available in 
the relevant literature. So, from this point on, all samples 
were identified by molecular analysis.

In the molecular analysis of COI, among the 
135 individuals, three haplotypes were found containing 
two polymorphic sites and two mutations. The C+G index 
was 46%, the haplotype (hd) and nucleotide (π ) diversities 
were 0.03 and 0.00005, respectively. The overall mean 
K2P distance for COI was 0.0000466, suggesting that 
samples belong to the same species. For the 16S and CR, 
the G+C index was 46.7% and 30%, respectively, and a single 
haplotype was detected in each marker.
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The topologies determined by ML and BI were identical 
for the three markers. For COI, there was a clade formed 
by individuals of Cichla sampled from the São Francisco 
River and C. kelberi from the Tocantins River basin, and 

were separated from the other species with high Bayesian 
posterior probability (BPP = 100%) and bootstrap (94%) 
support values (Figure 3). For 16S, the topology also shows 
that specimens of C. kelberi from the Tocantins River form 

Figure 2. Gray-greenish and yellowish types of Cichla collected in the reservoirs of the submiddle stretch of São Francisco River.

Table 2. Maximum, minimum and mean standard length (SL), body measurements´ proportions in relation to SL, and meristic data 
of the “yellowish” and “gray-greenish” types, Cichla monoculus, C. kelberi, C. piquiti and C. temensis. Data for Cichla spp. as reported by 
Kullander and Ferreira (2006).

Morphometric 
data

Types Cichla spp.

KW-H/p“Yellowish”
“Gray-

greenish”
C. 

monoculus
C. kelberi C. temensis C. piquiti

N (male/female) 67 (17/50) 46 (19/27) 35 10 31 20

SL Min. 172.0 44.3 48.1 45.5 65.2 48.1

Max. 315.2 343.9 275.5 375.0 298.0 275.5

Mean 261.3 200.5 212.0 193.1 192.6 212.0

BD Min. 21.1 21.2 22.0 18.2 20.9 22.0 0.6372/0.4247

Max. 28.8 29.7 25.7 21.8 23.6 25.7

Mean 22.6 24.1 23.9 19.9 22.0 23.9

CPH Min. 10.2 9.9 11.3 8.6 10.0 11.3 0.7692/0.3824

Max. 12.5 12.6 12.3 11.3 12.1 12.3

Mean 11.2 11.1 11.6 9.9 11.1 11.6

HD Min. 19.9 27.1 28.7 21.3 20.9 28.7 0.9851/03232

Max. 29.6 34.6 33.7 27.3 23.6 33.7

Mean 29.8 30.6 32.0 24.5 22.0 32.0

ED Min. 6.0 6.8 7.4 6.0 6.7 7.4 1.5514/0.2157

Max. 6.8 11.3 11.0 10.5 11.2 11.0

Mean 6.3 8.5 8.2 7.8 7.9 8.2

ID Min. 8.8 7.7 7.9 6.2 6.9 7.9 0.1619/0.6874

Max. 9.6 9.9 9.7 8.0 8.1 9.7

Mean 9.2 8.8 8.9 7.0 7.5 8.9

Meristic 
Data

1st DS 14-16 15-16 15-16 15-16 14-16 15-16

2nd DS 31-33 31-33 32-33 31-33 31-33 32-33

AFR 11-12 10-12 11-12 10-12 11-12 11-12

PFRS 13-14 13-14 13-14 14-16 14-15 13-14

ALL 37-51 35-51 40-48 - 42-56 40-48

PLL 32-38 31-39 30-38 - 32-41 30-38

MLL 71-81 70-79 76-83 88-109 78-104 76-83

Abbreviations as in Table 1.
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a highly supported clade, with São Francisco River samples 
(BPP = 70% / bootstrap= 95%) separated from the other Cichla 
species (Supplementary material, Figure S1). Likewise, 
for CR, the topology consisted of a main clade made of 
São Francisco River samples and C. kelberi from Tocantins 
River (BPP = 99% and bootstrap = 100%) (Supplementary 
material, Figure S2).

4. Discussion

The sampled peacock bass and the four Cichla species 
previously reported for the São Francisco River (Pompeu 
and Godinho, 2003; Sato and Sampaio, 2005; Carvalho et al., 
2009), exhibited considerable overlapping morphometric 
variation and pigmentation patterns, limiting their clear 
identification. However, all the 135 individuals were 
grouped in a well-supported clade with C. kelberi for the 
three mtDNA markers.

The dramatic lack of diversity in terms of number of 
haplotypes observed among the 135 individuals of C. kelberi 
for the three markers offers evidential support of a founder 
effect derived from a single maternal lineage. The founder 
effect hypothesis is reinforced by the fact that in regions 
of natural occurrence of C. kelberi, five haplotypes of CR 
were observed in a sample of five individuals collected 
in São Felix do Araguaia, while three haplotypes were 
detected in three individuals taken in Tucuruí Reservoir, 
both belonging to the Tocantins basin (Marques et al., 2016). 
This level of intraspecific variation of CR in the natural 
habitat contrasts with the single haplotype recovered in 
the reservoirs of the São Francisco River derived from a 
single invasive maternal ancestor. Our results endorse the 
difficulty in accrediting genetic diversity for this invasion 
success. Hence, in this case the colonization success may 
rely on other factors, such as environmental ones.

The colonization of C. kelberi in the reservoir cascade 
of the submiddle stretch of the São Francisco River may 
have benefited from the reduction in water turbidity 
(Santos et al., 2018), favouring visual predators such as the 
peacock bass. Espínola et al. (2010), Franco et al. (2018) and 
Franco et al. (2021) have highlighted that abiotic variables, 
such as warmer temperature, lower turbidity and higher 
transparency benefit the invasibility of reservoirs by 
Cichla. Moreover, the construction of the studied reservoirs 
(Moxotó, Delmiro Gouveia and PA IV) within a stretch of the 
São Francisco River, isolated by river damming, led to the 
local extinction of some endemic rheophilic top predators, 
such as the dourado Salminus franciscanus (Lima & Britski, 
2007) and the surubim Pseudoplatystoma corruscans (Spix 
& Agassiz, 1829) (Sato and Godinho, 2003), that could have 
potentially preyed on juvenile forms of Cichla.

Control strategies could be implemented to reduce the 
C. kelberi population in the São Francisco River, such as 
encouragement of underwater sport fishing targeting this 
species, with the creation, for example, of an ecotourism 
plan. Moreover, the catching of this species could be opened 
during the closed reproduction season, when the peacock 
bass becomes a voracious predator of juveniles of the 
native threatened migratory fish species. The restocking 
of native top predators from the São Francisco River Basin 
in these reservoirs could be implemented to reduce C. 
kelberi populations. However, these activities require public 
policies and academic studies to support management 
plans that could control their population size.

The three molecular markers (COI, 16S rRNA and CR) 
used in this study were essential in the identification and 
elucidation of the two color types found in reservoirs of the 
São Francisco River, which were actually a single species, 
the C. kelberi (C. ocellaris sensu lato). This study highlighted 
the fact that studies focusing on species of Cichla should 
rely on a detailed molecular analysis, as past studies were 

Figure 3. Bayesian consensus tree reconstructed based on sequences of Cichla individuals from the submiddle stretch of São Francisco 
River and reference sequences for COI. Haplotype network using median-joining method. Circles represent haplotypes and diameter 
represents frequency of haplotype.
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apparently unable to correctly identify specimens at the 
species level. Other invasions of C. kelberi, were confirmed 
by molecular markers, in a lake and in reservoirs of other 
hydrographic basins (Marques et al., 2016; Santos et al., 
2016; Diamante et al., 2017). Future study should answer 
the question whether this species is dominant over other 
congeners’ species in their establishment success or if it 
is inherent to that genus.
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Supplementary material

Supplementary material accompanies this paper.
Figure S1. Bayesian consensus tree reconstructed based on sequences of Cichla individuals from the submiddle 

stretch of the São Francisco River and reference sequences for 16S rDNA. GenBank reference sequences were named 
as C. monoculus, C. temensis, C. kelberi and C. piquiti, followed by the last three digits of accession number.

Figure S2. Bayesian consensus tree reconstructed based on sequences of Cichla individuals from the submiddle 
stretch of the São Francisco River and reference sequences for Control Region. GenBank reference sequences were 
named as C. monoculus, C. temensis, C. kelberi and C. piquiti, followed by the last three digits of accession number.

This material is available as part of the online article from https://www.scielo.br/j/bjb


