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Abstract: Canga ecosystems are iron-rich habitats and pose a challenge for conservation and environmental 
governance in Brazil. They support high levels of biodiversity and endemism and, at the same time, have suffered 
intense losses and degradation due to large-scale iron ore mining. The Peixe Bravo River Valley in the Brazilian 
savanna is one of the last natural canga areas that has yet to face the irreversible impacts of mining. However, 
there are vast gaps in data on the vegetation cover, location, spatial distribution, and area of occurrence of this 
ecosystem. Therefore, more information is needed on the appropriate scale, without which it is difficult to establish 
conservation planning and strategies to prevent, mitigate or compensate for impacts on canga ecosystems. In this 
study, we provide the first map of canga ecosystems in Brazil using the U-Net deep learning model and Sentinel-2 
images. In addition, we estimate the degree of direct threat faced by ecosystems due to the spatial overlap of the 
mapped cangas and the location of mining concession areas for iron ore exploitation. The deep learning algorithm 
identified and segmented 762 canga patches (overall accuracy of 98.5%) in an area of 30,000 ha in the Peixe Bravo 
River Valley, demonstrating the high predictive power of the mapping approach. We conclude that the direct threat 
to canga ecosystems is high since 99.6% of the observed canga patches are included in mining concession areas. We 
also highlight that the knowledge acquired about the distribution of cangas through the application of an effective 
method of artificial intelligence and the use of open-source satellite images is especially important for supporting 
conservation strategies and environmental public policies.
Keywords: Conservation policies; ecosystem monitoring; ironstone; remote sensing; artificial intelligence.

Mapeamento de ecossistemas de canga ameaçados no Cerrado brasileiro utilizando 
deep learning segmentação U-Net e imagens Sentinel-2: um primeiro passo para o 

planejamento de conservação

Resumo: Os ecossistemas de Canga, habitats com elevadas concentrações de ferro, são um desafio para 
conservação e governança ambiental no Brasil. Eles sustentam uma alta biodiversidade e endemismo, e 
sofreram intensas perdas e degradações de áreas naturais devido à mineração de ferro em larga escala. O Vale 
do Rio Peixe Bravo, localizado no Cerrado brasileiro, é uma das últimas regiões com ecossistemas de canga 
que ainda não sofreu impactos irreversíveis da mineração. Mas ainda há ausência de dados sobre a cobertura 
vegetal, localização, distribuição geográfica e a área de ocorrência desse ecossistema. Portanto, a ausência 
de informações em escala adequada dificulta o planejamento em conservação e as estratégias para prevenir, 
mitigar ou compensar os impactos nos ecossistemas de canga. Neste estudo, nós fornecemos o primeiro mapa 
de ecossistemas de canga no Brasil elaborado a partir de deep learning segmentação U-Net e imagens de 
satélite Sentinel-2. Além disso, nós estimamos o grau de ameaça direta dos ecossistemas devido a sobreposição 
espacial das manchas de cangas preditas e a localização dos títulos de concessão minerária para exploração 
do minério de ferro. O algoritmo de aprendizado profundo identificou 762 manchas de canga (acurácia acima 
de 98,5%) em uma área de 30.000 ha no Vale do Rio Peixe Bravo, demonstrando o alto poder preditivo do 
método de mapeamento. Nós estimamos que há um alto grau de ameaça direta aos ecossistemas de canga, 
uma vez que 99,6% das manchas de cangas preditas estão incluídas em áreas de concessão de mineração. Nós 
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Introduction
The collapse of natural ecosystems due to human activities is a 

global crisis, with consequences such as decreased biodiversity, species 
extinction, environmental degradation, resource depletion, pollution, 
wealth and climate impacts, poverty, and inequality (Cardinale et al. 
2012, UNEP 2019). Large-scale mining is an activity that modifies entire 
landscapes by removing and processing billions of tons of rocky material 
every year, causing intense and prolonged socioenvironmental impacts 
(Carmo et al. 2020). Therefore, the ironstone ecosystems stand out as 
the natural areas most threatened by mining activities. These iron-rich 
habitats, known as cangas, are found mainly in restricted areas of Brazil 
and Australia and support high levels of biological diversity – sensu 
Convention on Biological Diversity (MMA 2000) – and many rare and 
endemic species (Jacobi et al. 2011, English & Keith 2015, Carmo et al. 
2018). The main characteristics of canga ecosystems are their anomalous 
metal contents (especially natural iron and manganese) and insular 
distributions, which are island-like lateritic duricrusts that are home to 
specialized edaphic plant communities (Jacobi et al. 2011, Tibbet 2015). 
Harsh environmental conditions, in addition to the geographic isolation 
and the antiquity of the cangas duricrusts, likely contributed to the 
formation of the evolutionary scenarios responsible for the high number 
of endemic species, the distributions of which are restricted to one or a few 
localities (Gibson et al. 2010, Carmo & Kamino 2017, Leme et al. 2020).

The global demand for Brazilian iron ore led to the production of 
this resource increasing to 510 million tons in 2019 (ANM 2020), with 
extractions occurring in canga ecosystems. Consequently, mining has 
caused the loss and degradation of iron-rich habitats, with critical outcomes 
such as the local extinction of rare plant populations and irreversible 
damage to surface and underground freshwater reserves (Carmo et al. 2018, 
Salles et al. 2019). In addition, the destruction of canga ecosystems as a 
result of large-scale mining causes landscape and aesthetic degradation 
and environmental conflicts with traditional communities (Sánchez et al. 
2018, EJatlas 2021a, b). Most regions with canga ecosystems in Brazil 
have already experienced the intense loss and degradation of natural 
areas due to dozens of large-scale mining sites, such as those located in 
the Serra dos Carajás (Amazon Forest), Morraria do Urucum (Pantanal), 
Caetité (Caatinga), the Serra da Serpentina and the Quadrilátero Ferrífero 
(Atlantic Forest). The Quadrilátero Ferrífero has already lost up to 50% 
of its natural canga ecosystem area (Salles et al. 2019), and most canga 
remnants are found in a very degraded matrix composed of large-scale 
open pit mines (Jacobi et al. 2011, Sonter et al. 2014).

One of the last natural areas that has not yet irreversible impacts from 
mining is in the Peixe Bravo River Valley region (Cerrado, Brazilian 
savanna), southeastern Brazil (Carmo & Kamino 2017). However, in 
this region, there is still an unexploited iron ore megadeposit, identified 
as the Nova Aurora Iron District. Currently, there are several large-scale 
mining projects in the area (Melfi et al. 2016), and the exploitation 
of these iron-rich deposits is the main direct threat (sensu Salafsky  

et al. 2008) to canga ecosystems. There are limited data available about 
the vegetation cover, location, distribution, and area of occurrence of 
the canga ecosystems in the Peixe Bravo River Valley. This lack of 
information is due to the challenges of accessing remote regions and 
the high cost of surveys of geological field camps. These limitations of 
the data are also related to the scale of existing maps, which is usually 
smaller than 1:100,000, with some maps on the 1:1,000,000 scale. The 
smallest linear units that can be mapped on these scales are approximately 
150 and 3000 meters, respectively, which is not suitable for identifying 
most canga outcrops (for details see CODEMIG 2012, Souza et al. 
2020, CPRM 2021). The lack of information on the appropriate scale 
precludes conservation planning and the implementation of measures for 
the prevention and mitigation of impacts or compensation for damage 
to biodiversity (Hardner et al. 2015). Therefore, the Peixe Bravo River 
Valley region represents a unique opportunity to develop solution-based 
conservation research (Fonseca et al. 2021) that can contribute to the 
reduction in conflicts between local communities, the mining industry, 
and environmental policies.

The use of remote sensing and artificial intelligence technologies 
has great potential for supporting conservation planning, including the 
indication of critical habitats, ecosystem risk assessments and landscape 
analysis for large-scale monitoring (Christin et al. 2019, Lamba et al. 
2019). In the last decade, a revolution for image classification occurred 
in 2012 using deep learning techniques that began with AlexNet, a 
convolutional neural network architecture (Krizhevsky et al. 2017). 
The field of remote sensing has been using deep learning since 2012 
to improve its capacity to automatically classify features in satellite 
images. Using only raw data, supervised deep convolutional networks 
automatically learn objects in an image with minimal knowledge about 
those features (LeCun et al. 1998, 2015). For example, for semantic 
segmentation, the only necessary input is a mask with labels to aid 
recognition of the training images (Wagner et al. 2019).

The aims of this study were as follows: 1) to identify and map 
canga ecosystems using Sentinel-2 images and the artificial intelligence 
tool U-Net convolutional network; 2) after mapping, to estimate the 
degree of direct threat faced by ecosystems due to the spatial overlap 
of cangas and the location of mining concession regimes for iron ore 
exploitation. We also highlight how the knowledge acquired about the 
distribution of cangas through the application of the U-Net network and 
the use of open-source satellite images is especially important to support 
conservation strategies and environmental public policies.

Materials and Methods

1.	 Study area

The study was conducted in a landscape comprised predominantly of 
the Cerrado biome (Brazilian savannas) located in the north of the state 
of Minas Gerais, Brazil, centered at 16°7’ S and 42°42’ W (Figure 1). The 

também destacamos que o conhecimento adquirido sobre a distribuição das cangas por meio da aplicação de 
um método eficaz de inteligência artificial e do uso de imagens de satélite de código aberto é especialmente 
importante para apoiar estratégias de conservação e políticas públicas ambientais.
Palavras-chave: Políticas de conservação; monitoramento de ecossistemas; campos rupestres ferruginosos; 
sensoriamento remoto; inteligência artificial.
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climate in the region is tropical, with a dry winter (Aw type according 
to Köppen) and an average annual rainfall of approximately 900 mm 
(Reboita et al. 2015). The canga duricrust is the result of millions of 
years of weathering of the Neoproterozoic rocks that mainly consist 
of iron-rich metadiamictites of the Riacho Poções Member (Macaúbas 
Group, Nova Aurora Formation) (CODEMGE 2018). Extensive plateaus 
and some hills are the main forms of relief perceived in the landscape. 
The high topographic heterogeneity of the canga duricrusts forms a set 
of habitats, such as cracks, depressions, pores, cliffs, puddles and caves, 
and a corresponding vegetation mosaic (Figure 2).

According to the Technical Manual of Brazilian Vegetation (IBGE 
2012), the plant communities associated with canga duricrusts can 
be defined as relict communities or vegetational refuges, which are 
adapted to very specific deterministic factors, such as oligotrophic 
and metalliferous rocky substrates (Carmo & Kamino 2017). 
Vegetation refuges, therefore, exhibit high sensitivity to any type of 
intervention since endemic species are abundant. The most frequent 
phytophysiognomies in canga ecosystems are rocky grasslands and 
shrublands, known as Campos Rupestres Ferruginosos (Figure 3). This 
open vegetation occurs in very acidic and oligotrophic metalliferous 
canga outcrops. Woodland physiognomies can also occur along the 
canga border and in duricrust cracks and depressions, depending on 
the topography, soil thickness and moisture (Carmo et al. 2011, Carmo 
& Kamino 2017).

2.	 Classification and mapping of the canga ecosystems

2.1. Sentinel-2 images and preprocessing

Since 2015, Sentinel-2 is an orbital mission that has been providing 
continuous global multispectral images with a spatial resolution of 10 
meters, thus, can contribute to the mapping of cangas. Furthermore, 
Sentinel-2 has a revisit rate of up to five days at the equator (ESA 2015), 

Figure 1. Peixe Bravo River Valley region, North Minas Gerais state, 
southeastern Brazil. Location of iron-rich metadiamictites from the Riacho 
Poções Member, in red (Macaúbas Group, Nova Aurora Formation), in the study 
area. Inset map: South America.

Figure 2. Peixe Bravo River Valley landscape diversity. (A) Hills, (B) caves, (C) cracks and cliffs, and (D) woodland in valleys. Photos: Instituto Prístino.
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which can help to determine the best time to map the cangas. For the 
training of the model, we used three images of the T23LQC tile from 
the dry period of this region, which occurs between May and September. 
As shown in Table 1, these images were sensed on 06/08/2019 and 
08/22/2016 from Sentinel-2A (prefix S2A) and 07/03/2019 from 
Sentinel-2B (prefix S2B). For the model predictions, we selected six 
from different years and periods, including the rainy season sensed in 
October (Image 07) and January (images 11 and 13) and others sensed in 
the dry season in May (Image 10), June (Image 12), and July (Image 14). 
They were all used to identify the potential of the technique for mapping 
and monitoring. It is important to note that our prediction was applied 
for each of the images separately, and the training was constructed using 
the three cited images together.

The occurrence of cangas was mapped from an initial area of  
1250 km2 (50 km × 25 km), obtained from the delimitation of the 
lithological iron formations available in mappings of the region (scales 
from 1:100,000 to 1:1,000,000); details are available in the Minas Gerais 
Mineral Resources web map (CODEMGE 2018). We used Level 1C, 
Sentinel-2A and 2B images from the European Space Agency (ESA) 
(Table 1). The Level 1C product resulted from using a digital elevation 
model to project the image in coordinates. Radiometric measurements 
per pixel were held on top of atmosphere reflectances with all parameters 
aimed at transforming them into radiances. In addition, the Level-1C 
images were resampled with a constant ground sampling distance of 
10, 20 and 60 meters depending on the native resolution of the different 

spectral bands (ESA 2015). The data were downloaded from the Sentinel 
Data Hub (2020). The images were organized into tiles that cover 108 
× 108 kilometers with 1080 × 1080 pixels. We only used red (665 nm), 
green (560 nm), blue (490 nm), and infrared (842 nm) spectra, all of 
them at a spatial resolution of 10 meters. The images were preprocessed 
so that they could be used for the intended method; preprocessing 
required rescaling of the digital numbers (DN) from 11 bits to 8 bits. In 
addition, the bands were unified in a composite band process, borders 
were inserted around the image, and a cut was made at the limits of the 
study area. The preprocessing procedures of the scenes were performed 
in RStudio software (R Core Team 2016). The reference image for the 
vectorization was Image 01 (Table 1). In addition, Google Earth Pro 
software (Google 2021) was used to assist with the orientation and 
verification of canga areas in very high-resolution images.

2.2. U-Net convolutional network

In this study, we used a convolutional network for multiclass 
image segmentation known as U-nets, with which pixel-by-pixel 
classification is performed and the probability of each pixel belonging 
to a particular class is estimated. Details of this architecture can be found 
in Ronneberger et al. (2015) and Wagner et al. (2019). We adapted the 
filters to improve performance to reach our aim of classifying a large 
natural surface and because the sentinel images have a smaller spatial 
resolution when compared with Ronnerberger et al. (2015) and Wagner 
et al. (2019). The algorithm for generating the model uses three images 
from the same region (Table 1). The tests were performed with the 
composition in the natural color (red, green, blue), as in other works in 
this field (Wagner et al. 2019, 2020a), and the false-color composition 
was also tested (infrared, red, green) because of the difference between 
our target area and regions assessed in other studies. The scripts and 
data necessary to reproduce the model are available on Zenodo (https://
doi.org/10.5281/zenodo.6762185).

Table 1. Sentinel-2A and Sentinel-2B images used to generate and apply the 
prediction model for different data corresponding to the passage of the satellite.

 Image 
ID

Original name from Sentinel hub  Date
Model

Image 
01

S2A_MSIL1C_20190608T130251_N0207_
R095_T23LQC_20190608T143715.tif

06/08/2019

Image 
03

 S2B_MSIL1C_20190703T130259_N0207_
R095_T23LQC_20190703T161417.tif

07/03/2019

Image 
06

S2A_MSIL1C_20160822T130252_N0204_
R095_T23LQC_20160822T130418.tif

08/22/2016

 Prediction
Image 

07
S2A_MSIL1C_20161021T130242_N0204_

R095_T23LQC_20161021T130242.tif
10/21/2016

Image 
10

S2A_MSIL1C_20170419T130251_N0204_
R095_T23LQC_20170419T130247.tif

04/19/2017

Image 
11

S2A_MSIL1C_20180124T130241_N0206_
R095_T23LQC_20180124T143902.tif

01/24/2018

Image 
12

S2A_MSIL1C_20180504T130251_N0206_
R095_T23LQC_20180626T123252.tif

06/26/2018

Image 
13

S2A_MSIL1C_20190119T130241_N0207_
R095_T23LQC_20190119T143228.tif

01/19/2019

Image 
14

S2A_MSIL1C_20160713T130431_N0204_
R095_T23LQC_20160713T202929.tif

07/13/2016

Figure 3. Canga ecosystems in the Peixe Bravo River Valley, North Minas Gerais 
state, Brazil. (A) Contrast between the plant communities in iron duricrusts 
(canga) and the tree matrix outside the canga. (B) Specialized edaphic plant 
communities in the canga (ironstone) in the foreground and savanna landscape 
in the background. Photos: Instituto Prístino.
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To enable the U-Net algorithm to recognize and segment the canga 
cover, we used a vectorized mask based on an image to indicate the ground 
truth sample, acquired on 06/08/2019, for training (Table 1). This image 
was chosen due to the low cloud cover and the greater contrast between 
the canga vegetation and surrounding vegetation; the incidence of water 
stress reduced the vegetation cover in the canga ecosystem, while the 
Brazilian savanna matrix remained unchanged. In addition to vector 
samples, field data collected in 2015, 2019 and 2020 were used to guide 
searches and check areas for the occurrence of canga (Figure 4). The 
field data were obtained using a GPS receiver (Garmin GPS 62S model) 
with at most ±5 m error and were recorded by a Nikon Coolpix P510 
camera and DJI Mavic 2 unmanned aerial vehicle (UAV). We applied the 
geoprocessing and satellite image interpretation techniques available on 
09/23/2003, 08/06/2010, 03/06/2013, 04/23/2014, and 09/12/2019 from 
Google Earth Pro 7.3.6.9326 (Google LLC. 2022) to extract the polygon 
(vectorized mask) of the canga areas identified in the field.

Using a script developed in RStudio software (R Core Team 2016), 
the vector mask was superimposed on Sentinel images 01, 02 and 03 
(Table 1). The images were subdivided into 32 × 32 pixel squares. 
Thus, the value representing canga presence (DN = 1) was assigned 
only in places where there was overlap between the sample vectors and 
the images. With the resulting squares, a random draw was made in 
the remainder of the scene to generate squares with the other types of 
coverage, which were named background (DN = 0). Thus, squares (tiles) 
of the object of interest (canga) and their surroundings (background) 

were obtained, generating two classes for the model. Ultimately, the 
sample was composed of 927 images containing canga only or canga 
plus background and 1,134 images containing background only. Eighty 
percent (1,649) were used for the training, and 20% (412) were used 
for the independent validation of the U-Net segmentation.

In addition, during the training process, image processing techniques 
were applied to the input images to artificially increase the number 
of images in the training sample and to help the model generalize 
to improve prediction on new images. This data augmentation was 
applied randomly to the input images of the model, as follows: 
rotations of 0/90/180/270 degrees, since its direction affects how the 
algorithm interprets an object; changes in the brightness, saturation 
and hue; conversion of the RGB to BSH (brightness-saturation-hue); 
and modulation of the values between 95% and 110% for brightness, 
between 95% and 105% for saturation and between 95% and 105% for 
hue. This was done to reduce overfitting (Kim 2020). More details on 
this process can be found in Wagner et al. (2019).

The training of the model included stages such as analyzing a first 
result and making subsequent adjustments based on visual verification 
of the predictions so that the squares containing false-positive data 
could be identified. Thus, the squares that were visually identified were 
added to the randomly drawn background (DN = 0). In the subsequent 
tests of the constructed model, this adjustment was refined until the 
best result, which was related to the reduction in false positives in this 
case, was obtained.

Figure 4. Examples of canga ecosystems observed in Sentinel-2 images and during fieldwork conducted in 2016, 2019 and 2020. Photos: Instituto Prístino.
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We randomly sampled images and their associated mask and used 80 
percent for training and 20 percent for validation of our classification. 
Two metrics were estimated for the segmentation accuracy assessment. 
The first calculates the overall accuracy in terms of percent of well 
classified pixels (0 or 1), which is implemented by pixelwise assessment. 
The confusion matrix between the predicted results and the validation 
sample was generated. The confusion matrix is a table with two rows 
and two columns that reports the number of canga areas predicted by 
the U-Net algorithm (correctly predicted), canga predicted where there 
are no canga (incorrect predicted canga), no canga predicted as no canga 
(background correctly classified), and no canga predicted as canga 
(background incorrectly classified). The second metric, the F1 score, 
compares correctly and incorrectly classified segments. The F1 score 
is computed for each class i as the harmonic average of the precision 
and recall (Equation 1), where precision is the ratio of the number of 
segments correctly classified as i and the number of all segments (true 
and false-positive), and recall is the ratio of the number of segments 
classified correctly as i and the total number of segments belonging to 
class i (true positive and false negative). This score varies between 0 
(lowest value) and 1 (best value).

F precision recall
precision recalli

i i

i i

1 2� �
�
�

  
( )

Equation 1: F1-Score, where i is the number of segments.

To evaluate the prediction and performance of the algorithm, each 
satellite image (Table 1) was cropped on a regular grid of 320 × 320 
pixels, and 64 neighboring pixels were added on each side to create 
an overlap between the patches. The predictions were made for these 
images with 384 × 384 pixels, and the resulting images were cropped 
to 320 × 320 pixels and merged to reconstitute an image of the canga 
cover to the original extent. This overlapping method was used to 
prevent prediction artifacts on the image borders, a known problem 
for the U-Net algorithm (Ronneberger et al. 2015). Classification was 
made if a pixel prediction value was greater than or equal to 0.5 for a 
given class. This method is suitable for separating two classes; in this 
case, a value of 1 was assigned to pixels with canga, and a value of 0 
was assigned to background pixels.

The training of the models took approximately 5 hours using the 
graphics processing unit (GPU) on an Nvidia GeForce GTX-1660Ti 
with 6 Gb of dedicated memory. The prediction of canga cover in a 

single image using the GPU took approximately 35 minutes. The model 
was coded in the R language (R Core Team 2016) with the RStudio 
interface to Keras (Chollet et al. 2015, Allaire & Chollet 2016) and a 
Tensor Flow backend (Abadi et al. 2016).

We applied an additional verification to observe convergences of 
the model prediction with the available geological mapping data in 
the Peixe Bravo River Valley region because the canga duricrusts are 
geologically associated with the rocks of the Riacho Poções Member, 
specifically the hematitic/iron rich metadiamictites and banded iron 
formations. For this purpose, the locations of some canga patches 
generated in model prediction to check the field areas in November 
2020 and February 2021 were used. Field observations were guided 
using a Garmin 62S GPS model and recorded by a Nikon Coolpix 
P510 camera and DJI Mavic 2 UAV. Geological Service (CPRM 2021) 
and the Minas Gerais Economic Development Company (CODEMIG 
2012). Open source QGIS software (QGIS Development Team 2009) 
was used to validate the delimitations.

3.	 Degree of direct threat to canga ecosystems

The degree of threat was estimated by superimposing the map of 
the canga ecosystems obtained using the U-Net model with mining 
concession areas in the Availability and Mining Requirement phases, 
available on the online platform of the Geographic Information System 
for Mining (SIGMINE, the acronym in Portuguese) (ANM 2021). In 
these phases, the mining company must present an economic use plan 
(PAE, the acronym in Portuguese) to the National Mining Agency 
(ANM, the acronym in Portuguese), the federal regulatory agency 
responsible for the management of mineral resources. The PAE 
produced by the mining company specifies, for example, the volume of 
mineral extraction, the economics of the enterprise and the description 
of all the mining and processing structures that will be implemented, 
thus assessing whether the mining project will be profitable (MPMG 
2012). We used the geospatial data related to the polygon areas in the 
“Availability” and “Mining Requirement” phases obtained from ANM 
(2021). The overlapping areas were calculated using open source QGIS 
software (QGIS Development Team 2009).

Results

1.	 Classification and mapping of the canga ecosystems

The segmentation of cangas with the U-Net model in the 1031 
images in the validation dataset had an overall accuracy of 98.5% and 

Table 2. Numerical evaluation of the models and convergence details.

Model  Epoch Batch Sample Overall 
accuracy

F1 score  Precision Recall
Training  Validation

Canga cover 240 4 2061 1031 98.5% 0.8235 0.7937 0.855

Table 3. Confusion Matrix.

Confusion Matrix Predicted label
Canga No-Canga

True label

Canga True Positive
0.74

False Negative
0.26

No-Canga False Positive
0.01

True Negative
0.99

http://www.scielo.br/bn
https://doi.org/10.1590/1676-0611-BN-2022-1384
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an F1 score of 0.8235 (precision = 0.7937 and recall = 0.855). The 
time required for convergence was approximately 12 hours. The best 
model was obtained after 240 epochs with four images per batch (Table 
2). The number of pixels correctly classified as canga as a percentage 
were 74% (true positive), while 26% were not detected (false negative). 
For background, defined as all other land covers that are not canga, the 
matrix indicates that 1% were detected as Canga (false positive), and 
99% were classified as background (true negative) (Table 3).

The results of the canga segmentation for the Peixe Bravo River 
Valley, as seen in Figure 5, showed the delineation of the canga patches 
among the different Sentinel images. We selected the images using 
the sentinel metadata, which indicates the percentage of cloud cover. 
For training the model, we chose zero percent cloud cover. When we 
performed the classification, we purposely aimed to demonstrate its 
performance and acquired one image sensed on 10/21/2016, which 
showed a slightly different prediction result, likely due to a higher cloud 
cover. Cloud cover increased during the wet season, which occurred 
between September and March in this region. The surface of the land 
cover type of interest (a dark rocky substrate and sparse vegetation) 
posed another challenge because the deep learning technique is usually 
applied to images with features that reflect in the visible spectrum 
(i.e., in the RGB channels) (Wagner et al. 2019, 2020a, b). Thus, we 
adapted the approach for modeling canga surfaces because the infrared 
frequencies generated a greater contrast with the other covers (shrub and 
tree vegetation and water). The images were converted to the natural 
color composition. However, at the time of data and model preparation, 
removal of the blue band and insertion of the infrared range (IRG), 
leading to a false color composition (R8G4B2), led to a better visual 
result for prediction than the natural color images (Figure 5). This result 

was due to the increased contrast between the target land cover (i.e., the 
cangas) and the rest of the surfaces (background) when using the near 
infrared range. In addition, removing the blue wavelengths could have 
reduced the noise caused by Rayleigh scattering (Jensen & Epiphanio 
2011), resulting in better canga predictions.

In our set of images, the largest canga area was predicted in June 
2018 (the driest period of the year), with an area of 3,330,484 m² (bottom 
left corner in Figure 4). In October 2016, however, the observed canga 
area was only 1,926,891 m² due to the presence of clouds (top left 
corner in Figure 5). The canga map obtained for 06/26/2018 was used 
in the following analyses.

The map with a 10 m spatial resolution created using U-Net deep 
learning allowed the identification of 762 canga patches distributed 
over an area of 30,000 ha. The canga ecosystems exhibited an insular 
distribution in the natural landscape and were concentrated in the 
northern part of the study area, along interfluves and on the moderate 
slopes of the Peixe Bravo River Valley (Figure 6). Morro Grande 
was another landscape compartment in which these ecosystems are 
concentrated; canga ecosystems were found at higher altitudes in this 
region (1030 m) (white arrow Figure 6), in which the largest canga 
patch, which was estimated to be nearly 30 ha, was observed. Cangas 
smaller than 1 ha represented approximately 90% of the 762 patches 
found in the Peixe Bravo region, and the longest linear distance between 
two cangas was estimated to be 43 km.

We found that most of the areas (72%) predicted to be canga by 
the model were associated with the lithostratigraphic unit Riacho 
Poções Member, represented in the geological maps at scales of 
1:100,000 to 1:1,000,000. This lithostratigraphic unit contains iron-
rich metadiamictite rocks. During field observations in November 

Figure 5. Details of the segmentation process for the six images observed in Sentinel-2 in July and October/2016, April/2017, January and June/2018 and January/2019 
to which the model was applied. The green patches in the images represent the predicted “canga patches” on different dates. 

https://doi.org/10.1590/1676-0611-BN-2022-1384
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2020 and February 2021, the other canga predicted areas (28%) were 
verified to also be associated with the Riacho Poções Member but 
had not yet been identified in the officially available geological maps 
(Figure 6). Therefore, both the lithostratigraphic unit of the Riacho 
Poções Member and especially the cangas duricrusts are probably 
not yet fully represented in geological maps on scales of 1:100,000 to 
1:1,000,000. Some canga patches predicted by the segmentation model 
and validated in the field presented typical cave formations associated 
with duricrusts (see Figure 2).

2.	 Degree of direct threat to canga ecosystems

Although large-scale iron ore extraction has not yet started, the 
opening of several access roads to hundreds of geological survey sites 
has caused some loss and degradation of canga ecosystems (Figure 7). 
We identified 26 mining concession areas in the Availability and Mining 
Requirement phases within the Peixe Bravo River Valley, which together 
cover an area of 25,064 hectares. Most of these mining concession areas 
were associated with the iron-rich metadiamictites of the Riacho Poções 
Member and, therefore, the canga duricrusts. We observed that 99.6% 
of the predicted canga ecosystems were included in areas with a high 
concentration of mining concessions (Figure 8).

Discussion

In this study, we performed the first canga ecosystem mapping 
in Brazil at a spatial resolution of 10 m using a U-Net convolutional 
network. This high-resolution mapping allowed the identification of 762 
canga patches distributed in an area of 30,000 ha along the Peixe Bravo 
River Valley. The deep learning algorithm identified and segmented 
canga patches with an overall accuracy of 98.5%, demonstrating the 

Figure 6. Predicted canga patches (green) in the Peixe Bravo River Valley and 
the relationship with the lithostratigraphic unit of the Riacho Poções Member/
iron-rich metadiamictites (red) in geological maps (1:100,000 to 1:1,000,000). 
The yellow arrows indicate the main canga patches that are not yet officially 
identified on geological maps.

Figure 7. Environmental damage caused by geological survey sites (A and C) and access roads (B and D) resulting in degradation in canga ecosystems in the Peixe 
Bravo River Valley, North Minas Gerais state, southeastern Brazil. The yellow arrows indicate the relationship between the satellite images and field photos. Images A 
and B: Digital Geoenvironmental Atlas. Available in:https://institutopristino.org.br/atlas/municipios-de-minas-gerais/ (accessed 18 June 2022). Photos: Instituto Prístino.

http://www.scielo.br/bn
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high predictive power of the map. This high level of accuracy means 
that for every 100 patches detected by the model, only 1.5 patches are 
expected to contain an error. For comparison, the accuracy of our map 
was superior to the overall accuracy of collection 6.0 of the Annual 
Mapping of Land Use and Land Coverage in Brazil (MapBiomas 2022), 
which reached less than 75% for Cerrado formations of the Cerrado 
biome, including classes 2 and 3, which correspond to grasslands and 
subshrub formations (including the Cerrado rupestre).

We found that obtaining images during the dry period was important 
for mapping rocky outcrop ecosystems located in regions that experience 
water stress, as was the case for the present study. During the dry period, 
several species partially or completely lose their aboveground biomass, 
while others survive despite almost complete desiccation (Proctor & 
Tuba 2002), which lowers the greenness of the vegetation and further 
exposes canga duricrusts. Acquiring images during the wet period 
is not an impediment; however, for long-term monitoring studies, 
defining a reference month for images is suggested so that the exposure 
conditions of the cangas are similar. This could prevent overestimation 
or underestimation of possible changes, such as the eventual loss or 
degradation of a habitat.

The mapping and monitoring of habitats and ecosystems is one of 
the main components of the National Biodiversity Policy (Brasil 2002), 

which also recognizes that canga ecosystems are unique environments 
that are highly threatened by mining activities. Moreover, one of the main 
difficulties in implementing monitoring programs with high-resolution 
imagery is the high cost, which prevents the mapping of large areas 
(Flood et al. 2019). Thus, the challenge that our study addressed was 
the need for an effective but low-cost method using satellite images and 
free software. Previous studies generally used satellite imagery with high 
cost and a spatial resolution of <3 meters (Wagner et al. 2019, 2020a, b).  
Here, we demonstrated that for the canga ecosystem, which can be 
visually assessed in high-resolution images, maps used for monitoring 
can be created with open source software (R packages citation and 
keras) and with free high-resolution multispectral satellite imagery (e.g., 
Sentinel-2 images, which have a repeat interval of 10 days).

Using geotechnologies and artificial intelligence capable of mapping 
and monitoring ecosystems with restricted and naturally insular areas 
is essential for obtaining spatial information at the microscale (<<1 
km2). This is a common need when mapping rocky outcrop ecosystems 
(Cartwright 2019, Christin et al. 2019, Dang et al. 2022). The present 
study showed that most canga ecosystems were distributed in patches 
smaller than 1 ha, and nearly one-third of all predicted canga ecosystems 
were also associated with the Riacho Poções Member but not yet 
identified in the officially available geological maps. These small 
outcrops are essential, both because they represent exclusive habitats 
for endemic species (Hopper et al. 2021) and because they contribute 
to connectivity, serving as connection points (i.e., stepping stones) for 
the ecological flow between areas (Chetkiewicz et al. 2006). Thus, 
our results may also support conservation strategies based on studies 
involving spatial dynamics in plant populations and landscape ecology, 
including connectivity analysis (Salles et al. 2019, Ghehi et al. 2020).

In addition, Brazil has the highest plant biodiversity in the world, 
and Minas Gerais state has the greatest number of rare plants found 
in rocky outcrops (sensu lato Campos Rupestres). Because of this 
high conservation value and the low quality or absence of spatial 
occurrence data for plant species, there are enormous challenges related 
to monitoring the conservation status of the species in these ecosystems 
and conducting risk assessments for extinction (Martinelli & Mores 
2013). Thus, the use of remote images with high spatial resolution and 
U-Net deep learning to map canga patches is a promising approach 
to improve our understanding of, for example, connectivity and gene 
flow; identify the main anthropogenic threats to conservation targets; 
develop appropriate guidelines and goals to prevent biodiversity losses 
and the degradation of ecosystem services; and determine the extent of 
occurrence and area of occupancy of plant populations with restricted 
distributions (Kiesecker et al. 2009, Pettorelli et al. 2014).

A real-world scenario in which our results could be applied is 
to support an evaluation of the extinction risk categories of a rare 
bromeliad species, Orthophytum minimum (Leme & O.B.C. Ribeiro), 
recently described in the Peixe Bravo River Valley. This rare bromeliad 
is endemic to canga and has a very restricted geographic distribution, 
being found in only one location known as Morro do Capim (Leme  
et al. 2020). The taxonomists who described O. minimum were not able 
to determine the extent of the canga ecosystems, and therefore, there is 
no information on the geographic distribution and population size of 
this species. Thus, O. minimum is considered a “data deficient” (DD) 
species since the available data are not sufficient for an assessment of 
its risk of extinction. Specifically, for the Morro do Capim location, the 

Figure 8. High concentration of mining concessions (orange polygons) in the 
Availability and Mining Requirement phases overlapping the predicted canga patches 
(green) in the Peixe Bravo River Valley, North Minas Gerais state, southeastern Brazil.

https://doi.org/10.1590/1676-0611-BN-2022-1384
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present study mapped canga patches totaling less than 1 km². Thus, our 
study contributed directly to the application of the IUCN geographic 
distribution criteria (IUCN 2022) used to evaluate the threat category of 
a species. Another important contribution of this mapping effort is that 
it reduces the costs of field work associated with botanical inventories, 
thus making resources available to investigate more canga rather than 
using them to search an area of 30,000 ha. The increase in the collection 
effort in canga ecosystems is necessary and promising, considering that 
the only a floristic study published for the region (Mota et al. 2017) 
indicated four new species to science.

Salafsky et al. (2008) conceptualized “direct threats” as synonymous 
with sources of stress and proximal pressures, representing human 
activities that have caused, are causing, or may cause the destruction, 
degradation, and/or biodiversity loss. In this context, we determined 
there to be a high degree of direct threat to canga ecosystems in the 
Peixe Bravo River Valley according to the estimate that 99.6% of canga 
patches are included in mining concession areas (in the availability 
and requirement phases). This situation makes the deposits of iron 
ore technically and economically usable because mineral research has 
already been conducted and approved by the ANM (Brasil 2018). Mining 
entrepreneurs already have satisfied the legal conditions for initiating an 
environmental licensing request. In fact, there are three different mining 
companies that have signed protocols of intention with the State of Minas 
Gerais for the large-scale exploitation of iron ore over extensive natural 
areas. At least one mining company has already begun the application 
for environmental licensing in the Peixe Bravo River Valley region. This 
requirement is linked to a project that predicts an annual production of 
27 million tons of iron ore concentrate, with the installation of open 
pits, tailings dams, mineral processing plants and pipelines (Minas 
Gerais 2021, GESTA 2022). These projects have already catalyzed 
socioenvironmental conflicts in a region that has not yet planned suffered 
major human interventions due to its rugged relief and primary land 
use and occupation, which is restricted to family farming distributed in 
small properties and traditional communities and Quilombo remnants 
(Carmo et al. 2011, EJatlas 2021a, Palmares Cultural Foundation 2021).

There are still no protected areas for canga ecosystems in the 
Peixe Bravo River Valley. Thus, our mapping could also contribute 
to the implementation of public policies aimed at indicating priority 
conservation areas (PCAs), promoting the sustainable use of resources 
and sharing biodiversity benefits (MMA 2021). One of the premises of the 
National Biodiversity Policy (Brasil 2002) is the expansion of the capacity 
to monitor and evaluate the impacts of natural areas with transparency, 
greater participation and social control. In addition, broad adherence 
to systematic PCA procedures is based on the adoption of ecological 
criteria, participatory decision-making, and the use of geotechnological 
tools, which are fundamental in scenarios of increasingly scarce financial 
resources (Margules et al. 2002, McIntosh et al. 2017). Therefore, 
identifying conservation targets, such as natural habitats that contain 
relevant biodiversity plots, provide ecosystem services and ensure the 
livelihood of traditional peoples and communities, is a fundamental part 
of the process of defining PCAs (Brasil 2005).
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