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The shape of the surface of a rotating mass of water as a
variational problem

A forma da superficie de uma massa de agua girante como um problema variacional
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Variational methods have a long and remarkable role in theoretical physics. Few of our students when
first exposed to them fail to admire their elegance and efficacy in the formulation and solution of physical
problems. In this paper we apply the variational approach that leads to the Euler-Lagrange equations to
the determination of the shape of the surface of a mass of water that partially fills a cylindrical bucket
that rotates with constant angular velocity (Newton’s bucket). Here this approach will lead us to the
principle of minimization of the effective potential energy associated with the system. The effect of an
external pressure on the equilibrium shape is also taken into account and two models, the constant
pressure model and the linear model are discussed. The level of the discussion is kept accessible to
undergraduates taking an intermediate level course in classical mechanics.

Keywords: analytical mechanics, variational calculus, rotating bucket.

Métodos variacionais tém um longo e destacado papel na fisica tedrica. Poucos sdo os nossos estudantes
que quando apresentados pela primeira vez a estes métodos nao sao tomados de admiragdo por sua
elegéncia e eficiéncia na formulacdo e solucdo de problemas fisicos. Neste trabalho fazemos uso da
abordagem variacional que leva as equacoes de Euler-Lagrange na determinacao da forma da superficie
de uma massa de dgua que preenche parcialmente um recipiente cilindrico que gira com velocidade
angular constante (o balde de Newton). Aqui, essa abordagem nos levard ao principio de minimizagao da
energia potencial efetiva associada com o sistema. O efeito de uma pressdo externa sobre sobre a forma
de equilibrio também é levado em conta e dois modelos, o0 modelo da pressao constante e o modelo linear
sao discutidos. O nivel da discussao é acessivel aos estudantes de graduagao inscritos em um curso de
mecanica classica de nivel intermediario.

Palavras-chave: Mecéanica analitica, calculo variacional, balde girante.

1. The variational approach: A simple
example

We begin by illustrating the variational approach
with a simple example: The determination of the
shape of the free surface of liquid contained in a uni-
formly accelerated vessel, see Figure [} The applied
forces that can be associated with a potential energy
function are the weight and the atmospheric force
which by its turn is associated with atmospheric
pressure. If we suppose that the atmospheric pres- z=0 z=a/2 r=a
sure is uniform and the liquid incompressible the

Figure 1: A linear accelerated mass of water. The inclined
free surface of the water intercepts the leveled surface at
x=a/2.
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work done by atmospheric force during the defor-
mation of the liquid is null,

Watmosphere = / patmospheric dU - O (1)

On the other hand, in the non-inertial frame at-
tached to the accelerated vessel where the liquid is
at rest there is a field —a where « is the vessel’s ac-
celeration. Therefore, there are two contributions to
the effective potential energy, the gravitational po-
tential energy and the non-inertial potential energy.
Let us suppose that the vessel has a retangular bot-
tom whose sides are a and b. The height of the vessel
is H, hence the mass of the liquid is M = pabH,
where p is the density of the liquid. Let us introduce
coordinates x, y, and z attached to the vessel with
the origem placed at the lower left point and write
for an element of mass dM the differential potential
energy

dUgravitational - dMgZ - pgz d.%'dydz, (2)

which upon integrations reads

a b f(x)
pg/ d:l:/ dy/ zdz
0 0 0

a )12
_ pgbjﬁ [112)] dr. 3)

Ugravitational =

where f(z) is the shape of the free surface of the
liquid that we wish to determine. The differential
of the potential energy associated with the inertial
force is

AUsperil = dMax = pax dxdydz. (4)

Integrating this expression we obtain

a b f(z)
pa/ xdx/ dy/ zdz
0 0 0

= pab /Oa zf(z)dx. (5)

[jvincrt ial =

The effective potential energy UL geciive =
Uincrtial rea‘ds

Ugravitational +

Unscse =16 [ (§1F@ + aaf(@)) do.

The constraint is given by the condition that the
mass of water must be constant. However, if the
liquid is supposed to be incompressible we can state
also that its volume must be constant, that is
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abH:/Oada:/Obdy/of(w) dz
= b/oa f(z)dz. (7)

As we will see below this will allow us to identify
more easily the constraint forces. Before we proceed
with the determination of f(z) let us recall briefly
the variational approach to this type of problem.

Consider the functional

117 = [ Flf):al do (8)

where f(z) has at least a continuos first order deriva-
tive. The function f(z) that extremizes the func-
tional I[f] must satisfy the condition

T

o1lf) = [ Flf@) + n(@)ia) do
- [T Fls@paldi=0 O

where n(x) is an arbitrarily small perturbation added
to f(x) at each point x € [z, 23] that satisfies the
conditions

n(za) = n(zs) = 0. (10)
If we expand equation @ we obtain after an inte-
gration by parts

“ OF
I1f| = — =0. 11
ot = [ Gru@ds =0 ay)
Since n(z) is an arbitrary function it follows that
oF
— =0 12
o (12)

which is a simplified form of the Fuler-Lagrange
equation. Suppose now that we add a constraint
condition given by

/xb G[f(z),z] dx = constant. (13)

Because this constant does not affect the Euler—
Lagrange equation we are looking for we can set
it equal to zero. Following [2] we introduce the La-
grange multiplier A and write

'] :/ Flf(2), 2] do + A / Glf(2), 2] da.
’ ’ (14)
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Setting dI'[f] = 0 and proceeding as before we
obtain

OF oG

of of
This particular form of the Euler-Lagrange equa-
tion is sufficient to our purposes here. A more gen-
eral approach leads the standard form of the Euler-
Lagrange equation

0. (15)

oF d oF _
of dx Of"
where now F[f(z), f'(x), z], see [2]. It can be shown
that we can replace Cartesian coordinates for more

suitable generalized ones without modifying the
form of the Euler-Lagrange equation [2] .

(16)

Going back to our problem we see that

Flf(a)a) =b (%L F@F + pazf(e) + A (@)
(17)
where )\ is the Lagrange multiplier. Taking equation

into equation we obtain

(19)

The Lagrange multiplier can be interpreted as the
mean constraint forces per unit area on the surfaces
on which they are applied. Therefore,

(20)

Equation (20)) represents a straight line with a neg-
ative slope that intercepts the vessel walls at x =0
and x = a. At © = a/2 it intercepts the leveled free
surface of the water y = H, see Figure

2. The variational approach: The
rotating bucket

Consider now a vessel in the shape of a right cylinder
the radius of which is R partially filled with water
or some other liquid with uniform density p up to a
certain height H. Suppose that the container starts
to rotate with constant angular velocity w about
the symmetry axis perpendicular to the bottom of
the container and passing through its geometrical
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center. From now on we will label this axis as the z-
axis, see Figure 2] Suppose also for the moment that
the mass of water and the bucket rotate in vacuo.
The water initially remains at rest but little by little
it starts to move and ends up rotating conjointly
with the bucket. As the water begins to move, its
surface starts to curve until it attains its final shape.
Our problem will be to determine analytically the
shape of this surface taking into account that the
volume or if we prefer the mass of the water must
remain constant. The physical interpretation of this
gedanken experiment plays an important role in
Newton’s conception of (absolute) space [1].

dU gravitationas = AM gz = pdV gz = prdrdgdz gz,
(21)
where we are using cylindrical coordinates r, ¢ and
z with the origin at the geometrical center of the
bottom of the bucket and hence r is the perpen-
dicular distance to the rotation axis z. The total
gravitational potential energy is

27 R f(r)
pg/ dd)/ [/ zdz] rdr
0 0 0

= npg [ O rar

Ugravitationa] =

(22)

where f(r) is the height of the water surface at a
distance r from the z axis and defines its shape. Now
we evaluate the centrifugal potential energy. For an
element of mass dM

~ min

H

Y

Figure 2: A rotating mass of water constrained by a cylin-
drical bucket. The dashed line at z,ce = H indicates the
surface of the water when w = 0.
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1 1
dUcentrifugal - _§ dM w2 ,,,,2 - _5 prdrd(ﬁdz w27“2

(23)
Therefore the total centrifugal potential energy is

1 2 R rf(r)
Uccntrifugal = —= pwz/ d¢ / [/ dZ] T‘gdr’
2 0 o |Jo

(24)

R
Ucentrifugal = _pﬂ-w2 / f(T) ngr' (25)
0

The constraint is given by the mass M of the
water which must be constant

M = /p dV = constant.

If we suppose as before that the mass of water
remains incompressible we can also write

R f(r)
l/ dz] rdr
0 0

= 27 f(r)rdr. (26)
0

vV =

The complete functional to be extremized is

Ucentrifugal + Ugravitational + )\ V (27)

Ueffective =

where A is the Lagrange undetermined multiplier.

Making use of equations , and we

obtain

R
mﬁmmzﬁ FIf(r),rldr,  (28)

where
FIf(r),r] = mp [~ (r)r* + g[f ()]
A
+ 2pf(7“)7"]. (29)

If impose the condition dU[f] = 0, we are led to the
Euler-Lagrange equation ({15 and It follows that

OF
9 = —wr? 4+ 2gf(r) + 2\ = 0; (30)
or
fm=gﬂ—2- (1
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We now evaluate the Lagrange multiplier. Taking

equation into equation , we obtain

Vo= 2<MR4 Mﬂ). (32)

8¢ 2pg
Remembering that V = 7R?H it follows that

pw? R?
4

A= — pgH, (33)

and we finally obtain

2 2
w R
Zsuperface = f(T) = 5 (TQ - 2) + Ha

0<r<R. (34

Equation (34) represents an inverted paraboloid of
revolution and it also defines a surface of constant
effective potential energy. It is easy to verify that

w = 07 Zsuperface - H; VT S [O, R],

w # 0,

Zsurface — H? for r=

points a and b in Figure

w # 0,

Zewetace > H, for r >
w # 0,

Zsurface < H7 fOI‘ <

w #0,

Zsurface min — 4g + H, fOl“ T =

w # 0,

Zsurface max — +
4

If we consider two points on the parabolic surface
with r € [0, R] and a straight line connecting these
two points we see that the straight line lies above the
graph of f(r) hence the surface is concave upwards
or convex. It is clear that gravity is a critical feature
in what concerns the final shape of the surface of
the water in the stationary rotational state of the
system. It is convenient to write equation in
the non-dimensional form

2 2
Z:urface = @ (m - :r]%> + 17 x e [07 1]7 (35)
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where 27 . = = Zupermee/H, © =7/H, xp = R/H,
and ap = w?H. The minimum value for z* . _ cor-
responds to x = 0, that is
* ao .’IJ%
surface, min — 1 + 1 > 0 (36)
3 g 4
From this it follows that 27 ;.. mm = 0 when
a 4
2= (37)
g TR

Figure [3] shows the parabolic surface for several val-
ues of ag/g. As this quantity increases, 27, r.ce. min —
0 until it hits the bottom of the bucket. From this
point on equation leads to negative values of
2l stace, min @0 though mathematically sound neg-

ative values here mean that they are below the
bottom of the bucket.

3. The effect of an external pressure

The effect of an external pressure, e.g. the atmo-
spheric pressure, can be taken into account by adding
to the effective potential energy a term that repre-
sents the contribution of the atmospheric pressure
to the deformation of the surface of the water. For
an infinitesimal deformation this contribution reads

AU s = Pagm Tdrdddz. (38)
Integrating this contribution we have
R rf(r)
Usimn = 27 / / p(z) dz rdr. (39)
H Jo

where p(z) is the pressure which we will assume
to be dependent only on z > 0. Assuming that the
liquid is incompressible as we did before the effective
potential now reads

Figure 3: Parabolic surfaces for xtg = 1 and several values
of ag/g.
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R
U = pr [ [wr®+ glf o) r
H
A r f(r)
+ 2—7“—1—27/ p(z)dz| dr. (40)
p p Jo

The Euler-Lagrange equation then leads to

w?r? A

1
F0)+ o plf () = 5=
If the pressure p|[f(r)] is known we can solve for
f(r) and making use of the constraint, equation ,
determine the Lagrange multiplier \. Substituting
A into equation we finally express the func-
tion f(r) explicitly without undetermined constants.
Now we take this f(r) into equation

(41)

_ pw? R?

R
=P g - [ el (a2

This form is convenient for the interpretation of the
Lagrange mulltiplier. The first term on the RHS of
equation corresponds to the to the mean force
per unit area on the lateral surface of the liquid,
and the second and third termos taken together
correspond to to the mean total force per unit area
on the botton of the liquid.

3.1. Uniform pressure model

A simple model is to suppose that the pressure is
uniform, that is p[f(r)] = po, then equations
and lead to

po wir? A

f(r)+—= ,
(r) Py 29 Py

and yields the result given by equation (34])
showing that a constant pressure does not contribute
to the final shape of the free surface of the water
though the effect of the external pressure shows itself
in the Lagrangian multiplier which is an indication
of the action of constraint forces.

(43)

3.2. Linear model

A less simple model is the linear one p(z) = pg + vz,
where 7 is a constant with the appropriate dimen-
sions. Adopting a linear model means that

plf(r)] = po +~ f(r). (44)
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Taking this expression into equation we obtain

f<r>=p1§,<p0+vf<r>>= A )

29 pg
and regrouping the terms in equation we obtain

Do w2r? A

pg<1+7> 2g<1+7) P9
Py P9

Comparing equations and we see that a
linear variation of the pressure is equivalent to a

constant pressure with an effective gravity given by

geff:g (1_'_’}/)’
P9

Therefore the complete solution of the linear model
amounts to replacing g by g.¢ into equation
and to evaluating A\ with equation with p = po,
hence

fr)+ (46)

(47)

w? R?
A=" T~ P9enH = po; (48)
and
w2 2 R2
= — — H 0<r<R. (49
£(r) 2geg<r S)em o<r<r )

The free surface of the rotating mass of water
is still parabolic but determined by an effective
gravitational acceleration. We see also that an in-
crease/decrease in 7y gives rise to an increase/ de-
crease of the effective gravitational acceleration thus
affecting the parabolic equilibrium shape. Notice
that since f(r) > 0 in the closed interval [0, R] and
the dimensionless factor v/pg.qs is also > 0, it fol-
lows that the maximum value of f(r) is greater when
compared with the constant pressure or pressureless
cases.

4. Final remarks

The functionals that we have made use here, equa-
tions @, , , do not depend on the derivatives
of the shape function f hence the Euler-Lagrange
equation is reduced to a constraint and does not
depend on arbitrary constants. In principle, the role
of the atmospheric pressure is negligible but nothing
can prevent us of imagining environments where this
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may not be so, for instance some super Earth type
of exoplanet. To conclude, the final shape of the
surface of a rotating mass of water constrained by
a co-rotating bucket as analyzed in the co-rotating
frame is a compromise between the centrifugal ef-
fects and gravity and if we add an external pressure
it becomes a compromise between the former two
and the latter. Both examples show the usefulness
and elegance of the variational approach to physical
problems.
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