
Revista Ciência Agronômica, v. 51, Special Agriculture 4.0 , e20207703, 2020
Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE
www.ccarevista.ufc.br ISSN 1806-6690

Artigo Científi co

Greenhouses within the Agricultura 4.0 interface

Casas de vegetação dentro da interface Agricultura 4.0

Edilson Costa1*, Murilo Battistuzzi Martins1, Eduardo Pradi Vendruscolo1, Abimael Gomes da Silva2, Tiago
Zoz1, Flávio Ferreira da Silva Binotti1, Travis Wilson Witt3 and Cássio de Castro Seron1

ABSTRACT - Global technological advances can be applied to all production sectors to improve people’s daily lives,
efficiently deliver information, and product safety. This study is a literature review of the use of the Agricultura 4.0
interface in greenhouses and the improvements that these technologies have made to the industry. For the agricultural
sector, especially intensive plant production in protected environments, Agricultura 4.0 technologies are widely used
to reduce human error and ensure high quality plant products. Mathematical modeling, computer software, electronic
meters, robotics, intelligent real-time system decisions, and automatic activity control throughout the production
cycle guarantees extreme production safety in protected cultivation systems and precision planting environments. The
accuracy, precision, and performance of Agricultura 4.0 in greenhouses depends, as in others agricultural sectors, on
improved communication between digital platforms as well as in stable Internet for machine programming and operation
in the production systems.
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RESUMO - Os avanços tecnológicos, no atual contexto mundial, atingem todos os setores de produção, melhorando o cotidiano
das pessoas, trazendo rapidez na informação e segurança do produto. O presente trabalho apresenta uma revisão de literatura
do uso da interface Agricultura 4.0 em casas de vegetação e as melhorias que essas tecnologias trouxeram ao setor. Para o setor
agropecuário, em especial a área de produção vegetal intensiva em ambientes protegidos, as tecnologias da Agricultura 4.0
são amplamente aplicadas diminuindo erros humanos e garantindo produtos de elevada qualidade. A modelagem matemática,
os softwares, os medidores eletrônicos, a robótica, as decisões dos sistemas inteligentes em tempo real, o controle automático
das atividades em todo ciclo de produção garante a segurança de produção intensiva nos sistemas de cultivo protegido e
uma ambiência vegetal de precisão. A exatidão, precisão e desempenho da Agricultura 4.0 em estufas dependem, como em
outros setores agrícolas, de uma melhor comunicação entre as plataformas digitais e também de uma internet estável para a
programação das máquinas e operação nos sistemas de produção.
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INTRODUCTION

High technology applied to industrial,
commercial, and agricultural production systems has
provided entrepreneurs with high financial security
and consumers with product reliability, cooperating
with all production sectors to ensure the harmony
and satisfaction of both. The use of digitization in
agriculture, with big data, Internet of Things (IoT),
augmented reality, robotics, sensors, 3D printing,
system integration, future Internet, ubiquitous
connectivity, artificial intelligence, digital twins,
and blockchain has recently intensified to transform
the reality of agricultural production. Indeed, high
technology has been applied to all farming sectors,
particularly intensive greenhouse production, where
it assists at all production cycle stages from sowing
to harvesting, which promotes an integrated chain of
digital products and services and provides production
and trading security and user satisfaction, as well
as a precision planting environment. The structural
construction materials are made of galvanized steel to
increase the service life of the protected environment
constructions, further allowing for the use of several
automated and robotized systems to control and manage
the planting environment, irrigation, fertigation,
fertilization, nutrition, and growing, harvesting and
post-harvesting software.

In greenhouses, the use of technologies such as
electronic sensors, software, equipment and systems, can
be integrated and connected, an application that began in
the 1980s and has been quickly improving as the demand
for trackable and reliable products has increased. Today’s
consumers demand products with consistent quality,
that are certifi ed and tracked for food safety, which
require intensive crop production to be a fully controlled
environment. This type of crop production demands
mechanization, automation, digitalization, and robotics as
the human workforce becomes more and more expensive
and scarce. With Agricultura 4.0, real microclimate data,
nutrition correction, fertilization, and irrigation, as well
as pesticide or phytosanitary control can be collected by
technologies and instantly transmitted over the Internet to
optimize the protected, technical and robotized cultivation
at all production steps, which ensures the sustainability
of the sector. However, internet connectivity and/or
instability and the communication between different
digital platforms need to be improved to meet the demand
of machine programming and operation in production
systems. Thus, sensors, software, operating platforms,
and machines collecting can act and communicate with
each other to promote management actions in real time
and initiate immediate problem solving and/or greenhouse
production improvements.

This literature review follows the trajectory of
digital technologies that began in the last century and are
being perfected by the interconnection of data/internet/
machine/management to improve production and by
the recurrent demands of the intensive greenhouse crop
production sector within the context of Agricultura 4.0.

TECHNOLOGY DYNAMICS APPLIED TO
GREENHOUSE CULTIVATION

Before assimilating and intensifying Agricultura
4.0 technologies, planting environments consisted of
studying and changing physical variables of the intensive
protected production environment. The studies were
aimed at correlating production with environmental
conditions, and improving types of coverage material
that would promote adequate light incidence, temperature
and relative air humidity because these variables interfere
with physiological processes that can affect growth,
development and productivity (PAULA et al., 2017;
SILVA et al., 2018; SILVA et al., 2020; TAIZ et al., 2017).
Without technologies that enable the accurate prediction
of interested outcomes, planting environments used
decision-making tools as models for best planting practices
(COSTA; LEAL; CARMO JÚNIOR, 2004; PROCHNOW
et al., 2019). Increasingly dynamic research in which
differential details are analyzed to demonstrate the effects
of factors on plants, has used equipment, software, and
mathematical models as potential decision-making tools
(GOSTEV et al., 2019). Such elements changed data
collection methods and decreased the need for manpower
and the number of required equipment (GALLARDO;
SAUERS, 2018).

In addition to research-based needs, it is clear that
increased population brings a number of new demands to
food production sectors, which need to increase according
to population survey institution estimates (CLERCQ
et al., 2018). These demands are related not only to the
quantity of food, but also to its quality. Thus, the use
of technology helps these sectors meet the global food
demand by increasing production and improving product
quality (CLERCQ et al., 2018; ZAMBON et al., 2019).
The simple generation of data in the agricultural sectors
results in a static image of its situation in a given moment
in time, while data compilation from different periods
shows the behavior of a variable. However, the processing
of this set of data by software, provided with mathematical
models, may result in a behavior prediction, infl uencing
decisions that will optimize the use of resources such as
time, space and inputs (WELTZIEN, 2016; EASTWOOD
et al., 2017; JANSSEN et al., 2017; WOLFERT et al.,
2017). In addition to improving the control of complete
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environmental control conditions, the automation of
systems has also effectively decreased negative effects on
the environment, how to use inputs and water effi ciently
and effectively, reducing waste (ROSE; CHILVERS,
2018). Automatous irrigation systems can identify the
water needs of a plants species at different development
phases and it reduce over watering and water waste
(KALANTARI et al., 2017; OZDOGAN et al., 2017;
ZAMBOM et al., 2019). Thermal sensors identify changes
in protected crops in greenhouse, activating temperature
regulation mechanisms for optimal plant development
(BENERJEE; ADENAEUER, 2014). These are model-
based actions predefi ned in an existing database.

Automation processes are controlled and executed
by mechanical or electronic means, and are composed
of an active system based on a set of techniques that use
sensors to collect data, which is then used to calculate the
most appropriate corrective action for optimal medium
effi ciency (ROSÁRIO, 2009). Souza and Rocha (2020)
reported that protected cultivation using automation is
a viable alternative to achieve expected success by the
small farmer. This automation facilitated the production
work and provided greater control of the quality of the
fi nal product by using reports generated from cultivation
data obtained by sensors and actuators; thus, combining
technical knowledge and the information generated by the
system for better decision making.

Commercial greenhouse automation and climate
control began in the 1970s and 1980s, while research with
robotics began in the late 1990s. Computer studies for
greenhouse climate control using radiation, ventilation,
humidity, and temperature sensors were implemented
in the 1970s. The development of technologies in
subsequent decades, including sensors, photovoltaic
cells, data collectors, intelligent systems, computers,
neural networks, software, controllers, robots, wireless
technologies, the internet, and the web, improved
greenhouse climate control and production operations like
nutrition, irrigation, harvesting, and management; which
became automated to meet the demands of Agricultura
4.0. Beyond executing actions, the software used in plant
production also automatically collects and analyzes data,
making the process progressively more effi cient because
it results in a growing database (WOLFERT et al., 2017).
Thus, over a short time, the increased implementation of
these automated forms of cultivation will result in a great
amount of information that contributes to maximizing
resource savings and profi tability of these systems
(CLERCQ et al., 2018; WOLFERT et al., 2017).

Socially, the use of automated cultivation systems
in controlled environments reduces the distance between
producers and consumers through the development
of agricultural activities in urban centers (BENKE;

TOMKINS, 2017). This reduced distance is also refl ected
in less post-harvest, transport, and storage losses (MILES;
SMITH, 2016). In addition, automated systems can
decrease the consumption of fossil fuels required for
transport and, consequently, the emission of greenhouse
effect gases (ADEKOMAYA et al., 2016). However,
despite all the advantages, the implementation of these
systems is still relatively costly. A limited number of
companies have developed specifi c technologies for
automaton crops, which increases implementation costs
(BENERJEE; ADENAEUER, 2014). Also, equipment
that functions expressively increases the demand for
electric energy (KALANTARI et al., 2017), although
these problems tend to decrease over time with technology
improvement. Also, despite the high costs, once paid for,
the systems have high profi tability that should continue
to return on the investment as the population generates
greater demands for high quality food (BENERJEE;
ADENAEUER, 2014; BENKE; TOMKINS, 2017).

In covered areas, such as orchards and forests, GPS
signals are not as accurate as in open areas because the
treetops block satellite signals or cause refl ection errors
(SUBRAMANIAN et al., 2006). This can also occur in
greenhouses due to their plastic covering and metallic
structures that can generate positioning errors and
inaccurate GPS signal return (BECHAR; VIGNEAULT,
2016). Thus, the accuracy, precision, and performance
of Agricultura 4.0 in greenhouses also depends on GPS
communication improvement and the machines inside
greenhouse.

GREENHOUSE AUTOMATIC
MODELING, MONITORING, AND

CONTROL

The modeling of micrometeorological conditions
in greenhouses are not recent and are increasingly being
perfected. In northern China, the deterministic and
stochastic microclimate modeling of a single, naturally
ventilated slope greenhouses have presented reasonable
results of the internal conditions of the greenhouse
(YANG; LIU; YANG, 2019).

Plant growth modeling and control in greenhouses
and the strategies for environmental and irrigation
improvements always aim to obtain a hierarchical
control that is governed by an high level, multi-objective
optimization approach that maximizes profi t, fruit quality,
and water use effi ciency. Controller industry advances
have stimulated technology transfer in control engineering
and have had an impact on industrial engineers, academic
researchers, and agriculture, chemistry, and process control
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professionals (RODRIGUEZ et al., 2015). Modeling is
widely used in greenhouses and several models have been
developed for plant growth, internal environmental control,
energy consumption, and crop predictions. For example,
modeling is used in prediction and optimization of the
plant transpiration and air humidity of the greenhouse
as a function of the outside climate (JOLLIET, 1994),
as well as temperature (LINKER; SEGINER, 2004) and
internal microclimate prediction (KOTHARI; PANWAR,
2007), plant growth (GUPTA et al., 2012; RODRÍGUEZ
et al., 2015), transpiration rate (XANTHOPOULOS
et al., 2014), heating based on energy prediction and
fl uid dynamics (CHEN et al., 2015), transpiration
prediction for automatic irrigation management (WANG
et al., 2017), environmental variables in stationary
semi-solar greenhouses (MOHAMMADI; RANJBAR;
AJABSHIRCHI, 2018), and to predict the need of heating
per hour in greenhouses in cold weather regions using heat
transfer (AHAMED; GUO; TANINO, 2018).

The use of neural networks in modeling is
commonly used in greenhouses to control optimal CO2
(LINKER; SEGINER; GUTMAN, 1998), compare
sigmoid and hybrid models in temperature prediction
(LINKER; SEGINER, 2004); to predict temperature
in tropical regions (PATIL; TANTAU; SALOKHE,
2008), air temperature and relative humidity (LU;
VILJANEN, 2009), and energy consumption (TREJO-
PEREA et al., 2009); monitoring tomato productivity
(EHRET et al., 2011; TAKI; HADDAD, 2012); to analyze
the performance of an integrated photovoltaic system
(PÉREZ-ALONSO et al., 2012); to estimate leaf area
index for a transpiration model for irrigation based on
external climatic conditions (WANG et al., 2017); and in
control systems (MANONMANI et al., 2018).

At Iran, heat transfer models, multilayer perception
(MLP), and dynamic and multiple linear regression
(MLR) artifi cial neural networks have been used to predict
internal environmental variables and energy loss in a semi-
solar greenhouse (TAKI et al., 2016). This work showed
no signifi cant difference between the actual air and roof
temperature data and the data simulated by the models,
but the output of the environmental parameters data by
the MLR model were not correctly predicted for inside air
and roof temperature because of autocorrelation between
input variables. The best model for estimating actual data
and greenhouse energy loss and exchange was the MLP,
which can be used online to minimize the costs associated
with sensors and data loggers (TAKI et al., 2016).

The use of dynamic modeling to predict
environmental conditions in semi-solar greenhouses is
not a simple task because internal conditions are totally
dependent on external conditions. A dynamic model
developed in Iran showed that air and soil temperatures

were estimated with a relative accuracy of 10.2% and
7.7%, respectively; and that the model could be used to
predict fuel consumption, CO2 emission, and production
yield. These fi ndings help to advance modeling based
on social parameters (MOHAMMADI; RANJBAR;
AJABSHIRCHI, 2018).

A evolution from protected cultivation to
controlled agriculture using fully digitized agriculture
has resulted in urban plant production in multi-story
buildings and plant production factories in fully
controlled environments in response to population
growth, environmental degradation, and urbanization,
all of which threaten food security (SHAMSHIRI
et al., 2018). Automatic greenhouse control with
wireless sensor networks and AVR microcontrollers
that controlled temperature and humidity, measured
carbon dioxide content, and collected light intensity
information, provided accurate plant growth data at
a low cost, suggesting they are robust and effective
decision-making systems (SONG et al., 2011).

Mekki et al. (2015) reported that wireless data
communication between sensors and control systems could
eliminate the need for complex cable connections, which
reduced the risk of accidents and system breakdowns.
Bajer and Krejkar (2015) used the platform Arduino™
to create a greenhouse control system using SD card data
with a system connected to the internet. Vatari et al. (2016)
evaluated the operation of two greenhouse control systems
and presented innovations in sensor data acquisition and
uploading data to clouds based on the Internet of Things
(IoT) concept, further illustrating that electronic and
computer technology positively boosts precision farming
in greenhouses.

Data compiling and analysis on the effects
of various factors such as luminosity, space, water
requirement, temperature, and nutrition in vegetables
provided environments with a potential effi ciency that was
390 times superior to conventional cultivation systems,
which has been illustrated by vertical crop production
in controlled environments (CLERCQ et al., 2018). In
this system, the automation during the whole process of
cultivation development allows sensors to make minimal
adjustments so that conditions are as appropriate as
possible for maximum crop development. In addition,
the system reduced waste due to its specifi c application
of inputs and other resources through monitoring
and adjusting for specifi c species demand (BENKE;
TOMKINS, 2017; KALANTARI et al., 2017).

The production management system and the
future used of the internet through an intelligent and
precision agriculture has replaced complex, monolithic,
and outdated systems, tools and software. However,
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the internet has many fl aws, especially when managing
a large number of devices and network devices (IoT)
(KALOXYLOS et al., 2012). Distributed data acquisition
and radio frequency control systems that use network-
based hardware and software have made it possible
to acquire weather information, capture and process
images, detect events, and improve decision-making and
management in greenhouses (SERÔDIO et al., 2001).
When interconnected with data analysis and rapid-
decision making, neural networks in greenhouses, such as
microclimate prediction, energy expenditure, and carbon
dioxide control, allow technology development and
research to adapt to new technologies such as the IoT and
machine learning (ESCAMILLA-GARCÍA et al., 2020),
further promoting a robotic agriculture system with less
human manual labor.

The advances in greenhouse automation and
controlled environment cultivation have increased indoor
cultivation, also called plant factories in urban agriculture,
as these advances have enabled scientifi c solutions for
effi cient cultivation in populated cities using vertical
cultivation. Fully controlled environments require high
technology that involves the structure material, perception
and sharing of internal data, micrometeorological control,
and energy consumption optimization (SHAMSHIRI et al.,
2018), in addition to production system robotization. With
the rapid development of technologies, environmental
monitoring has become important in greenhouse
automation to achieve energy economy and rapid plant
growth. Wireless sensor monitoring (e.g., temperature,
humidity, infrared, optic brightness and Hall sensors) that
is associated with controllers has demonstrated energy
saving effi ciency and protected environment automation
(HUANG; HUANG, 2013).

An intelligent network of wireless sensors
(Zigbeewireless) for monitoring, managing, and controlling
air temperature, relative humidity, and soil humidity in
automated greenhouses. These networks transmit these
data to web applications and remote monitoring in real
time to allow for the visualization of the network nodes
that assist ad hoc crop management. This system is a
fl exible and reliable solution for the development of a
greenhouse automated management system (VYTLA;
AHAMED, 2015).

The rapid development of information technology,
particularly IoT, which combines electronic devices,
sensors, and the internet to manage data and applications,
allows its use in greenhouse control and management (i.e.,
precision farming or precision planting environments).
The development of low cost and easy access IoT in
greenhouses, such as the Arduino microcontroller or the
Raspberry Pi microcomputer, transmit data wirelessly
(e.g., Bluetooth, ZigBee Protocol and Wi-Fi) and are

designed so that technicians with limited information
technology knowledge can use them to manage production
in the protected environment (ARDIANSAH et al., 2020).
An automated plant monitoring system guided by machine
vision for the diagnosis in the Nutrient Film Technique
(NFT) hydroponic lettuce cultivation in greenhouse that
is based on color resources (e.g., red-green-blue, hue-
saturation-luminance and color brightness), textural
resources (e.g., contrast, energy, entropy and homogeneity),
morphological characteristics (e.g., projected upper area
of the canopy), plant indices (e.g., NIR and color band
ratio), and thermal radiation of the plant, showed that the
system could detect water stress two hours before human
visual detection (STORY; KACIRA, 2014). For example,
the monitoring of mango production with a three-part
wireless network sensor technology (e.g., sensor, radio
communication, and gateway modules) reported plant
growth, carbon dioxide, temperature, and humidity level
in real time and showed that the environmental conditions
were favorable to the fl owering and fruiting of sweet and
succulent mangoes (SAAD et al., 2014).

Precise irrigation and nutrition recommendations
and environmental control management strategies can be
performed by machine learning using hyperspectral sensor
data that integrates the crop physiology with real-time
artifi cial intelligence systems. A study on automation to
detect water and nitrogen defi cit stress in soilless tomatoes
based on spectral indices showed that the combination of
the modifi ed soil-adjusted vegetation index (MSAVI) with
the modifi ed red-edge normalized difference vegetation
index (mrNDVI) and the photochemical refl ectance index
(PRI) could detect 89.6% of the water defi cit stress and
91.4% of the nitrogen defi cit stress, which provided
promising support for greenhouse automation and control
(ELVANIDI; KATSOULAS; KITTAS, 2018).

ROBOTICS IN PROTECTED
ENVIRONMENTS

Effi cient greenhouse task control and automation
systems involve artifi cial neural networks that manage
the enterprise and optimize production using sensors
and remote monitoring, as well as data clouds that are
integrated into internet measurement systems and artifi cial
intelligence (YAHYA, 2018), IoT to solve market demands,
operation and supervision accuracy (LI et al., 2019),
learning activation algorithms, and functions in machine
learning scenarios (ESCAMILLA-GARCÍA et al., 2020).
In the Netherlands, research on greenhouse robotics
started in 1998 with the development of robotic cucumber
harvesting (HEMMING, 2018). The use of robotics for
cucumber harvesting through color detection was not
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feasible, since both fruit and leaves were green; however,
with a tailor-made double spectral camera could detect
94% of ripe fruit with a harvest success of 74-80% (VAN
HENTEN et al., 2002, HEMMING, 2018). Moreover,
deep learning that predicted tomato yields and Ficus
benjamina growth in controlled greenhouses using deep
recurrent neural network with short-lived long neurons in
predictions showed to be promising in Belgium and the
UK, achieving high precision in predictions and small
errors (ALHNAITY et al., 2019). Automatic intelligent
systems and robots require several highly complex,
correctly synchronized and integrated subsystems for the
effi cient task performance and successful information
transfer that is necessary for any process or product. These
systems must be even more sophisticated in agricultural
production when operating in unstructured environments,
and have been considerably improved in recent decades
(BECHAR; VIGNEAULT, 2016).

With the decreasing number of farmers, robotics
have been increasingly applied in agriculture to improve
productivity and effi ciency, particularly at the stage of
fruit and vegetable harvesting for fresh food consumption,
as this phase can be lengthy, tiresome, and particularly
demanding and costly, ranging from 50% to 66.6% of the
total labor costs of crop production (FOGLIA; GENTILE;
REINA, 2008). One example of a robot used for fruit
harvesting is the SWEEPER, which is used for pepper
harvest and has demonstrated a 61% success rate under
best conditions and 18% under current conditions in
commercial greenhouses. However, this indicates a need
for improved growing conditions and varieties for a
successful robotic harvest systems (ARAD et al., 2020).
Additionally, in strawberry harvesting, the Dogtooth
(http://www.dogtooth.tech/) is an autonomous rail
navigation robot that locates, collects, classifies, and
packs ripe fruits. Most greenhouse harvesting robots
use rails and therefore, use position control algorithms
rather than navigation algorithms (FUE et al., 2020).
In addition to harvesting, the Dogtooth robot, which
moves on a monorail along the area of greenhouse, can
be used for weed removal between cucumber plants
(HERAVI et al., 2018).

Due to labor becoming increasingly scarce
and expensive, especially in European countries, an
autonomous vehicle steering control algorithm was
developed to assist in harvesting and spraying tasks
in greenhouses using a suspended guide built into the
environmental structure that marks the desired path for
the vehicle, which is connected to a rigid bar upon which
the vehicle drives and corrects itself by detecting the
angle and distance of the guide. A prototype vehicle was
developed and the algorithm was successful in a set of
experiments (GAT; GAN-MOR; DEGANI, 2016).

A greenhouse tomato harvesting robot with a fi nal
effector was designed with four foam-padded fi ngers to
reduce damage when gripping the fruit during harvesting.
The grip of the fi nal effector is adjusted by a solenoid
to hold the fruit with suction; the best performance in a
laboratory setting was obtained with vacuum suction
nozzles 15.0 mm in diameter and a force of 8.1 N/cm2.
Thus, the mean successful suction fi xation rate was
95.3% and the mean harvesting time was 74.6 s per fruit
(CHIU; YANG; CHEN, 2013). The authors also reported
that before harvesting the fruit, the fi nal effector must be
rotated until the fruit is 60° counterclockwise in relation
to the initial alignment. This orientating mush be repeated
three times in relation to the fruit, and further fi eld tests
are necessary to validate the process.

Even a low-cost multifunctional robot prototype
with very low spraying and fertilizing application rate (400-
500 plants/h) in greenhouses in preliminary experiments
can continuously perform tasks for several hours and
perform tasks that are inaccessible to human operators
(BERFORT et al., 2006). These authors reported that the
next steps in greenhouse automation effi ciency requires the
development of tools and algorithms to manage as many
different tasks as possible so that a robot can perform most
of the operations in a complete cultivation cycle. A clamp-
type collection robotic device developed for automatic
seedling transplantation in greenhouses was evaluated
in the laboratory to show that the substrate moisture had
the greatest effect on seedling collection success rates,
followed by other factors such as penetration angle,
seedling age, extraction speed, root/substrate abrasion
force, and penetration depth (MAO et al., 2014). The
ideal parameters that ensure the successful transplantation
of 30-day caulifl ower seedlings were a substrate humidity
of 55% to 60%, 8° penetration angle, 35 mm penetration
depth, a root/substrate abrasion force of 4 N, and an
extraction speed of 600 mm/s. The mean success rate in
harvesting seedlings was 90.14% for a transplant rate of
22 seedlings/min (MAO et al., 2014). These examples
exemplify that use of robotics in protected environments
benefi ts from current intensive study and testing to improve
the machines and controllers for replacing human labor
and improving cultivation accuracy. Machine and digital
system interactions make this area of automation the
largest Agricultura 4.0 application in precision planting
environments.

IRRIGATION AUTOMATION IN
PROTECTED ENVIRONMENTS

Automation can be applied to several systems in a
greenhouse, including structural, production and irrigation
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systems. The development of smart technologies has
made this evolving technology available to researchers
and engineers in the agricultural sector. The intelligent
irrigation system aims to ensure that the crops have the
required amount of water throughout its development
(KPONYO et al., 2019) and reduce the use of drinking
water resources in agriculture (KALANTARI et al., 2017;
OZDOGAN et al., 2017; ZAMBOM et al., 2019). The
irrigation blade is determined by monitoring the water
fl ow from the soil-plant-atmosphere system. Monitoring
uses several detection technologies to determine and
characterize humidity dynamics on a space-time fi eld
scale and the water used by the plant. These detection
methods can be based on soil, climate, and plant sensing
(ADEYEMI et al., 2017).

Other research has demonstrated the use of
intelligent irrigation systems through automation that is
based on sensors that read soil moisture, environmental
temperature and humidity, and soil pH. These parameters
are the basis for determining the functional success of
the water pump, as well as central data collection and
storage (ARCHANA, et al., 2016; CHAVAN et al., 2014;
HARISHANKAR et al., 2014; KANSARA et al., 2015;
MINZ et al., 2019; SONAIL et al., 2015). Precision irrigation
can use two strategies. One is system management that
uses an open cycle strategy of compiled historical data
to set irrigation volumes at predefi ned intervals. This
strategy is not based on any form of sensor response
to indicate water content in the soil or in the plant, or
climate variables (LOZOYA et al., 2014). The second
strategy prompts irrigation when the soil moisture content
reaches a level (DABACH et al., 2013) at which the
plants indicate a certain stress limit (SHAUGHNESSY
et al., 2012), or with feedback from crop simulation
models for better physiological response or economic
objective (MCCARTHY et al., 2014). These closed-
circuit irrigation strategies are shown to improve the
water use effi ciency of vegetable production in protected
environments (ADEYEMI et al., 2017). Indeed, the
use of a closed-circuit irrigation control system in a
protected crop production system provided 83% water
savings (CHAPPELL et al., 2013). The precise control
with closed-circuit systems in irrigation via a wireless
sensor network used for fl ower production in a protected
environment resulted in 65% increased profi ts due to
improved harvest quality and yield, which resulted from
precise irrigation (SAAVOSS et al., 2016).

Precision irrigation simulation models are a form
of management that defi nes the necessary irrigation in a
cultivation system using models based on physiological
responses, soil physical parameters, and environment
hydrology (DELGODA et al., 2016). Artifi cial
intelligence has a high potential for solving precision

irrigation problems that are often complex due to being
non-linear and poorly defi ned. Therefore, the use of
algorithms that can simulate human decision-making
processes can be used to solve agricultural problems
(PRASAD et al., 2007; HARDAHA et al., 2012). Its use
also includes artifi cial neural networks that are mapping
non-linear structures that can model undefi ned underlying
relationships in the data. These networks can predict the
outcome of new sets of independent data, making them a
useful tool for predictive modeling. The use of artifi cial
neural networks is appropriate for decision support in
irrigation troubleshooting, which can often be complex
and uncertain. Artifi cial neural networks can continuously
provide optimal solutions to dynamic system problems
(ADEYEMI et al., 2017).

Another algorithm used in artifi cial intelligence is
fuzzy logic, which can classify a data set into associated
classes to promote decision-making. It can also analyze
imprecise information because it is effi cient at making
decisions using vague and uncertain phenomena
(KWEON, 2012; MOUSA; ABDULLAH, 2014). Giusti
et al. (2015) used fuzzy logic for decision support in an
irrigation system and reported 13.55% water saving based
on a predictive soil moisture model. Mendes et al. (2019)
performed an experiment using fuzzy logic for variable
irrigation rate and described that it can be widely used in
agricultural areas as a decision support system.

FINAL CONSIDERATIONS

Protected environment structures and process
and production management digitization has been
adapted to intensive cultivation system automation for
the effi cient use of water and nutrients and to control
the growth climate. These automated management
systems use intelligent decision-making that function
in time real in several production operations to decrease
the use of inputs and energy in precision planting
environments to increase safety for the entrepreneur
and the consumer. The digitalization of protected
environments using mathematical modeling, software,
electronic meters, controllers, robotics, IoT, and
intelligent real-time system management throughout the
production cycle with the Agricultura 4.0 ensures the
safety of intensive production in protected cultivation
systems with accuracy, traceability, precision and,
performance in greenhouses. The success of Agricultura
4.0 in greenhouses as well as in other farming sectors
depends on improved communication between digital
platforms and stable internet services to perfect machine
programming and performance in intensive production
system processes.
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