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Abstract
Most of the treatment strategies for tumors and other disorders is photodynamic therapy (PDT). For several years, 
increasing the efficiency of nanostructured treatment devices, including light therapy, has been considered in 
different treatment methods. Light Dynamics The use of nanomaterial in this method’s production and progress. 
The use of nanoparticles as carriers is a promising accomplishment, since all the criteria for an ideal photodynamic 
therapy agent can be given with these nanomaterials. The kinds of nanoparticles that have recently been used 
in photodynamic therapy are mentioned in this article. Latest advancements are being explored in the use of 
inorganic nanoparticles and biodegradable polymer-based nanomaterial as carriers of photosynthetic agents. 
Photosynthetic nanoparticles, self-propagating nanoparticles, and conversion nanoparticles are among the 
successful photodynamic therapy nanoparticles addressed in this report.
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Resumo
A maioria das estratégias de tratamento para tumores e outros distúrbios consiste na terapia fotodinâmica (PDT). 
Por vários anos, observou-se o aumento da eficiência de dispositivos de tratamento nanoestruturados, incluindo 
terapia de luz, que tem sido considerada em diferentes métodos de tratamento. Desse modo, este trabalho visa 
analisar a utilização de nanomateriais na produção e evolução deste método. A utilização de nanopartículas como 
carreadores é uma conquista promissora, pois todos os critérios para um agente de terapia fotodinâmica ideal 
podem ser obtidos com esses nanomateriais. Os categorias de nanopartículas que têm sido utilizados recentemente 
na terapia fotodinâmica são mencionados neste artigo. Os últimos avanços estão sendo explorados na utilização 
de nanopartículas inorgânicas e nanomateriais à base de polímeros biodegradáveis como portadores de agentes 
fotossintéticos. Nanopartículas fotossintéticas, nanopartículas autopropagantes e nanopartículas de conversão 
estão entre as nanopartículas de terapia fotodinâmica bem-sucedidas abordadas neste trabalho.

Palavras-chave: terapia fotodinâmica, nanoestruturada, fotossensibilizador, fotossíntese, polímero.
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Hematoporphyrin derivative photosynthesizer - 
HPD American-Canadian drug Photofrin (Pf) was first 
used in bladder, esophageal, and lung cancers (Néel, 
1947; Herzer, 1996). This is the first-generation Ps of 
a mixture of multicopying, which due to the limited 
selective accumulation in the tumor tissue, the ratio of 
its accumulation in the target tissue to healthy tissue is 
negligible (Ogi et al., 2016, 2017; Kartikowati et al., 2016a). 
It is a relatively long time (one month) after treatment 
that the patient is forced to endure a certain light regimen, 
something that is significantly reduced in second-
generation drugs (chlorines) with 48-hour urination 
(Ogi et al., 2016; Suhendi et al., 2015). Bio nanotechnology 
has opened up new avenues for photodynamic therapy. 
Photodynamic therapy is the use of a light-sensitive 
drug (a photosynthesizer), along with light at visible 
wavelengths, to destroy target cells (Kreibig and Vollmer, 
1995; Mie, 1908). Therapeutic photodynamics, or PDT, is 
now recognized as the hallmark of clinical treatment for 
various diseases, such as cancer, and especially for the 
treatment of superficial tumors. Because the efficiency of 
PDT is attributed to the amount of unique 1O2 production, 
two different nanoparticle utilization strategies can be 
pursued. One of these two strategies is biodegradable 
nanoparticles, from which the photosynthesize is released 
(Lee and El-Sayed, 2005; Gans, 1915; Her et al., 2017; 
Gomez et al., 2014). They are free. Another remaining 
limitation of PDT is the limited penetration of light into 
tissues. The absorption of two photons raises hopes for 
light penetration, as this allows two photons of laser 
energy to be used to generate excitation.selected studies 
of localized cancer or precancerous disorders are shown 
in Table 1.

2. Treatment Mechanism with Photodynamic 
Therapy

Photodynamic therapy’s molecular mechanism is 
based on the three non-toxic components that achieve 
the desired effects inside pathological tissues only with 
reciprocal interactions between (Petryayeva and Krull, 
2011; El-Sayed, 2001; Link and El-Sayed, 1999; Pérez-
Juste et al., 2005):
• Photosensitizer (PS);
• Light with the required wavelength;
• Oxygen dissolved in cells.

The photodynamic reaction has two major pathways. 
Both are closely dependent within cells on oxygen 
molecules (Liu et al., 2014; Chen et al., 2008; Pitsillides et al., 
2003). There is a common first step to both processes. 
After entering the cell, a photosensitizer is irradiated 
with a light wavelength coinciding with the spectrum of 
PS absorption and is transformed from the singlet specific 
energy state S1 due to the absorption of the photon into the 
excited singlet state S1 (Karakoçak et al., 2016; Pan et al., 
2007; Misawa and Takahashi, 2011). Part of the energy is 
radiated in the form of a fluorescence quantum, and the 
remaining energy is guided to the excited triplet state 
T1 with a photosensitizer molecule - the proper therapeutic 
form of the compound (Figure 2).

1. Introduction 

Light therapy has been a non-invasive, effective and 
modern treatment for about two decades that has opened 
its place in the treatment of some cancer and non-cancer 
diseases (Yoo et al., 2016; Ling and Hyeon, 2013; Nie et al., 
2013; Yamada et al., 2014; Meisen and Kathrein, 2000). 
This method is based on the interaction of two factors, 
the first factor is sensitive to Light (Ps) which has two 
basic properties (Yavuz et al., 2006; Lee et al., 2015a; 
Wang et al., 2007). The first characteristic is the ability to 
selectively absorb in atypical cancer cells  (tumor tissue), 
while in adjacent healthy cells, absorption is almost 
non-existent (or so low that it is not considered) and the 
second characteristic is the formation of photo biochemical 
interactions due to long-term radiation (Jun et al., 2005; 
Huber, 2005; Ozel and Kockar, 2015). A specific wave 
(depending on the type of substance Ps) of radiation 
(mainly laser) is the basis of occupational therapy. In this 
way, with irradiating light with appropriate wavelength 
(as a second factor) to Ps, the light molecule absorbs and 
is excited and then returns to the ground state to emit 
radiation, but most Ps have a weak fluorescence, so with 
an electron spin conversion to triple and this causes the 
transfer of energy to oxygen or surrounding molecules that 
later react with oxygen (Butler and Banerjee, 1975; Leslie-
Pelecky and Rieke, 1996; Kim et al., 2009; Ma et al., 2004; 
Iida et al., 2007).  These reactions lead to the formation of 
free radicals or radical ions (Santoyo Salazar et al., 2011; 
Upadhyay et al., 2016; Lee et al., 2015a; Noh et al., 2012). 
These substances then react with molecular oxygen at 
the ground state to produce the superoxide anion radicals 
of hydrogen peroxide and hydroxyl (Yoo et al., 2016). 
Interactions mentioned that this element is naturally 
present in body tissue conditions (Figure 1).

Non-toxicity, selective harvesting and maintenance with 
tumor tissue, adequate production of oxygen free radicals 
with absorbing wavelengths that can easily pass through 
the tissue, are the most important properties of the ideal 
photosynthesize (Sun and Zeng, 2002; Baumgartner et al., 
2013; Klokkenburg et al., 2004). Reactive oxygen species 
(ROS) have a half-life of 3.5 microseconds and only have 
a motility of 0.01 to 0.02 micrometers (Goya et al., 2003), 
so damage occurs depending on where ROS is produced. 
The nucleus usually remains intact and DNA damage is rare 
(Caruntu et al., 2007; Kovalenko et al., 2007; Kandasamy 
and Maity, 2015).

Figure 1. Photodynamic therapy process.
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2.1. Form I of photodynamic reaction mechanism

The photosensitizer will transfer energy to the 
biomolecules from its surroundings in the excited 
triplet state T1 (Chithrani et al., 2006; Fang et al., 2011; 
Paciotti et al., 2006; Choi et al., 2003). A hydrogen or 
electron is exchanged between the photosensitizer in 
the T1 state and the cancerous tissue (substrate), which 
contributes to the creation of the photosensitizer and 
substrate free radicals and anion radicals (Chen et al., 
2015; Patra et al., 2010; Kim et al., 2017). Electrons interact 
with molecules of oxygen that stay in their underlying 
energetic state. This approach leads to the development 
of reactive oxygen species (ROS) - initially in the form 
of anion radical superoxide (O2

•-), which produces more 
ROS generation within the cells. The initiated cascade of 
reactions leads to the death of cancer cells with oxidative 
stress (Smaisim et al., 2022a; Isola et al., 2022; Salimi et al., 
2017b; Kianfar et al., 2018a).

2.2. Form II of photodynamic reaction mechanism

Energy is passed directly to the oxygen molecule in the 
simple energetic state as a result of the photosensitizer’s 
transition into the excited triplet state (the basic triplet 

state). Since they have the same spins, direct energy 
transfers between molecules (PS x O2) is possible. This 
creates excited particles of oxygen, so-called singlet oxygen, 
characterized with exceptionally high oxidizing properties.

The bulk of organic compounds are in the simple state 
of singlet. However, their triplet state (as the basis) and 
excitation into the singlet describe oxygen molecules. 
Because of this, excited photosensitizer particles do not affect 
the structures of organic cells and only react with oxygen 
molecules dissolved in the cytoplasm (Salimi et al., 2017a).

The most important method for conditioning the 
performance of PDT is believed to be the type II system. 
However, the contribution ratio of both pathways depends 
on several factors, including: the concentration of oxygen, 
the dielectric constant of the tissue and the composition 
of pH and photosensitizer. The first type of process starts 
to prevail when the oxygen runs out.

In the photosensitized area, highly reactive oxygen 
species cause photographic damage to proteins, fats and 
other molecules. In the apoptosis and/or necrosis process, 
this leads to the direct death of tumor cells (Kianfar et al., 
2020a; Liu and Kianfar, 2020). The reciprocal contribution of 
multiple cell death forms is based on the photosensitizer’s 
intracellular position. Mitochondrial damage can lead to 

Table 1. Trials selected for localized cancer or precancerous conditions.

Condition Photosensitisers Treatment Trial type Patients

Carcinoma of the lip Temoporfin Temoporfin (0·15 mg/kg) 96 h before 
20 J/cm2 light (652 nm)

Non-randomised 
phase II trial

25

Barrett’s oesophagus Aminolevulinic acid 30 mg/kg oral aminolevulinic acid or 
placebo 4 h before laser Endoscopy. 
Total light dose 60 J/cm2 (514 nm)

Randomised, 
double blind 

placebo controlled 
trial

36

Barrett’s oesophagus Porfimer sodium 2 mg/kg porfimer sodium 48–72 h 
before laser treatment (630 nm)

Multicentre, 
partially blinded 

randomised study

208

Cervical intraepithelial 
neoplasia

Aminolevulinic acid Topical application of 3% 
aminolevulinic acid gel to cervix for 
3 h, followed with 100 J/cm2 635 nm 

laser light

Randomised, 
double blind 

placebo controlled 
trial

25

Figure 2. The Photodynamic reaction mechanism.
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apoptosis, necrosis can be triggered with cell membrane 
degradation and loss of integrity, and autophagy can be caused 
with lysosome or endoplasmic reticulum damage (Figure 3).

3. Superiority of PDT Method

Due to the selective absorption of Ps substance, 
malignant lesion destruction is selective and healthy 
tissue adjacent to the irradiated tumor is not damaged 
(Kianfar et al., 2018a, b). In addition, with using the 
adjunctive method of PDD diagnosis, which is based on 
spectrophotometry (spectroscopy). The PS is absorbed 
into the tissue, it is possible to objectively and accurately 
identify the border of cancerous and healthy tissue and 
irradiate only the cancerous part (similar to what surgeons 
do during such biopsies, with removing a margin from 
healthy tissue and is a relative and inaccurate method. 
Figure 4 shows the general principles and stages of 
photodynamic therapy.
• The treatment is very simple and almost non-invasive 

(Kianfar et al., 2020b).
• Compared to other treatment methods, this group 

of patients, namely surgery, chemotherapy and 
radiotherapy, has much fewer side effects.

• It is more economical for both the general treatment 
system and the patient.

3.1. Benefits photodynamic therapy cancer

✓ Selectivity (Kianfar et al., 2017).
✓ Little to no scar following regeneration.
✓ Lower prices relative to other treatments.
✓ Impossible for new technologies to treat metastatic 

cancers.

4. Nanotechnology for Photodynamic Therapy

In order for PDT to be both efficient and protected, 
it is important that PS be administered to target cells 
(such as tumor cells) at therapeutic amounts, whilst at 
the same time being consumed with non-target cells in 

only limited amounts, there with mitigating adverse side 
effects in healthy tissues (Chen et al., 2023; Kianfar et al., 
2020a, b). To achieve this goal, there are two major hurdles. 
Second, most PSs have expanded π-conjugation structures 
that make the molecules highly planar, although the 
molecules appear to be highly hydrophobic, so most PSs 
stack up in an aqueous atmosphere to form aggregates 
(Kianfar et al., 2020a. This process of aggregation 
decreases the PSs’ performance, which must be highly 
photoactive in monomeric form. Second, the PSs tested so 
far generally do not have a high tumor cell specificity or a 
pronounced tumor-localizing effect, rendering it difficult 
to target only the diseased tissue when PDT is applied 
(Faghih and Kianfar, 2018.Therefore, several attempts 
have been aimed at developing delivery mechanisms 
that can integrate PS in monomeric form without limiting 
its operation and without having any in vivo adverse 
effects. The ability of Nano-carriers to target tumors is 
also of great importance in PDT using nanoparticles due 
to the improved permeability and retention (EPR) effect. 
Figure 5 illustrates how the PDT effects can be potentiated 
with encapsulation of PS in nanoparticles. Many various 
lipid and detergent nanostructures are used in these Nano-
delivery systems (liposomes and micelles). In fact, before 
nanotechnology became a distinct and rapidly growing field 
of specialization , these Nano carriers were routinely used in 
PDT. (Kianfar, 2019; Kianfar, 2021). In the other side, before 

Figure 3. Photodynamic Reaction mechanism.

Figure 4. General principles and stages of photodynamic therapy.
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the nanoparticles have a chance to aggregate in the tumor, 
the PS may be released prematurely in the serum, which 
is hypothesized to occur with the improved permeability 
and retention impact (Kianfar, 2021). If biodegradable, the 
structure of the substance may be limited to lipids or such 
polymers, while no degradable nanoparticles may stay in 
the body for long periods of time, and this may contribute 
to questions about the toxicity caused with the delivery 
vehicle rather than the drug (Syah et al., 2021).

4.1. Photosynthesize (PS) for cancer

A crucial factor is known to be the photosensitizer. 
The excessive photosensitization of the skin following 
systematic administration of photosensitizer and the need for 
patient avoidance of sunlight for many weeks are a significant 
drawback of PDT. However, light avoidance is tolerable for 
the majority of cancer patients (Abdelbasset et al., 2022). 
Nonetheless, there is also a need to investigate drug delivery 
methods for localized tumors to administer photosensitizer 
locally, while enhancing clinical effectiveness, shortening 
therapy time, and finally removing skin photosensitization 
(Jasim et al., 2022; Kianfar et al., 2022a). Progress in injection 
techniques, particularly in endoscopic needle injection, can 
be anticipated to reinvigorate interest in the advancement 

of fully localized interstitial PDT procedures (Kianfar et al., 
2022a; Ansari et al., 2022; Hachem et al., 2022; Smaisim et al., 
2022b). the mixture of the injection of medications with 
light irradiation. The 2nd generation photosensitizers are 
called porphyrin derivatives or synthetics of established 
chemical structures made since the late 1980s. The light 
avoidance length of certain photosensitizers of the 2nd 
generation has been substantially decreased (e.g.<2 weeks).
Photosensitizers of the third generation typically apply to 
improvements such as biological conjugates (e.g. antibody 
conjugate, liposome conjugate) and built-in capabilities for 
photo quenching or bleaching (Kianfar, 2022; Salahdin et al., 
2022; Kianfar et al., 2022b; Isola et al., 2022; Fattah et al., 
2023).The target-specific PDT uses photosensitizers that 
combine the sensitivity of an over-expressed cell marker 
with the phototoxic properties of the conjugated PDT 
photosensitizer with the antibody-or antisense-conjugated 
photosensitizers (Kadhim et al., 2023; Al-Awsi et al., 2023). 
A quick analysis of the advantages and deficiencies of each 
is worthwhile (Table 2).

In general, the optimal photosensitizer for solid tumor 
PDT should fulfill at least some of the following criteria 
(Abderrahmane et al., 2023; Wang et al., 2022; Xiao and 
Smaisim, 2022):

Figure 5. From in vitro trials, nanotechnology could hasten the advancement of PDT science, moving on to in vivo tests, and eventually 
to clinical applications.

Table 2. Photosensitizers in Photodynamic Pulmonary Therapy.

Name
Wavelength Dose Drau to illumination 

Interval, hrnm Mg/kg

Photofrin 630 2.0 48

ALA 630 30.0 48

Foscan 660 0.15 96

MACE 664 3.0 6

Fotosens 675 1.0 24
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✓ A pure chemical which is commercially available,
✓ Low toxicity of darkness, but high photocytotoxicity
✓ Excellent selectivity against tumor cells,
✓ A longer wavelength enables greater penetration of light,
✓ Rapid removal from the body, as well as
✓ Many routes for administration (oral, intravenous, 

intratumoral or inhalational).
These requirements include a general reference guide. 

Although all or any of these requirements are fulfilled with 
some photosensitizers, there are currently only a few PDT 
photosensitizers that have earned official clearance around 
the world. Those may, but are not restricted to (Mourad et al., 
2022; Smaisim et al., 2022a; Abderrahmane et al., 2022; 
Tan et al., 2022; Mir et al., 2023; Ruhani et al., 2022; Cai et al., 
2022; Moarrefzadeh et al., 2022):
✓ Photofrin-like (630 nm, Axcan Pharma, Inc.)
✓ Levulanan (predrug of protoporphyrin IX; 630 nm, 

DUSA Pharmaceuticals, Inc.)
✓ Metvixa (predrug of protoporphyrin IX; 630 nm, 

PhotoCure ASA.)
✓ Foscan-Foscan (652 nm, Biolitec AG)
✓ Laserphyrine (664 nm, Meiji Seika Kaisha, Ltd.
✓ Visudyne’s (693 nm, Novartis Pharmaceuticals

4.3. Properties of NPT for delivery of light sensitizers

Different nanoparticles each have their own 
characteristics in terms of the type of function, but in 
general should (Hai et al., 2022; Fadhil Smaisim et al., 
2022; Smaisim et al., 2022b):
1. Have the ability to functionalize the surface for different 

chemical and biochemical groups, for example, with 
peeling (adding to the surface of PEG nanoparticles 
(polyethylene glycol) can prevent enzymatic degradation 
and microbial attacks on the sensitizer (Yang et al., 2020).

2. The surface of nanoparticles should have good porosity
3. It has a suitable size to be able to use the enhanced 

permeability and retention effect (EPR).
4. be non-immunological.
5. be optically transparent.
6. Optically more stable than in-body sensitizers (PS).
7. Have the ability to create a multifunctional system 

such as multiple therapies or diagnostics.
Since the efficiency of photodynamic therapy depends 

on the amount of oxygen produced, two strategies for 
nanoparticles in photodynamic therapy are proposed. 
(A) Degradable nanoparticles that release Ps into target 
tissues and then Ps produce unique oxygen. B) Non-
degradable nanoparticles in which a single oxygen is 
produced and then diffused (Jiang et al., 2022; Tian et al., 
2022a; Alharbi et al., 2022). Nanoparticles were first 
defined by Birrenbach and Speiser as nanoparticles and 
Nano spheres with a diameter of less than 100 nm. Interest 
in nanoparticles as drug carriers has increased in recent 
years because they can easily transport hydrophobic drugs 
into the bloodstream, and their high effective levels can 
be used to add chemical agents. These substances have 
a high volume of distribution and are effectively picked 
up with cells. In addition, they enable controlled drug 
release and have a variety of synthetic strategies for them 
(Wu et al., 2022; Tian et al., 2022a, b; Brontowiyono et al., 

2022). Specific and direct localization of sensitizers is 
also available through active targeting of Ps-containing 
nanoparticles (conjugating the receptor and other 
components). Therefore, the combination of these factors 
reduces the effective dose of light sensitizers for the 
treatment of PDT (Figure 6).

4.4. Nanoparticles used in PDT

The criteria for nanoparticle classification in PDT 
are very different. In a review article written by Kumar, 
nanoparticles are divided into active and inactive types 
depending on their involvement in the PDT process 
(Figure 7) (Mozafarifard et al., 2022):
A) Biodegradable polymer nanoparticles.
B) Non-destructible nanoparticles are divided like ceramic 

and metal nanoparticles.
Active nanoparticles according to the activation 

mechanism in the process of photodynamic therapy into 
3 groups:
A) Photosynthesizes: Nanoparticles that transfer energy 

from incident light to ambient oxygen, such as CdSe 
semiconductor nanoparticles

B) Self-illuminating nanoparticles: These nanoparticles 
are activated with x-ray radiation and activate the light 
sensitizers attached to them with light fluorescence. 
Like nanoparticles BafBr: Er +, Mn+.

C) Up converting: These nanoparticles convert low energy 
light into high energy light to sensitively stimulate the 
attached optical stump, including NaYF4 nanoparticles: 
Yb, Er / Tm.

5. Inactive nanoparticles in dynamic light therapy

5.1. Biodegradable nanoparticle carriers

However, the results of degradation of these 
nanoparticles in exogenous conditions have been reported 
differently from the in vitro conditions (Sharba et al., 
2022; Smaisim et al., 2022a; AbdulHussein et al., 2022; 
Ahamad et al., 2022; Doss et al., 2022). The main advantages 
of this type of nanoparticles are high loading of the drug, 
the possibility of controlling the release of the drug and 
the high diversity of particles and their synthesis processes 
(Lefteh et al., 2022; Al-Madhhachi and Smaisim, 2021). 
As expected, deforming the surface of these nanoparticles 
with PEG increases their circulation time. In one study, 
PLGA nanoparticles were used to create a sterile drug 
delivery system for Vertoporin, a sensitizer suitable for 
the treatment of several types of cancer, including skin. 
It is generally accepted that the mean size of nanoparticles 
can play an important role in drug therapeutic activity 
(via cell and tissue sampling depending on the size 
370 and 167 nm). In this study, it was found that smaller 
particles have a greater therapeutic effect (Smaisim, 
2017a, 2017b, 2018 Smaisim et al., 2016a). Other light-
sensitive compounds studied for PLGA nanoparticles 
include hypericin and indomethacin green (ICG). ICG is 
an FDA-approved dye used to create contrast in diagnostic 
procedures for superficial cancers, including breast and skin 
(Farahani et al., 2023; Mir et al., 2023; Wang et al., 2023a). 
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Of course, this dye is absorbed in solution at 800 nm and 
has an emission peak of 820 nm, so it has great potential 
for photodynamic therapies. Recently, the bio-dispersion of 
ICG embedded in PLGA nanoparticles (300 nm in diameter 
and loaded 20%) and free ICG in C57BL / 6 mice was shown 
and found that drug-containing nanoparticles were two 
to eight times more precipitated than free ICG They had a 
tumor. Therefore, the use of nanoparticles has increased 
the shelf life of light-sensitive compounds in tumor tissue. 
Hypersin-containing PLA nanoparticles have been used for 
photodynamic treatment of ovarian cancer and showed 

higher optical activity of hypersin loaded in nanoparticles 
than free hypersin. However, increasing the drug load on 
these nanoparticles reduces the optical toxicity at high 
concentrations (Figure 8).

5.2. Non- Biodegradable nanoparticles carriers

The function of these nanoparticles is different in PDT 
and they are not usually used for drug delivery because 
they are not destroyed and therefore cannot release the 
drug (Figure 9). Therefore, the Ps itself carried in the corn 
cannot be toxic, but produces toxic products of non-toxic 

Figure 6. Schematic diagram of fluorescence trimodality/thermal/photoacoustic imaging-guided photo thermal/photodynamic cancer 
synergistic treatment with photosensitizer (Ce6)-encapsulated plasmatic gold vesicles (GVs).

Figure 7. Schematic Polymeric Nanoparticles and Photodynamic Therapy.
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environmental molecular oxygen and acts as a catalyst and 
can be applied continuously with excitatory light. A small 
hole (pore) in a ceramic particle with a diameter of 0.1 to 
0.5 nm is very small for the drug to leave, but it is very 
suitable for the entry of O2 and the exit of 1O2. In order to 
be effective, these nanoparticles must be small in order to 
have a volume distribution parallel to the drug, and this 
requires precise size control so that the size is less than 
100 nm and preferably less than 50 nm (Wang et al., 2023a; 
Farahani et al., 2023). Ceramic nanoparticles that hold 
Ps non-covalently have several advantages over organic 
polymer particles, including resistance to pH-temperature 
changes, microbial and enzymatic attacks. Particle size-
shape-prosthesis and their particle size distribution index 
(PDI = Poly dispersity index) can be easily controlled during 
fabrication . They are produced in ambient temperature 
conditions. Their surface can be easily changed for selective 
targeting (Targeting) and these Ps particles protect the 
environment well.It should be noted that although 
biodegradable polymer nanoparticles easily release the 
drug, the efficiency of PDT depends on the production 
of 1O2, so drug release is unnecessary (Mir et al., 2023; 
Abderrahmane et al., 2023; Wang et al., 2023a; Chen et al., 
2023a; Narayanasamy et al., 2023). The half-life of 1O2 in 
aqueous medium is in the microsecond range because 
1O2 reacts rapidly. Probably the first paper published on 
ceramic nanoparticles to encapsulate Ps in PDT was on 
the use of silica nanoparticles containing the drug HPPH 
(2-devinyl-2- (1-hexyloxyethyl) pyropheophorbide. 
This study demonstrates the high potential of ceramic 
nanoparticles in PDT. HPPH is currently in phases one and 
two of esophageal cancer clinics (Tahmasebi et al., 2021; 
Taifur Rahman and Evgeny, 2014;  Suryatna et al., 2022).

In 2002, a group showed that pegylated silica (binding 
of polyethylene glycol polymer (PEG) to the nanoparticle 
surface) (which increases carrier biocompatibility) with 
small sizes has wide applications in biology. The team 
compared the spectroscopic properties between (mTHPC 
(meta-tetrahydroxyphenylchlorin) prepared with sol-gel 
method and examined free mTHPC. Among the current topics 
of interest is the combination of PDT method with other 
therapeutic and diagnostic methods. Among these studies, 
we can mention the polymer micelle system for simultaneous 

encapsulation of HPPH and Fe3O4 nanoparticles. In this paper, 
a magnetic core is used to guide the carrier to the target cells. 
Wieder has recently developed drug delivery systems based 
on gold nanoparticles that have Ps attached to the surface of 
gold nanoparticles. Phthalocyanine derivatives attached to 
nanoparticles (phthalocyanine nanoparticles) were created 
with a diameter of 2 to 4 nm. Phthalocyanine monomer in the 
form of covalently on the surface of gold nanoparticles with 
absorbing a wavelength of 685 nm catalytically increases 
the production of ROS with high efficiency. Incubation of 
nanoparticles with Hela cells showed good cell harvest and 
0.43 more cell death than free phthalocyanine (probably 
due to a 50% increase in ROS production in phthalocyanine 
nanoparticles compared to free phthalocyanine). Wieder 
and colleagues also made a comparison between gold and 
silica nanoparticles. He expected that the photosynthesizer 
on the surface of gold nanoparticles was more efficient 
than the photosynthesizer inside silica particles (regardless 
of the 1O2 emission from the particles) (Bahadoran et al., 
2022; Mahmood et al., 2022). Metal nanoparticles smaller 
in size than silica particles. Can be produced, therefore due 
to the high active surface, high photosynthesizers can bind 
to them and produce higher cytotoxicity. In a study with 
Oo , 5-ALA electrostatic bonding was used on the surface 
of gold nanoparticles (30 nm in diameter) and observed 
a 50% increase in cell death compared to free 5-ALA. 
Increased ROS production with this researcher was also 
observed. It was observed and stated that this is due to 
the transfer of near field energy from gold nanoparticles 
to protoporphyrin nanoparticle surface due to the effect of 
SPR. Also, in a study conducted with our group, in addition 
to observing the catalytic role of gold nanoparticles in the 
production of ROS, the optimal conditions for the use of gold 
nanoparticles in the ALA-PDT process were determined and 
characterized (Bokov et al., 2022; Mansoor Al Sarraf et al., 
2022; Mahmoud et al., 2022a, b; Raya et al., 2022).

5. Two–photon Excitation in PDT

The death of cells is mediated with singlet oxygen in 
PDT. Owing to its short life span (~3.5 ms in the aqueous 
environment) and its failure to diffuse longer distances 

Figure 8. Schematic Biodegradable nanoparticle carriers.
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beyond 100 nm in vivo, the region affected with singlet 
oxygen is spatially limited to a small volume. PDT is thus 
considered a comparatively safe, targeted modality of non-
invasive therapy (Meena et al., 2016; Dhanalekshmi et al., 
2019a; Dhanalekshmi et al., 2022). Currently, PDT 
treatment requires PS excitation through absorption of 
one photon. The key drawback of one photon excitation, 
with the excitation of photosensitizer present there, is the 
potential photodamage of the over and underlying tissues 
adjacent to the treated area (Dhanalekshmi et al., 2019b, 
2021). The new two-photon excitation (TPE) system of 

sensitizers overcomes the above-mentioned drawback 
with specifically controlling the amount of therapy in three 
dimensions. A closely focused femtosecond laser beam is 
used to get high fluxes of light as a light source for TPE. 
In this process, a PS molecule is concurrently excited with 
the absorption of half the energy of two incident photons 
or twice the wavelength of one excitation photon. In order 
to excite a molecule from the ground state to a higher 
energy electronic state, TPE is the mutual absorption 
of two photons at equal or separate frequencies. Two-
photon absorption at low light intensity is a third-order 

Figure 9. As regulated with hormones and nutrients, and as postulated in reaction to nanoparticles, autophagy pathways. (A) Graphical 
diagram of the simplified form of control of autophagy. PI3K1 stimulates PDK1, Akt, and mTOR, which in turn prevents autophagy and, 
for protein synthesis, activates p70S6K.(B) Schematic diagram of the pathway MEK1/Erk and its relations to mTOR and Akt. Poor may be 
dephosphorylated with Akt and p90RSK, resulting in apoptosis. Akt can also phosphorylate eNOS, resulting in apoptosis. Apoptosis can 
be caused with phosphorylated JNK. In nanoparticle studies where apoptosis is being studied, these causes are starting to be confirmed.
(C) Graphical diagram of the impact on mTOR of fasting, generation of ROS and oxidative/osmotic tension. All three inhibit mTOR and 
induce autophagy in these situations. This is believed to occur through ULK1, Atg13, and FIP200, but other autophagic pathways that 
with pass mTOR have been observed. Once activated, autophagy involves the sequestration into organelles called autophagosomes of 
a subset of the cytoplasm, which can be partly recognized with LC3-II and p62. The autophagosomes combine with lysosomes to form 
autolysosomes where, with the action of membrane permeases, the contents are degraded and released back into the cytoplasm.(D) 
Schematic diagram of a lysosome bearing spherical nanoparticles to form an autolysosome combining with an autophagosome. How 
the existence of nanoparticles in lysosomes modulates the mechanism of autophagy is unclear.
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mechanism and several orders of magnitude slower than 
linear absorption. Without modifying the photophysical and 
photochemical properties of the photosensitizer, the two 
photon absorption excites the molecule, meaning that the 
excited states achieved with one or two photon absorption 
are similar. Awareness of the cross section value of PS for 
two photon absorption helps to determine its suitability 
for biological applications. For PDT applications, high 
TPA cross-section values are favorable since the ratio of 
the radiation consumed to the tumor input-energy flux 
will be high, reducing the potential photodamage to the 
neighboring normal cells. In 2003, with zinc-imidazolyl 
coordinations, Kobuke and co-workers reported a self-
assembled conjugated porphyrin exhibiting a broad two 
photon absorption cross-section value (s(2)) of 7,600 GM, 
which was the largest of the reported values calculated 
using femtosecond pulses. This importance is greater than 
that of protoporphyrin IX or Photofrin with three or four 
orders of magnitude. Furthermore, the development of 
singlet oxygen with high toluene efficiency was found, 
suggesting a suitable candidate for TPE-PDT. For effective 
two-photon absorption, Collins and co-workers developed 
porphyrin dimmers with polar functional groups. They also 
demonstrated its in vivo PDT efficiency. Figure 10 show (a) 
Graphical illustration with type I and type II pathways of 
one or two-photon excitation mediated PDT. (b) The five 
distinct forms of PDT cancer TPE nanoparticles that will 
be presented in this study.

6. Active Nanoparticles in Photodynamic Therapy 
(Mir et al., 2023)

6.1. Photosynthetic nanoparticles

Quantum dots have long been considered as a 
nanoparticle optical probe with high quantum efficiency, 
high optical stability, and size-dependent fluorescence 
properties. These nanoparticles can be soluble in water 
or specific to specific areas and malignancies. Quantum 

dots can also transfer energy to ambient molecular 
oxygen and lead to cell death, and recently articles 
have been published on their potential for Ps (Hameed 
Mahmood et al., 2022). In a study, two-phase energy 
transfer of quantum dots of CdSe to Ps attached to these 
particles is expressed (Huang et al., 2021). The group also 
predicted the interaction of phospholipid-coated (water-
soluble) quantum dots (Figure 11). They hypothesized 
that the triplet state is the lowest energy level of the 
CdSe quantum dots and that the triplet energy transfer 
(TET) is responsible for producing 1O2 from 3O2, but in 
any case, the 1O2 production efficiency is about 5% (with 
65% efficiency). Quantum fluorescence emission has 
limited their use (Mir et al., 2023). Many efforts have been 
made to improve the efficiency of 1O2 production with 
quantum dots. These include connecting the covalent Ps 
to the quantum dots CdSe and ZnS via an organic bridge. 
These attempts had common problems, including the 
low solubility of the designed system in water, while the 
ability of quantum dots to produce toxic oxygen was not 
used in these cases (Kianfar et al., 2020a). 

Figure 10. (a) Graphical illustration with type I and type II pathways of one or two-photon excitation mediated PDT. (b) The five distinct 
forms of PDT cancer TPE nanoparticles that will be presented in this study.

Figure 11. Possible mechanisms of optical light generation in the 
photodynamic process with quantum dots.
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6.2. Self-lighting nanoparticle

A new method for treating cancer with a combination of 
radiotherapy and photodynamic therapy has been proposed, 
called SLPDT = Self lighting photodynamic therapy 
(Figure 12). In this method, scintillation luminescent 
nanoparticle nanoparticles with Ps that are covalently 
attached to their surface (such as porphyrins) have been 
used for photodynamic treatment in vivo (Mir et al., 2023). 
It should be noted that this system reduces the damage of 
this beam to healthy tissues around the target tissue with 
reducing the dose of ionizing radiation. Direct biological 
applications of this method have not yet been used. Among 
these nanoparticles, we can mention nanoparticles with 
the composition (BaFBr: Eu +, Mn+).

6.3. Up conversion nanoparticle

In general, tri-excitation luminescence materials (called 
phosphors) emit light with more energy than excitation 
light through various mechanisms, including up conversion 
and spontaneous two photon absorption. In two-photon 
absorption, the transition from the ground state to the 
excited state takes place with the spontaneous absorption 
of two photons. Up conversion relies on discontinuous 
discontinuous adsorption and stepwise luminescence, 
while at least two unstable components (usually ions) are 
involved in the process. The first component is used as the 
excitation store and the second component as the radiation 
state (Figure 13). Antistox radiation for the up-conversion 
process is ten to one hundred times kT (temperature (T) 
multiplied with the Boltzmann constant (k) is a measure 
of energy at the molecular scale) is greater than excitation 
energies, both the up-conversion mechanism and TPA 
because with wavelengths High radiation is generated thus 
providing the potential for access to tumors and deeper 
tissues. The role of nanoparticles in these cases becomes 
nanotransformable. These types of nanoparticles cannot 
cause the ROS effect, so they need to bind a suitable Ps. 
Up converting Nanoparticle (UCN) is a nanoscale compound 
that produces photons with energetic energy with 
absorbing NIR or IR radiation with metal ions mediated 
with lanthanides and actinides inside a suitable host. Raises 
. Sometimes referred to as Up-converting Phosphorus (UCP), 
they are known as sub-micron ceramic particles containing 
lanthanides that are visible with IR absorption. Binding of 
molecules and surface engineering (Kianfar et al., 2020a).
Various materials are known as dopants in UCNs, some of 
which have real or potential applications in biology. Ionic 
materials are usually rare earth crystals such as lanthanides 
and actinides that are doped in a suitable crystalline matrix 
(Kianfar et al., 2020b). One of the common nuclei for 
biological applications is NaFY4, which has recently been 
doped with Er3 + / Yb3+or TM3 + / Yb3+ to form micrometer-
sized particles Kianfar et al. (2020a).The first report of PDT 
use with UCNs is the use of NaYF4: Yb3 + .Er3+ coated with a 
thin porous silica layer containing PsMerocyanine-370 and 
tumor-specific agents attached to its surface (Meena et al., 
2016; Dhanalekshmi et al., 2019a; Dhanalekshmi et al., 
2022). In subsequent studies, NaYF4 nanocrystals 
contaminated with Er and Yb elements were coated 
with polyvinylpyrrolidone (PVP) and polyethylene (PEI = 

Polyethyleneimine) polymers. The resulting particles were 
50 nm in size and had a positive surface charge. For use 
in photodynamic therapy, a light-sensitive compound 
ZnPc (phthalocyanine tin) was placed on the surface of 
these nanoparticles. This nanoparticle system had three 
very interesting functions; Dissolve non-polar ZnPc, help 
low-energy radiation to synthesize the energetic energy 
needed to stimulate ZnPc, and help target ZnPc to target 
tumor cells (Smaisim, 2017 a).

In general, there are several benefits to using UCNs:
1. Ability to examine deeper tissues with NIR light
2. NIR light cannot cause tissue damage.
3. Nanoparticles tend to deposit in tumor tissues due to 

the effect of EPR, but this property is intensified with 
the binding of targeting agents on the surface of the 
particles.

Figure 12. X-ray induced photodynamic therapy for cancer care, 
a graphical diagram nanoparticle-porphyrin conjugates. Annex 
in V is a molecule which can attack tumor cells with certain 
particular antigens.

Figure 13. Structure and mechanism design of Upconverting 
nanoparticles. These nanoparticles absorb high-wavelength light 
and transmit it to the short-wavelength and appropriate Ps at the 
nanoparticle surface.
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7. Conclusion

• For nearly two decades, light therapy has been used as 
a new, non-invasive and beneficial treatment for some 
cancers and non-cancers. Two factors affect dynamic 
light therapy: light-sensitive substance (Ps) and light 
radiation at the right wavelength. Of course, another 
effective factor can be added to this set, which is the 
element of oxygen, which is mentioned as a third factor 
or a condition for such interactions. Additional points 
of this discussion are given in the introductory section 
on photo dynamics therapy. In addition, issues such as 
the mechanism of PDT treatment, the advantages of this 
method, as well as how nanotechnology relates to the 
photodynamic therapy, especially nanoparticles used 
in PDT and their properties in delivering light-sensitive 
material in cancer, are discussed in this article.

• Despite its relatively long history, Norpooya therapy 
has not been well used in the clinical phase compared 
to other methods, but the emergence of nanomaterial’s 
and nanostructures holds great hopes for increasing 
this treatment. The side of the relevant organizations 
is the hydrophobicity of Ps and the lack of selective 
accumulation of sufficient amounts of Ps in the 
damaged tissues. Nanoparticles can well accommodate 
hydrophobic drugs and increase the accumulation of Ps 
in the target tissue with using the effect of Enhanced 
Permeability and Retention (EPR) or monoclonal 
antibody binding. Therapeutic or diagnostic methods 
such as MRI can be used. Degradable nanoparticles 
cause proper release of Ps in target tissues, while 
non-degradable nanoparticles act mainly on the target 
cells with releasing reactive oxygen species, and Ps 
itself can be used as a catalyst until it leaves the cells. 
The emergence of active nanoparticles in PDT can 
increase access to deeper tissues in this method. These 
nanoparticles are either in the form of Ps or convert 
X-ray and Near Infra-Red to the appropriate wavelength 
for Ps attached to nanoparticles Of course, few clinical 
studies have been done with these nanoparticles, and 
there are still questions about the appropriate dosage of 
the drug and radiation side effects and clinical benefits 
of these nanoparticles.
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