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Abstract
Background: The composition of the venom from solitary wasps is poorly known, 
although these animals are considered sources of bioactive substances. Until the present 
moment, there is only one proteomic characterization of the venom of wasps of the 
family Pompilidae and this is the first proteomic characterization for the genus Pepsis. 
Methods: To elucidate the components of Pepsis decorata venom, the present work sought 
to identify proteins using four different experimental conditions, namely: (A) crude 
venom; (B) reduced and alkylated venom; (C) trypsin-digested reduced and alkylated 
venom, and; (D) chymotrypsin-digested reduced and alkylated venom. Furthermore, 
three different mass spectrometers were used (Ion Trap-Time of Flight, Quadrupole-
Time of Flight, and Linear Triple Quadruple). Results: Proteomics analysis revealed 
the existence of different enzymes related to the insect’s physiology in the venom 
composition. Besides toxins, angiotensin-converting enzyme (ACE), hyaluronidase, 
and Kunitz-type inhibitors were also identified. Conclusion: The data showed that the 
venom of Pepsis decorata is mostly composed of proteins involved in the metabolism of 
arthropods, as occurs in parasitic wasps, although some classical toxins were recorded, 
and among them, for the first time, ACE was found in the venom of solitary wasps. This 
integrative approach expanded the range of compounds identified in protein analyses, 
proving to be efficient in the proteomic characterization of little-known species. It is 
our understanding that the current work will provide a solid base for future studies 
dealing with other Hymenoptera venoms.
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Background
The order Hymenoptera is one of the four large orders that make 
up the phylum Arthropoda, with about 150,000 described species 
[1]. It is currently estimated that there are 33,000 sting wasps 
species worldwide [2]. The majority of this group has predatory 
or pollinating habits. In general, their way of life is divided 
between social and solitary animals [3]. Solitary Hymenoptera 
are responsible for capturing insects or spiders to feed their larvae 
[4]; the adults feed on nectar, which they obtain from several 
different plant species [5]. Within this group, we find the wasp 
Pepsis decorata (Figure 1), popular in Brazil as Cavalo-do-Cão 
(Demon’s Horse) or Tarantula hawk in the United States.

Although these wasps are well known due to their oviposition 
mechanism and the pain of their sting, there is only one proteomic 
study of the composition of its venom in the literature. This 
study was made with the species Cyphononyx dorsalis and 
identified three proteins: arginine kinase-like protein, elastase-
like protein, and a still unknown protein. The recombinant 
arginine kinase showed paralytic activity in spiders [6]. Tests 
with Pepsis mexicana venom showed metalloproteinase and 
hyaluronidase activity and also demonstrated possible specificity 
in paralyzing spiders since the venom caused paralysis in 
lepidopteran larvae [7].

The proteomics study relates the total or fraction of proteins 
in an organism that are expressed under external influences at 
a given time to their respective cellular functions [8, 9]. Modern 
methods of proteomic analysis, such as shotgun label-free 
proteomics, where the digestion and analysis of the protein 
pool occur without prior separation, allow, in addition to the 
identification, the quantitative comparison of the set of proteins 
in independent biological samples [10]. Different mass analyzers 
tend to modify the results found, for example, IT-ToF, besides 
performing multiple-stage mass spectrometry, presents a higher 
sensitivity and selectivity, possessing also a high precision and 
mass resolution (10,000 to 1000 m/z), thus allowing a larger 
amount of qualitative data to be generated in a single analysis 
[11]. Q-ToF can generate data in a short time (≥ 20 spectra/s), 
mass accuracy in the range of ≤ 5 ppm, and a resolution in the 
10,000. The LTQ has a lower accuracy than the analyzers already 
mentioned, in the range of 100 ppm, but its resolution allows it 
to perform high-throughput analysis [12, 13].

The use of complementary analytical platforms, depending on 
the reproducibility of each platform, can identify different sets 
of peptides in shotgun analyses, where the LTQ and Q-ToF mass 
analyzers showed a data overlap in the range of 50-60% [14]. So, 
our paper aimed to make an extensive proteomic characterization 
of Pepsis decorata venom that, besides contributing to the 
knowledge regarding the protein constituents of this venom, 
may help the evolutionary knowledge of its toxin arsenals. 
The proteomic analyses were performed on four treatments: 
crude venom, reduced and alkylated venom, trypsin-digested 
venom, and chymotrypsin-digested venom. The venoms were 
analyzed on three different mass spectrometers: Electrospray-

Ion Trap-Time of Flight (ESI-IT-TOF), Electrospray-linear triple 
quadrupole (ESI-LTQ), and Electrospray-quadrupole-Time of 
Flight (ESI-Q-TOF). 

Methods
Biological material 
P. decorata females (twenty specimens) were captured on the 
campus of the State University of Feira de Santana (UEFS), in 
the city of Feira de Santana, state of Bahia (12°16’00” S and 
38°58’00” W Authorization SISBIO 62813), when foraging flowers 
or tarantulas. Catch and venom extraction was carried out 
according to [15].

Figure 1. (A) Female Pepsis decorata feeding on pollen from a Mimosoideae 
plant. One can notice the spots on the wings and the bluish-black coloration. 
(B) Female Pepsis decorata in captivity feeding on a mixture of honey, sucrose, 
and water.
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Reagents
All reagents were purchased from Sigma-Aldrich (MO, USA) 
unless otherwise stated. Sigma-Aldrich Trypsin singles 
(proteomic grade) were employed in this study. 

Sample preparation
Crude venom (experimental condition 1)

About 0.65 mg of P. decorata venom was solubilized in 0.1% 
formic acid and centrifuged at 1,000 g for 10 min. The supernatant 
was collected and reserved for further processing or direct 
proteomic analyses. Sample code: XP1.

Reduced and alkylated venom (experimental condition 2)

Sample XP1 was incubated with 8 M urea (in 100 mM Tris-
HCl, pH 8.5) and Tris(2-carboxyethyl)phosphine hydrochloride 
(TCEP) (dissolved in water) (3 mM, final concentration) for 1h, 
at room temperature; then, Iodoacetamide (IAA, dissolved in 
water) (10 mM final concentration) was added and the sample 
was incubated for 1h, protected from light. Sample code: XP2.

Trypsin-digested reduced and alkylated venom (experimental 
condition 3)

Sample XP2 was incubated with 100 mM Tris-HCl (pH 8.5) 
(to dilute urea to 2M) and 10 µL trypsin (10 ng.µL-1 in 100 mM 
Tris-HCl, pH 8.5) at 30°C overnight. Finally, the enzymatic 
reaction was stopped by adding 50% acetonitrile (ACN) / 5% 
trifluoroacetic acid (TFA) and the sample was dried. Sample 
code: XP3.

Chymotrypsin-digested reduced and alkylated venom 
(experimental condition 4)

Sample XP2 was incubated with 100 mM Tris-HCl (pH 8.5) (to 
dilute urea to 2M) and 10 µL chymotrypsin (20 ng.µL-1 in 100 
mM Tris-HCl, pH 8.5) at 30°C overnight. Finally, the enzymatic 
reaction was stopped by adding 50% ACN / 5% TFA and the 
sample was dried. Sample code: XP4.

Mass spectrometry analyses
IT-TOF

An Electrospray-Ion Trap-Time of Flight (ESI-IT-TOF) 
(Shimadzu Co., Japan) equipped with a binary Ultra-Fast Liquid 
Chromatography system (UFLC, 20A Prominence, Shimadzu) 
was employed. Samples were loaded in a C18 column (Discovery 
C18, 5 μm; 50 × 2.1 mm) in a binary solvent system: (A2) water/
acetic acid (999/1, v/v) and (B2) ACN/water/acetic acid (900/99/1, 
v/v/v). The column was eluted at a constant flow rate of 0.2 
mL.min−1 with a 0 to 40% gradient of solvent B2 over 35 min. The 
eluates were monitored by a Shimadzu SPD-M20A PDA detector 
before introduction into the mass spectrometer. The interface 
voltage was adjusted to 4.5 KV and the capillary voltage was 1.8 
KV, at 200 °C. MS spectra were acquired under positive mode 
and collected in the 350-1400 m/z. MS/MS spectra were collected 
in the 50-1950 m/z range. Instrument control, data acquisition, 

and data processing were performed with LabSolutions (LCMS 
solution 3.60.361 version, Shimadzu).

Q-TOF

An Electrospray-quadrupole-Time of Flight (ESI-Q-TOF) 
(Micromass, UK) equipped with a binary Ultra-Performance 
Liquid Chromatography system (UPLC, Acquity, Waters, MA, 
USA) was employed. Samples (5 μl) were separated on a C18 
column, using the following mobile phase: (A) 0.1% Formic acid 
(FA) (1:999, v/v) and (B) 0.1% FA in 90% Acetonitrile (ACN) 
(1:900:99, v/v/v). The gradient condition was: 2% B in 0-5 min; 
2-40% B in 5-60 min, under a flow rate of 10 µL per minute. The 
mass spectrometry (MS) was equipped with a locked ESI probe 
and operated in positive mode (ESI+). The electrospray capillary 
voltage was 3.1 kV, with a cone voltage of 113 V. The cone and 
desolvation gas flows were 185 and 600 l h−1, respectively. The 
desolvation temperature was 150°C. MS scans were acquired at 
350-1600 mass charge rate (m/z) and MS/MS scans at 50-2000 
m/z. The collision energy of the MS/MS analysis was 10-10.6 
eV. The software selected automatically ions with a threshold 
intensity of ≥ 10 for fragmentation. 

LTQ

The tryptic peptides were extracted by zip tip C-18 (Merck 
Millipore, Germany), dried, and then dissolved into 0.1% 
acetic acid for LC-MS/MS analysis, performed in LTQ-XL mass 
spectrometer (Thermo Fisher Scientific, USA). Sample aliquots 
were separated by a C-18 column, on a NanoLC-1D system 
(Eksigent). The elution was performed by a linear gradient of B 
over A, from 0 to 30% in 45 min, 30–80% in 10 min, and 80% of 
B in 5 min, under a flow rate of 600 mL per minute. The solvents 
were: A – water containing 0.1% acetic acid and B – acetonitrile 
containing 0.1% acetic acid.

Data Processing
Software

Peaks Studio V7.0 (BSI, Canada) was used for data processing. 
LCD Shimadzu raw data were converted (LCMS Protein Postrun, 
Shimadzu) to MGF files prior to Peaks analyses. Micromass and 
Thermo RAW files were directly loaded into Peaks.

Proteomic Identification

An Arthropoda (taxid:6656) protein database was built by 
retrieving all UniProt entries associated with this taxon. The 
raw processed data (according to 3.2.1) were analyzed against 
the custom database by Peaks default algorithm as well as Peaks 
PTM and Spider algorithms. The Spider proteomic identification 
was chosen for data interpretation. Enzyme specificity (trypsin, 
chymotrypsin, or none), fixed (none or carbamidomethyl 
cysteine) and variable (none or oxidized methionine) amino 
acid modifications, maximum missed cleavages (2), maximum 
variable PTMs per peptide (3) and non-specific cleavage (both) 
parameters were set according to each experimental condition. 
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Results 
IT-TOF analysis 
To study the proteins present in P. decorata venom, we performed 
a classical proteomic approach based on chymotrypsin or trypsin 
digestion. Tables 1-3 combine the top 5 proteins identified, 
considering the different mass spectrometers and experimental 
conditions. Regardless of the instrument, most of the identified 
proteins were classified as housekeeping proteins. Besides, we 
identified several uncharacterized proteins. Figures 2-4 present 
the compilation of all identified proteins, using a common color 
code for better data visualization. The pie charts were conceived 
as follows: in the three figures, the left pie is divided between 
uncharacterized proteins (gray) and annotated proteins (green), 
according to the UniProt. The annotated protein slice was then 
subdivided according to the following annotated functions 
(also based on UniProt): housekeeping proteins (light blue), 
hydrolases (red), oxidoreductases (yellow), ribonucleoproteins 
(blue), transferases (orange) and toxins (pink).

The overall graphic interpretation of the IT-TOF mass 
spectrometric analyses of the P. decorata venom (XP1-4) is 
presented in Figure 2. One can observe that roughly ⅔ of the 
identified proteins are UniProt annotated proteins. Within this 

dataset, 16% are hydrolases. We also found proteins with other 
functions such as regulation of alternative splicing, bifunctional 
arginine demethylase, and lysyl-hydroxylase, proteins responsible 
for regulating post-translational modifications, and protein-
tyrosine sulfotransferase. We also found several proteins 
responsible for glucose metabolism like Glyceraldehyde-3-
phosphate dehydrogenase, Glucose dehydrogenase, Pyruvate 
kinase, and Alanine aminotransferase. 

Q-TOF analysis
Table 2 lists all the de novo Q-TOF sequenced peptides for 
XP1 and 2, based on the same rationale already presented. 
Following the proposed scheme, trypsin and chymotrypsin-
based proteomic analyses (XP3 and 4) were performed. The 
identified proteins are listed in Table 2, alongside the proteomic 
identification for XP1 and 2. One can observe that the proteomic 
interpretation of XP1 and 2 data yielded high-scored identified 
proteins; however, only cytoskeletal and housekeeping molecules 
(tubulin, mainly). Q-TOF XP3, on the other hand, led to the 
identification of two very interesting – from a Toxinology 
perspective – proteins: a Kunitz inhibitor and an angiotensin-
converting enzyme (ACE).

Figure 2. Molecular function keyword1 percentage distribution of the proteomic2 identified proteins present in the Pepsis decorata crude venom, as analyzed by 
the IT-TOF mass spectrometer. 1 According to the Gene Ontology (GO) project. 2 The proteomic identification was performed on the reduced, alkylated, and 
trypsin-digested crude venom. Color code: (Gray) uncharacterized proteins; (Green) Proteins with GO annotation. (Blue) Ribonucleproteins; (Red) Hydrolases; 
(Orange) tranferase; (Yellow) Oxidoreductases; (Light blue) others.
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Table 1. Summarized§ proteomic identification of venom components of Pepsis decorata venom, as identified by ESI-IT-TOF mass spectrometry, under different 
experimental conditions.

Result Peptide(s) Identified Protein

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm5 Description Organism

A0A1W6EVV2_9HYME 38.01 3 R.QNWASLTPYK.D 38.01 3.4 Hyaluronidase Ampulex compressa

A0A1B0CWQ4_LUTLO 36.43 2 C.PPPPNVPAV.S 36.43 -32.5 Uncharacterized 
protein Lutzomyia longipalpis

A0A2A3EQT3_APICC 30.59 4 L.TDSITL.S 30.59 5.3 COPII coat assembly 
protein Apis cerana cerana

A0A0A9XY89_LYGHE 29.50 4 A.VPEAY.K 29.50 59.2
Bifunctional arginine 
demethylase and 
lysyl-hydroxylase

Lygus hesperus

A0A0L0CEB7_LUCCU 28.69 4 E.GSFERW.Y 28.69 2.5 Papilin Lucilia cuprina

A0A0A9X7A0_LYGHE 27.47 4 L.KAAATL.E 27.47 1.1 Putative cytosol 
aminopeptidase Lygus hesperus

A0A182SXW9_9DIPT 26.37 3 S.LTVENR.K 26.37 3.1 Uncharacterized 
protein Anopheles maculatus

A0A2A3EK85_APICC 26.27 4 F.DLSSY.R 26.27 2.4 Protein-tyrosine 
sulfotransferase Apis cerana cerana

A0A2A3EFD7_APICC 25.97 2 I.TDSLLT.F 25.97 59.9 Hemolymph protein Apis cerana cerana

A0A0P5SWM5_9CRUS 25.56 2 E.TNSPVPT.S 25.56 29.8 Ubiquitin-associated 
protein Daphnia magna

A0A2A3EBV7_APICC 25.55 2
L.YIGLE.C 17.51 2.0 Cell division cycle 

protein Apis cerana cerana
M.LSAAE.E 16.08 58.4

A0A182N577_9DIPT 25.11 3 G.GRNVLRQGDR.T 25.11 -13.2 Uncharacterized 
protein Anopheles dirus

A0A1A9Y4N1_GLOFF 23.84 3 M.YTEHLR.T 23.84 13.3 Uncharacterized 
protein

Glossina fuscipes 
fuscipes

W5JTY5_ANODA 23.83 2 S.RAPAQH.G 23.83 -29.6 Uncharacterized 
protein Anopheles darlingi

A0A0L7LEM8_9NEOP 23.54 1 R.CKMDTER.K 23.54 -23.2
Sterile alpha and 
TIR motif-containing 
protein 1

Operophtera brumata

A0A0M8ZN23_9HYME 23.40 1 L.TPNVSPT.L 23.40 119.4

Cysteine and 
histidine-rich 
domain-containing 
protein

Melipona 
quadrifasciata

K7J505_NASVI 23.40 1 G.TPGGSVPT.I 22.61 -38.6 Uncharacterized 
protein Nasonia vitripennis

A0A0M8ZQP9_9HYME 22.87 3 K.C*NVKFNR.D 22.87 -80.0 Uncharacterized 
protein

Melipona 
quadrifasciata

A0A2A3EFD7_APICC 22.04 1 I.TDSLLT.F 22.04 133.6

Putative 116 kDa 
U5 small nuclear 
ribonucleoprotein 
component

Apis cerana cerana

A0A1Y1MNG8_PHOPY 22.09 1 Q.FYPPPF.S 22.09 -26.8 Uncharacterized 
protein Photinus pyralis

§This table presents the top 5 identified proteins for each experimental condition. The full table is provided as supplemental material. 1Protein accession; 
2PEAKS protein score; 3eXPerimental condition (1 = crude venom; 2 = reduced and alkylated venom; 3 = trypsin-digested reduced and alkylated venom; 4 = 
chymotrypsin-digested reduced and alkylated venom); 4PEAKS peptide score; 5experimental error; C* = carbamidomethyl Cysteine. Proteins ordered according 
to decreasing score



Layout and XML SciELO Publishing Schema: www.editoraletra1.com.br | letra1@editoraletra1.com.br

Nolasco et al.   J Venom Anim Toxins incl Trop Dis, 2023, 29:e20220090 Page 6 of 15

﻿ ﻿

Table 2. Summarized§ proteomic identification of venom components of Pepsis decorata venom, as identified by ESI-Q-TOF mass spectrometry, under different 
experimental conditions.

Result Peptide(s) Biological 
contextualization

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm Description Organism

A0A023ETG9_AEDAL 128.71 1

K.GHYTEGAELVDSVLDVVRK.E 68.54 -32.4

Tubulin beta 
chain

Aedes 
albopictus

K.MSSTFIGNSTAIQEIFKR.I 65.32 -32.6

K.GHYTEGAELVDSVLDVVR.K 55.51 -18.0

R.YLTVAAIFR.G 36.00 -21.0

A0A0P5ZYN7_9CRUS 126.44 1

R.FDGALNVDLTEFQTNLVPYPR.I 63.91 -15.4

Tubulin alpha 
chain

Daphnia 
magna

R.GHYTIGKEIIDLVLDR.I 53.63 -30.0

R.LISQIVSSITASLR.F 52.65 -17.5

R.AVFVDLEPTVIDEVR.T 45.87 -18.4

R.FDGALNVDLTEFQ*TNLVPYPR.I 24.08 -12.7

R.LISQ*IVSSITASLR.F 22.80 -19.1

R.GHYTIGKEIIDLVLDRIR.K 20.91 -34.4

A0A0P5F7I2_9CRUS 123.31 1

R.VALTGLTVAEYFRDQEGQDVLLFIDNIFR.F 92.63 -8.2
ATP synthase 
subunit beta

Daphnia 
magna

D.PAPATTFAHLDATTVLSR.A 38.04 -25.0

K.TVLIMELINNVAK.A 34.97 -12.1

VKT19_ANOSM 67.94 3 R.FTFGGC*EGNDNNFMTR.R 67.94 -17.7
Kunitz-type 
serine protease 
inhibitor

Anoplius 
samariensis

A0A1W7R9B8_9SCOR 63.31 2
R.LISQIVSSITASLR.F 51.37 -17.9 Tubulin alpha 

chain
Hadrurus 
spadixR.FDGALNVDLTEFQTNLVPYPR.I 23.88 -19.3

A0A0P6CCE9_9CRUS 58.88 1
K.VIHDNFGIVEGLMTTVHAITATQK.T 50.94 -31.0 Glyceraldehyde-

3-phosphate 
dehydrogenase

Daphnia 
magnaR.VVDLMAYMASKE 15.88 -23.3

A0A293LN19_ORNER 51.75 1 M.AAVIEYLTAEILELAGNAAR.D 51.75 -29.3 Histone H2A Ornithodoros 
erraticus

A0A0N0BEI9_9HYME 48.38 3
K.IISDMENIYSTAK.I 35.63 -15.8 Angiotensin-

converting 
enzyme

Melipona 
quadrifasciataK.C*DLALEPELTELLMK.S 25.49 -27.5

E2BSK5_HARSA 39.35 3 K.NLGGC*TAHHGMAYHR.G 39.35 -31.4 Glucose 
dehydrogenase

Harpegnathos 
saltatory

E0W1G3_PEDHC 38.97 2 R.VALTGLTVAEYFRDQEGQDVLLFIDNIFR.F 38.97 -24.5 ATP synthase 
subunit beta

Pediculus 
humanus

A0A224Y123_9ACAR 31.46 2 L.TPGGSVTP.S 31.46 15.3 7DB family 
member

Rhipicephalus 
zambeziensis

A0A1V9X4S6_9ACAR 31.12 4 L.FVGLPLEM*.L 31.12 21.4 Rhomboid-like 
protein

Tropilaelaps 
mercedesae

A0A212FPD9_DANPL 29.77 3 R.YPSETEIVTYTK.H 29.77 -24.2 Uncharacterized 
protein

Danaus 
plexippus 
plexippus

A0A0J7KCY6_LASNI 26.74 4 L.AVTHQNIVSGF.E 26.74 -35.0 Kinesin family 
member 21a Lasius niger

A0A0M9A8V0_9HYME 26.73 4 Y.WNVPTFM.C 26.73 -12.4 Hyaluronidase Melipona 
quadrifasciata

Q2Q0U9_9DIPT 26.58 4 Y.VAGPVM*.T 26.58 45.8 Glutathione 
S-transferase

Anopheles 
sacharovi

A0A1B6CHY3_9HEMI 24.65 2 R.TDLSGIT.L 24.65 24.6 Uncharacterized 
protein

Clastoptera 
arizonana
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LTQ analysis

As a final attempt to enhance the biological meaning of the 
data derived from the available samples, we submitted XP1-4 
to an LTQ-ETD mass spectrometer coupled to a UPLC. Despite 
the less accurate mass measurement – in comparison to the 
TOF MS’s already utilized – the ETD fragmentation would 
provide much richer MS2 spectra that would be better explored 
by Peaks Studio. In LTQ analysis, following the workflow already 

employed for the previous analyses, XP1-4 data were submitted 
to proteomic identification. The top-scored identified proteins are 
listed in Table 3. XP1 yielded very high-scored identified proteins; 
however, a Na+/K+ channel ATPase, tubulin (α and β), and two 
metabolic enzymes (Pyruvate kinase and Glyceraldehyde-3-
phosphate dehydrogenase). XP2 – the reduced and alkylated 
sample – led to the identification of the same Na+/K+ channel 
ATPase, two histones (H2 and H4), an ATP carrier protein, 
and an ATP synthase. 

Result Peptide(s) Biological 
contextualization

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm Description Organism

M9VSG2_9ARAC 24.1 2 K.LC*YVALDFEQEMATAASSSSLEK.S 24.10 -31.0 Actin Tylogonus 
yanayacu

A0A0P5A3B7_9CRUS 21.89 3 K.ALAFAK.V 21.89 -1.9
Pentatricopeptide 
repeat-containing 
protein 2

Daphnia 
magna

§This table presents the top 5 identified proteins for each experimental condition. The full table is provided as supplemental material. 1Protein accession; 
2PEAKS protein score; 3eXPerimental condition (1 = crude venom; 2 = reduced and alkylated venom; 3 = trypsin-digested reduced and alkylated venom; 4 = 
chymotrypsin-digested reduced and alkylated venom); 4PEAKS peptide score; 5experimental error; C* = carbamidomethyl Cysteine. Proteins ordered according 
to decreasing score

Table 2. Cont.

Table 3. Summarized§ proteomic identification of venom components of Pepsis decorata venom, as identified by LTQ mass spectrometry, under different 
experimental conditions.

Result Peptide(s) Biological 
contextualization

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm5 Description Organism

A0A087ZTA6_APIME 195.71 1

K.KADIGVAMGIAGSDVSK.Q 83.33 -15.4

Sodium/
potassium-
transporting 
ATPase subunit 
alpha

Apis 
mellifera

K.LTLKAEELVLGDVVEVK.F 79.02 661.7

K.KADIGVAM*GIAGSDVSK.Q 78.72 47.7

R.MGAIVAVTGDGVNDSPALK.K 77.71 -48.5

K.SVGIISEGNETVEDIAQR.L 73.56 525.9

R.TDNLEDLKQELDIDFHK.I 54.10 7.8

K.NLEAVETLGSTSTIC*SDK.T 41.97 117.0

K.S(+43.01)VGIISEGNETVEDIAQR.L 41.36 561.7

K.GVVIC(+114.04)CGDQTVMGR.I 33.79 -72.9

R.EVNGDASEAALLK.C 31.11 856.3

R.LNIPVSEVNPR.E 18.31 -237.8

A0A131ZV00_
SARSC 138.7 1

R.AFVHWYVGEGMEEGEFSEAR.E 73.99 2.2

Tubulin alpha 
chain

Sarcoptes 
scabiei

R.LIGQIVSSITASLR.F 60.25 372.6

R.AVC*MLSNTTAIAEAWAR.L 50.61 17.0

R.AVCMW(sub L)SNTTAIAEAWAR.L 42.44 629.3

K.AYHEQLTVGEITNACFEPQNQMVK.C 35.49 392.3

R.A(+57.02)VCMLSNTTAIAEAWAR.L 19.84 423.1

R.AVC(+209.02)MLSNTTAIAEAWAR.L 16.76 509.9



Layout and XML SciELO Publishing Schema: www.editoraletra1.com.br | letra1@editoraletra1.com.br

Nolasco et al.   J Venom Anim Toxins incl Trop Dis, 2023, 29:e20220090 Page 8 of 15

﻿ ﻿

Result Peptide(s) Biological 
contextualization

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm5 Description Organism

E2DV16_9HYME 117.8 3

K.NLAFFSTNAVEGTAK.G 59.61 523.3 Sodium/
potassium-
transporting 
ATPase subunit 
alpha

Townsendiella 
sp.

K.NLEAVETLGSTSTIC*SDK.T 55.70 455.0

R.AEELVLGDVVEVK.F 50.45 742.1

R.M*TVAHMWFDNQIIEADTTEDQSGLQYDR.T 38.71 68.6

T1GUQ6_MEGSC 117.75 1

K.MSATFIGNSTAIQELFK.R 68.73 53.0

Tubulin beta 
chain

Megaselia 
scalaris

R.YLTVAAIFR.G 45.92 449.0

K.GHYTEGAELVDSVLDVVR.K 30.47 628.1

K.GHYTEGAELVDSVLDVVRK.E 30.25 407.1

R.INVYYNEASGGK.Y 26.20 59.7

H.SLGGGT(+79.97).G 18.60 2000.2

A0A088A5I8_APIME 117.06 1

K.GTSSIVYVDYENITK.V 71.73 596.8

Pyruvate kinase Apis 
mellifera

R.TGLLEGGGAAEVELKK.D 53.71 85.9

K.AIPPIDATHAVAIAVVEASVK.C 32.74 -58.4

K.TISHALYAQTQLDHVC*ALDIDAPIGAVR.L 30.21 391.8

V9IK50_APICE 115.31 1

K.AGAEYIVESTGVYTTK.E 80.18 -14.2

Glyceraldehyde-
3-phosphate 
dehydrogenase

Apis cerana

K.VIHDNFEIVEGLMTTVHAVTATQK.V 38.63 367.9

R.VPVHN(+.98)VSVVDLTVR.L 32.30 729.7

R.VPVHNVSVVDLTVR.L 30.21 420.3

K.GILGYTEDEVVSSDFIGDDHASIFDAK.A 20.19 289.0

V9I6A9_APICE 113.19 2

K.QAADMILLDDNFASIVTGVEEGR.L 62.72 397.2
Sodium/
potassium-
transporting 
ATPase subunit 
alpha

Apis cerana

K.LTLKAEELVLGDVVEVK.F 58.42 447.0

K.AEELVLGDVVEVK.F 46.90 -204.1

R.MTVAHM*WFDNQIIEADTTEDQSGLQYDR.T 22.50 364.3

K.LMLRAA(sub E)ELVLGDVVEVK.F 19.21 465.5

E2DV16_9HYME 113.14 3

K.NLAFFSTNAVEGTAK.G 59.61 523.3

Tubulin alpha 
chain

Anopheles 
atroparvus

K.NLEAVETLGSTSTIC*SDK.T 55.70 455.0

R.AEELVLGDVVEVK.F 50.45 742.1

R.M*TVAHMWFDNQIIEADTTEDQSGLQYDR.T 38.71 68.6

K.LMLRAA(sub E)ELVLGDVVEVK.F 19.21 465.5

A0A0P6A3S1_ 
9CRUS 92.88 2

R.KESYSVYVYK.V 44.49 -24.7

Histone H2B Daphnia 
magna

K.Q(-17.03)VHPDTGISSK.A 41.98 -120.8

K.HAVSEGTK.A 41.46 950.0

R.LAHYNKR.S 25.90 592.2

K.Q(+27.99)VHPDTGISSK.A 21.77 929.7

K.ESYSVYVYK.V 21.62 874.9

K.RSTITSR.E 16.66 842.3

V9IK47_APICE 83.52 2

K.DFLAGGVAAAISK.T 53.51 -165.5 ADP,ATP 
carrier protein 
2

Apis ceranaR.YFVGNLASGGAAGATSLC*FVYPLDFAR.T 44.88 332.4

R.LAADVGK.A 22.71 1358.1

Table 3. Cont.
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Result Peptide(s) Biological 
contextualization

Protein1 -10lgP2 XP3 Sequence -10lgP4 ppm5 Description Organism

A0A182FLZ7_
ANOAL 82.6 2

R.DNIQGITKPAIR.R 37.13 738.5

Histone H4 Anopheles 
albimanus

K.TVTAM*DVVYALK.R 33.79 747.8

K.TVTAM*DVVYALKR.Q 30.97 -6.3

R.TLYGFGG 30.03 -39.9

R.DNIQGITKPAIR(+14.02).R 26.53 -83.7

R.DAVTYTEHAK.R 24.64 -116.7

R.TLY(+31.99)GFGG 22.56 -37.3

R.DNIQGITK.P 21.75 -116.8

R.ISGLIYEETR.G 15.23 -111.5

A0A0P6CE35_ 
9CRUS 77.77 3

M.T(+42.01)DAAVSFAK.D 41.70 -120.0

ADP/ATP 
translocase

Daphnia 
magna

G.FNVSVQGIIIYR.A 35.92 17.5

K.IYKSDGIK.G 27.01 -58.0

K.TAVAPIER.V 20.32 -65.7

R.MM*M*QSGR.K 20.09 776.6

A0A1W4W573_
AGRPL 74.53 3

K.QVAQQEAQR.A 40.62 153.3

Prohibitin-2 Agrilus 
planipennis

K.Q(-17.03)VAQQEAQ*R.A 34.21 104.9

Q.Q(-17.03)KIVQAEGEAEAAK.M 33.78 -46.6

R.NPGYLK.L 32.94 -166.1

K.EYTAAVEAK.Q 24.15 323.4

K.Q(-17.03)VAQQEAQR.A 20.21 -46.3

V9IID0_APICE 70.05 3 K.TNMLLQLDGTTAIC*EDIGR.Q 70.05 -78.4

Mitochondrial-
processing 
peptidase 
subunit beta

Apis cerana

A0A087ZQI5_APIME 69.91 2
K.NIQADEMVEFSSGLK.G 61.14 -81.2 ATP synthase 

subunit alpha
Apis 
melliferaR.LTELLK.Q 17.53 -109.0

L7M2G6_9ACAR 48.98 4 F.VTIEGSVSSGVDL.T 48.98 20.5
Putative 
pseudouridine 
synthase

Rhipicephalus 
pulchellus

A0A0L7LF47_9NEOP 40.41 4 L.QGASSY.L 40.41 -151.0

Putative 
ribosomal RNA 
methyltransferase 
NOP2

Operophtera 
brumata

A0A0J7L789_LASNI 28.97 4 Y.GLEKF.W 28.97 53.3 La-related 
protein Lasius niger

A0A0P5PN82_9CRUS 27.72 4

S.HSSGY.G 19.20 -263.0 FERM and 
PDZ domain-
containing 
protein

Daphnia 
magnaT.SSLLS.D 17.03 -2450.2

A0A1D2MK27_
ORCCI 27.57 4 L.H(sub I)PVPEYPL.Y 27.57 95.3 Alanine 

aminotransferase
Orchesella 
cincta

§This table presents the top 5 identified proteins for each experimental condition. The full table is provided as supplemental material. 1Protein accession; 
2PEAKS protein score; 3eXPerimental condition (1 = crude venom; 2 = reduced and alkylated venom; 3 = trypsin-digested reduced and alkylated venom; 4 = 
chymotrypsin-digested reduced and alkylated venom); 4PEAKS peptide score; 5experimental error; C* = carbamidomethyl Cysteine. Proteins ordered according 
to decreasing score.

Table 3. Cont.
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Once again, only housekeeping molecules. The ‘classical’ 
trypsin-based proteomic analyses (XP3) led to identifying the 
Na+/K+ channel ATPase, tubulin, ADP/ATP translocase, and 
prohibitin. This protein acts as a mediator of transcriptional 
repression by nuclear hormone receptors via recruitment of 
histone deacetylases. XP4, the chymotrypsin-digested sample, 
was responsible for the identification of Putative pseudouridine 
synthase, Putative ribosomal RNA methyltransferase NOP2, 
La-related protein (a protein possibly related to the regulation 
of translation, according to the UniProt annotation), FERM 
and PDZ domain-containing protein (present in the tight 
junctions), and one Alanine aminotransferase. The complete 
list of identified proteins is provided as supplemental material. 

The overall graphic interpretation of the LTQ mass 
spectrometric analyses of the P. decorata venom (XP1-4) is 
presented in Figure 3. One can observe that the LTQ rate of 
identification of annotated proteins is around 50%. Among the 

annotated proteins (green slice), the larger pizza is color-coded 
just like the other MS analyses, i.e., red: hydrolases; yellow: 
oxidoreductases; blue: ribonucleoproteins, pink: toxins and 
light blues: others. The toxin identified in this experiment is an 
antimicrobial peptide. The combined XP1-4 proteomic analyses 
led to the identification of 584 proteins when using the LTQ. 
The complete list is supplied as supplemental material.

Tubulin (α and β chains) was the most identified protein by 
the Q-TOF and LTQ, whereas other structural proteins, such 
as Papilin, Cell division cycle protein, and COPII coat assembly 
protein were mainly identified by the IT-TOF. Moreover, many 
nuclear proteins (ribonucleoproteins and histones) were also 
identified in the venom proteome. 

All results were submitted to the jPOST repository, under the 
PXD040919 for ProteomeXchange and JPST002090 for jPOST 
accession numbers [16].

Figure 3. Molecular function keyword1 percentage distribution of the proteomic2 identified proteins present in the Pepsis decorata crude venom, as analyzed 
by the LTQ mass spectrometer. 1 According to the Gene Ontology (GO) project. 2 The proteomic identification was performed on the reduced, alkylated, and 
trypsin-digested crude venom. Color code: Gray: uncharacterized proteins; Green: Proteins with GO annotation. Blue: Ribonucleoproteins; Red: Hydrolases; 
Orange: transferase; Yellow: Oxidoreductases; Light blue: others; Pink: Venom-related molecules (antimicrobial).

Discussion 
IT-TOF analysis 
Venom analysis in IT-ToF mass spectrometer reached 16% of 
identified proteins as hydrolases. These enzymes are common in 
parasitic wasp venom, being in some cases the most abundant 
protein group [17–19]. Since hydrolases are diverse, e.g. 

proteases, hyaluronidases, phosphatases, nucleotidases, and 
phospholipases, they have a range of functions such as paralysis, 
facilitation of poison spreading, pain induction, or antimicrobial 
activity [20–22]. 

This approach led us to the identification of the toxin 
hyaluronidase. This enzyme is an essential constituent of social 
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and solitary wasp venom, acting on hyaluronic acid hydrolysis 
(an important biopolymer constituent of the extracellular matrix) 
and facilitating the diffusion of molecules in the sting site to 
the circulation, it is an enzyme known as “spreading factor”, as 
it degrades hyaluronic acid allowing the rapid spread of venom 
compounds through the interstitial space [23, 24]. In addition, 
hyaluronic acid fragments are one of the major allergens from 
wasp venom and are associated with other systemic responses in 
accidents related to humans [24–26]. In bee venom, this enzyme 
has oligosaccharides linked to asparagine [27]. Hyaluronidase is 
an allergenic factor in wasp venoms and is capable of inducing 
serious anaphylactic reactions in humans, causing death [28–30]. 

The other proteins found are part of the metabolism of 
insects, two of which can play an important role in the action 
of the venom. The identified protein Papilin, which regulates 
the ontogenic development of insects, and can also modulate 
metalloproteases [31], this protein has already been found 
expressed in the arachnids’ venom gland [32, 33] and may play 
a role in the innate immune of insects [34, 35]. and Sterile Alpha 
and TIR Motif-Containing Protein 1, which is an important 
protein for the immune response against bacterial infections 
[36, 37]. This protein may be involved in the venom’s mechanism 
of action, helping the host spider’s immune system to modulate 
defense against possible bacterial infections.

Q-TOF analysis
In Q-Tof analysis, from a Toxinology perspective, it is noteworthy 
to mention the identification of one Hyaluronidase, one Kunitz 
peptidase inhibitor (annotated as a toxin), and one ACE 
(Angiotensin-converting enzyme). Serine peptidase inhibitors 
are classical toxins found in the most diverse groups of venomous 
animals [38–42]. Kunitz inhibitors are part of serine peptidase 
inhibitors and present about 60 amino acid residues and three 
disulfide bonds in their structure; also, they are characterized 
by the inhibitory activity of trypsin and/or chymotrypsin The 
function that the Kunitz inhibitor has in the venom depends on 
the animal group in which it is found: it can act as trypsin and/
or chymotrypsin blockers in the venom or blocking potassium 
channels [43, 44].	

Kunitz inhibitors have been identified in some social and 
solitary wasps. In Vespa bicolor, a bicolin, which belongs to 
BPTI/Kunitz inhibitor family, was isolated and has thrombin-
inhibitory activity and anticoagulation function [45]. In the 
parasitic wasp Pimpla hypochondriaca, several molecules with 
homology to the Kunitz inhibitor have been identified, but their 
function has not been tested [46–48]. In solitary wasps, possible 
peptides were also identified belonging to the Kunitz inhibitor 
family, possibly functioning as an ion blocker helping in the 
paralysis of host spiders [49, 50]. 

Angiotensin-converting enzymes have been described in the 
venom of two parasitic wasps: Chelonus inanitus and Nasonia 
vitripennis. In Pimpla hypochondriaca, a strong ACE activity 
was identified and the enzyme was evidenced by western blot 

[51–53]. ACE is responsible for catalyzing the two C-terminal 
amino acids of Angiotensin I to transform it into Angiotensin II 
[54]. This enzyme has already been described in Drosophila and 
Anopheles, for example, and its function – rather than controlling 
‘blood’ pressure – would be the extracellular metabolism of 
peptide hormones, and a role in reproduction [55–58]. ACE may 
also be related to the metabolic inactivation of neuropeptides 
in the central nervous system of insects, and in processing 
precursor peptides in the wasp venom reservoir [51, 59]. XP4 
Q-TOF analyses (Table 2) successfully led to the identification 
of hyaluronidase, which had been already identified in the XP3 
IT-TOF scheme, corroborating the presence of this enzyme in 
the venom and its toxin-spreading associated function [25].

The 7DB Family Member is found in the tick saliva and 
may be involved in anti-hemostatic, anti-inflammatory, and 
immunomodulatory activities in the Ornithodoros parkeri, 
O. coriaceus, and O. savignyi species [60–63]. This protein 
does not yet have a well-characterized function and may play 
a role in the action of the wasp venom on the host spider The 
remaining top-scored proteins for this XP are housekeeping 
or uncharacterized.

The overall graphic interpretation of the Q-TOF mass 
spectrometric analyses of the P. decorata venom (XP1-4) is 
presented in Figure 4. One can observe that, differently from 
the IT-TOF analyses, only ~15% of the identified proteins (green 
slice) are annotated at the UniProt, the vast majority of the 
identified proteins are ‘uncharacterized’ proteins.

Among the annotated proteins (expanded pizza slice), and 
employing the same color code, one can observe that hydrolases 
and oxidoreductases were also identified. Interestingly, no 
ribonucleoproteins – which were abundant for the IT-TOF 
analyses – were identified. On the other hand, the pink slices 
call attention to the Kunitz inhibitor that is tagged either as a 
serine peptidase inhibitor or as a toxin. According to the UniProt 
annotation, this molecule “may exert inhibitory effects on serine 
proteases and on potassium and/or calcium channels and then 
participate in the long-term non-lethal paralysis on the prey”; 
therefore, the two keywords are associated with this molecule 
for both effects do lead to an imbalance in the physiology of the 
attacked organism, i.e., a toxin.

The augmented grey slice reflects an increase in the absolute 
number of identified proteins (51 for the IT-TOF vs 105 for the 
Q-TOF) and not a decrease in the identification of the annotated 
proteins. This fact is likely to be associated with the more sensitive 
chromatographic conditions (UPLC vs narrow-bore HPLC) and 
with the average longer fragmented peptides. Moreover, we have 
expanded the proteomics search to the Arthropoda phylum 
(~4M UniProt entries) and not limited it to the Insecta order 
(~3M) so that the Spider algorithm used by Peaks Studio would 
increase the number of identified proteins. The drawback of 
this approach is the ‘identification’ of several uncharacterized 
proteins that are basically automated translations of high 
throughput genetic sequencing.
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LTQ analysis

In LTQ analysis only housekeeping proteins are identified, but 
Histone H4 may play a role in host envenomation. The main 
role attributed to histones is that of transcription regulation, 
DNA repair, DNA replication, and chromosomal stability, but 
antimicrobial activities have also been reported, such as in 
shrimp Litopenaeus vannamei, where the mixture of histones 
HSB and H4 showed activities against Gram-Positive bacteria 
[64]. Histone H4 is also an important factor for parasitoid wasps, 
often endosymbiosis with bracovirus, being able to control 
the host’s immune system [65–70]. As it can also modify the 
chromosomal structure and the control of gene expression, it 
implies the epigenetic control of the host [66, 67]. 

Constituents of solitary wasp venom are different from those 
found in other groups of venomous animals. They can cause 
paralysis, and manipulate the metabolism, development, and 
behavior of their hosts. Many of these proteins have homology 
with common metabolic molecules in insects. In Nasonia 
vitripennis wasp, a joint study of transcriptomics and proteomics, 
revealed the functional groups present in its venom, which are: 
immune-related proteins, proteases and peptidases, protease 
inhibitors, DNA metabolism, glutathione metabolism, esterases, 
carbohydrate metabolism and recognition and binding proteins 
[53, 71, 72]. The occurrence of proteins with higher molecular 

mass that are structurally similar to enzymes of insect metabolism 
also reveals the similarity between Pepsis decorata venom and 
parasitic wasps venom [52, 71–75]. 

Conclusion
Applying this methodology, we identified more than 40 different 
proteins present in this wasp venom. Our work was the first to 
identify ACE in the venom of solitary wasps. Before, this enzyme 
had only been described in parasitic wasps. The effects of ACE 
and Kunitz inhibitors on Pepsis venom still need to be analyzed 
in vitro. Most of the proteins found are correlated with enzymes 
that act on normal insect metabolism and are usually found in the 
venom of parasitic wasps, showing the evolutionary proximity 
between the groups. Since studies with the venom of solitary 
wasps of the family Pompilidae identify peptides, peptidomics 
analysis is necessary to report on the importance of proteins 
and peptides in the paralysis process and host homeostasis.

Our results may signal the evolutionary link between these 
two groups, since biologically, this distinction between parasitic 
and solitary wasps is artificial. The comparison of the results 
herein presented shows that the overall interpreted data do not 
vary much depending on the instrumental setup, i.e., roughly 
were the same biological classes of proteins identified. On the 
other hand, individual results do vary and little superimposition 

Figure 4. Molecular function keyword1 percentage distribution of the proteomic2 identified proteins present in the Pepsis decorata crude venom, as analyzed by 
the Q-TOF mass spectrometer. 1 According to the Gene Ontology (GO) project. 2 The proteomic identification was performed on the reduced, alkylated, and 
trypsin-digested crude venom. Color code: (Gray) uncharacterized proteins; (Green) Proteins with GO annotation. (Red) Hydrolases; (Yellow) Oxidoreductases; 
(Light blue) others; (Pink) Venom-related molecules (toxins and protease inhibitors).
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among identified proteins occurs. Individually, each result does 
not invalidate the other; rather, they complement each other. 
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