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Abstract: The aim of this study was to compare the Multiple Linear Regression 
and Artificial Neural Network models in prediction of grain yield of ten landrace 
varieties of lima bean and evaluate adaptability and stability through the Lin 
and Binns method for identification of the best performing variety. Trials were 
conducted in the municipalities of Teresina, PI, and São Domingos do Maranhão, 
MA, through measurement of 12 traits, except for grain yield in São Domingos 
do Maranhão. The parameters of Pearson and Spearman correlation, root mean 
square error, mean absolute error, and coefficient of determination were used to 
compare the models. The Artificial Neural Network proved to be more adequate 
for prediction of grain yield. Adaptability and stability analyses indicated that 
the environments are discriminant for selection of promising genotypes, and 
that the landrace variety Mulatinha can be recommended for planting in the 
municipalities.
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INTRODUCTION

The development and application of modeling in agriculture is an important 
tool that can serve to guide research, technological management, and decision-
making (Corrêa et al. 2011). In this context, the use of mathematical models such 
as multiple linear regression and artificial neural networks allows correlation 
of agronomic traits with genotype performance in the field.

Regression analysis models and investigates the relationship among 
variables, studying the dependence of the trait of interest in relation to one 
or more independent variables (Gujarati 2000). For their part, artificial neural 
networks are computational techniques inspired by the neural architecture 
of the human brain, which acquires knowledge through experience (Braga et 
al. 2012). Thus, it is able to recognize patterns, i.e., it has the ability to learn 
through examples and generalize information learned, generating a non-linear 
model (Soares et al. 2015).

In recent years, artificial intelligence has repeatedly been used to predict the 
phenotypic expression of agronomic traits in economically important species, 
or even in species with high economic potential. Torkashvand et al. (2017) 
used Multilayer perceptrons (MLPs) to predict fruit firmness in kiwi varieties 
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through contents of nutrients such as nitrogen, potassium, calcium, and others as predictors. Niedbała et al. (2019) 
used quantitative and qualitative predictor traits to evaluate the efficiency of three MLP architectures and predict wheat 
yield. They stressed the potential of this tool in pre-harvest stages. 

Lima bean (Phaseolus lunatus L.) is the second most socio-economically important species of the genus (Ormeño-
Orrillo et al. 2015); however, few studies have been conducted to determine the yield of the crop in Brazil (Freitas et al. 
2015, Lopes et al. 2017). Lack of information combined with fierce competition to obtain resources for research justify 
the use of mathematical modeling to predict yield. For Soares et al. (2015), prominent advantages of use of models are 
savings in time, work, and volume of resources for planning and decision-making in the agricultural sector.

In plant breeding, a detailed study of the interaction between genotypes and environments (G × E) is fundamental 
when the purpose is selecting or recommending genotypes for planting (Streck et al. 2019). To attenuate the effects of 
the G × E interaction, Cruz and Carneiro (2006) advocate recommendation of cultivars based on the adaptability and 
stability of the genotypes.

Numerous methods have been proposed to estimate 
adaptability and stability parameters in multienvironment 
trials. These methods use concepts of univariate parametric 
(Eberhart and Russell 1966), multivariate (Zobel et al. 1988), 
mixed (Resende 2016), and non-parametric models. Among 
them, the Lin and Binns method (Lin and Binns 1988) stands 
out through its wide use and for combining the concepts 
of stability and adaptability in one parameter.

 Thus, the aim of the present study was to compare 
the Multiple Linear Regression (MLR) and Artificial Neural 
Network (ANN) models in prediction of grain yield of lima 
bean grains and subsequent analysis of adaptability and 
stability for identification of the best performing landrace 
variety.

MATERIAL AND METHODS

Data were collected in experiments conducted in the 
Plant Science Department of the Agrarian Science Center of 
the Universidade Federal do Piauí (UFPI) in the municipality 
of Teresina, PI (lat  05° 05’ 21” S, long 42° 48’ 07” W, alt 
72 m asl); and in a rural area in the municipality of São 
Domingos do Maranhão, MA (lat 05° 34’ 33” S, long 44° 
23’ 07” W, alt 191 m asl) (Figure 1).

A randomized block experimental design was used 
with four replications. Plots consisted of four 3.5-m rows 
at a spacing of 0.80 m between rows and 0.70 m between 
plants. The ten landrace varieties of lima bean evaluated are 
grown in the Northeast region of Brazil and have potential 
for commercialization (Table 1). The varieties evaluated 
have an indeterminate growth habit, and were therefore 
intercropped with late maturity landrace maize, which 
served as a trellis or support.

The following traits were measured in both experiments, 
according to the descriptors for Phaseolus lunatus L. (IPGRI 
2001): number of days to flowering (NDF), number of days 

Figure 1. Teresina, PI and São Domingos do Maranhão, MA. 
Experimental stations where ten landrace varieties of lima bean 
were evaluated in a randomized block experimental design with 
four replications, in the Northeast region of Brazil.

Table 1. Listing of the ten landrace varieties of lima bean coming 
from the Active Germplasm Bank of Phaseolus of the Universi-
dade Federal do Piauí (AGB-UFPI), with the common names and 
places of origin 

AGB-UFPI Code Common name Origin
UFPI 944 Boca-de-Moça Várzea Grande – PI
UFPI 979 Fígado de Galinha Pedra Branca – CE
UFPI 1235 Fava Branca Buriti Bravo – MA
UFPI 1237 Fava Amarela Farias Brito – CE
UFPI 1241 Fava Raio de Sol Farias Brito – CE
UFPI 1246 Rajada Balsas – MA
UFPI 1247 Chumbinho Miguel Alves – MA
UFPI 1248 Fava Branca Tianguá – CE
UFPI 1249 Fava Branquinha Tianguá – CE
UFPI 1299 Mulatinha Bom Jesus – PI
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to pod maturity (NDM), pod length (PL), pod width (PW), pod thickness (PT), number of seeds per pod (NSP), number 
of locules per pod (NLP), seed length (SL), seed width (SW), seed thickness (ST), and 100 grain weight (100GW). Grain 
yield was measured only in the municipality of Teresina, PI.

The data (ten varieties and twelve traits measured) were separated in distinct samples for development (75% for 
training and 25% for testing), and they were standardized by subtracting each observation by the mean and dividing by 
the standard deviation of each trait.

To estimate grain yield in lima bean through multiple linear regression, the following linear model was adopted: 
Y = β0 + β1X1 + ... + βiXi ; where Y represents grain yield; β0 is the intercept of the regression; and βi are the regression 
coefficients associated with the Xi predictor traits, with respect to i, with i = 1 ... n, where n is the total number of 
predictor traits.

Multilayer Perceptron (MLP) networks were trained considering the variation from one to three hidden layers plus 
the respective input and output layers. For the hidden layer, the number of neurons ranged from 25 to 100. The input 
layers of all the networks tested consisted of 11 neurons (number corresponding to the number of predictor traits). In 
all the layers, except for the last, the Rectified Linear Unit (ReLU) activation function was used, given by the relation: 
f(x) = 0, for x < 0, and f(x) = x, for x > 0. In the last layer, the identity function, f(x) = x was used.

To train and validate the ANNs, the data obtained in the experiment developed in the municipality of Teresina, PI, 
were used.  The networks were trained through the supervised learning process, for which the true output values (grain 
yield of each genotype) were provided in addition to the training data (predictor variables). 

To adjust the weights, the backpropagation algorithm was considered. In order to avoid memorization of the data, a 
validation procedure was performed in each training epoch, in which 20% of the training data were sampled and used 
for model testing. The stopping point of the training algorithm was determined when the value of the mean absolute 
error (MAE) remained unchanged for five epochs. The architecture that had the lowest mean absolute error (MAE) and 
root mean square error (RMSE) values was selected as the predictor model.

The values of mean absolute error (MAE), the root mean square error (RMSE), the coefficient of determination (R2), 
the mean absolute percentage error (MAPE), and the Pearson and Spearman correlation coefficients were used as criteria 
for comparison between the MLR and ANN models regarding the values predicted by the models and the true values:

MAE = 1
n  

n

Σ
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n
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where n is the number of data, Oi is the observed value, Pi is the predicted value, and the bar denotes the mean of the 
variable.

The prediction model selected was used to predict grain yield in São Domingos do Maranhão, MA. To do so, the data 
of the 11 traits collected in São Domingos do Maranhão, MA, were standardized (by subtracting each observation from 
the mean and dividing the results by the standard deviation of each trait) and used as predictor variables.

A sign of the effects of the G × E interaction was obtained based on the significance of the mean square of the 
interaction of the traits correlated with grain yield. Initially, the Pearson correlation coefficient was obtained between 
predictor traits and true yield in Teresina, PI, and then the traits that showed significant correlations with yield were 
selected. Combined analysis was conducted on these traits considering the two environments, which served to confirm 
the G × E interaction between the two locations. 
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Adaptability and stability were estimated based on the Lin and Binns method, described in the following manner 
(Lin and Binns 1988):

Pi = (Xij – Mj)
2

2n
   

where:

Pi = superior index of the ith genotype;

Xij  = productivity of the ith genotype planted in the jth local; 

Mj = maximum response obtained among all nth local genotype;

n = number of locations.

All the analyses described in this study were performed with the assistance of the keras package and functions 
implemented in the R software (R Core Team 2018).

RESULTS AND DISCUSSION

One hundred training epochs were necessary to obtain the optimum values of mean absolute error (MAE) and loss 
(Figure 2A). Reduction in loss values indicates that the learning process of the neural network was efficient during the 
training, considering that this parameter evaluates the 
difference between the output value and the expected 
value. For Ponti and Costa (2017), loss is a parameter that 
calculates the quality of the prediction.

Considering that at the beginning of the training the 
free parameters are generated at random, the instability 
of the data in the first epochs is noteworthy. Stability only 
occurs beginning in epoch 20, indicating an increase in the 
learning rate by means of adjustment of outputs. For Silva 
et al. (2010), after the network is trained and the error is at 
a satisfactory level, it can be used as a tool for evaluation 
of new data.

Based on training, the architecture that best combined 
good stability over the epochs and effective reduction in 
errors was that composed of three hidden layers, with 50, 
100, and 50 neurons, respectively (Figure 2B). This ANN 
architecture was used for comparison with the predictive 
power of grain yield in Teresina obtained by the MLR method.

Between the two models evaluated, that which exhibited 
higher values of correlation and R², as well as lower values 
of root mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE), was 
the ANN (Table 2). The performance of the ANN was found 
to be significantly superior to MLR when the correlation 
coefficients between the true data and the data predicted by 
the two models were compared. The magnitude of the RMSE 
and MAE parameters obtained by the ANN was around 40% 
less in relation to those obtained when the MLR model was 
considered, and the MAPE value obtained for ANN was six 
times lower than that obtained for the MLR model, indicating 
lower typical magnitude of the errors of the first model.

Figure 2. Training and architecture of the neural network. 2A - 
Average loss and MAE estimation curves for the calibration pro-
cess of the ten best artificial neural network architectures, with 
training and validation data measured in Teresina, PI, Brazil. The 
iterative process ran 100 epochs, with reduction in the average of 
the loss and mean absolute error (MAE) parameters; 2B – Neural 
network consisting of three hidden layers, with 50, 100, and 50 
neurons, used for prediction of grain yield in lima bean, with the 
data measured in Teresina, PI, Brazil, in 2018.
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The coefficient of determination between the true data and data predicted by the ANN for grain yield in Teresina, PI, 
was 0.65, around 50% greater in relation to the multiple linear regression model, indicating that the values predicted by 
the ANN had lower quadratic deviations in relation to the experimental data. Such results show the suitability of use of 
neural networks for yield prediction in lima bean. Niazian et al. (2018), using metrics similar to those presented here, 
observed the efficiency of the ANN tool compared to the MLR model to predict seed yield of ajowan, and Torkashvand 
et al. (2017) observed the superiority of MLR models over ANNs using the RMSE and correlation measures applied to 
observed and predicted data. Niedbała et al. (2019) used the MAE and MAPE measures to evaluate the relative efficiency 
of three artificial neural network architectures.

In a study to evaluate the efficacy of the artificial neural network and of multiple linear regression for grain yield in 
wheat, Mehnatkesh et al. (2012) found that the ANN and MLR prediction models resulted in R2 values of 0.84 and 0.53 
and RMSE of 0.033 and 0.055, respectively, showing better suitability of the ANN, similar to that observed for lima bean. 
Thus, the model based on the ANN was used for prediction of grain yield in São Domingos do Maranhão, MA (Table 3).

The traits 100GW, PL, PT, NSP, NLP, SL, SW, and ST measured in Teresina showed significant correlation with grain 
yield. Thus, to confirm the G × E interaction, combined analysis among these traits measured in Teresina, PI, and São 
Domingos do Maranhão, MA, was performed. Significant values of the mean square of the G × E interaction were obtained 
only for the traits 100GW and SL (Table 4). Based on that premise, analysis of adaptability and stability considering the 
yields measured in Teresina, PI, and predicted in São Domingos do Maranhão, MA, was performed.

According to their average yield, the landrace varieties were classified in the following decreasing order: Mulatinha 
> Fava Branca MA > Amarela > Boca-de-Moça > Raio de Sol > Fava Branquinha > Fígado de Galinha > Rajada > Fava 
Branca > Chumbinho.

According to Cruz and Carneiro (2006), the nonparametric method proposed by Lin and Binns (1988) does not have 
the limitations observed with the use of regression-based methods and allows one or more genotypes to be identified 
with near-maximum performance in the environments evaluated through estimates of only one parameter (Pi). The 
most stable genotype has the smallest deviation in relation to the maximum yield of each environment (Mj value), that 

Table 2. Comparison of efficiency between the Multiple Linear Regression and Artificial Neural Network models for prediction of 
grain yield in lima bean in the municipality of Teresina, PI, Brazil 

Parameter Multiple Linear Regression Artificial Neural Network
Spearman correlation 0.557 0.784
Pearson Correlation 0.559 0.806
Coefficient of determination (R²) 0.312 0.650
Root mean square error (RMSE) 0.828 0.595
Mean absolute error (MAE) 0.690 0.426
Mean absolute percentage error (MAPE) - % 6.458 1.701

Table 3. Grain yields of ten landraces of lima bean with values measured in Teresina, PI, and predicted in São Domingos do Maranhão, 
MA, Brazil, by Artificial Neural Networks

Variety Yield measured in Teresina, PI (kg ha-1) Predicted yield in São Domingos do Maranhão, MA (kg ha-1)
Mulatinha 1490.05 1381.06
Fava Branca MA 1191.33 973.78
Boca-de-Moça 1011.98 1037.48
Fava Branquinha 939.76 854.51
Raio de Sol 886.34 1116.97
Fava Amarela 851.80 1266.34
Fígado de Galinha 702.82 1056.26
Rajada 692.14 839.37
Fava Branca CE 605.86 600.13
Chumbinho 325.64 589.59
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Table 5. Adaptability and stability (Pi) for grain yield, according 
to the Lin and Bins (1988) method, obtained from ten landraces 
of lima bean genotypes in two environments (Teresina, PI, and 
São Domingos, MA), Brazil
Variety Pi
Mulatinha < 10E-9
Fava Branca MA 63.77
Boca-de-Moça 86.64
Fava Branquinha 145.01
Raio de Sol 108.55
Fava Amarela 105.13
Fígado de Galinha 181.30
Rajada 232.51
Fava Branca CE 347.90
Chumbinho 495.56

Table 4. Summary of combined analysis of variance for the traits of seed length (SL) and 100 seed weight (100SW) from seeds collected 
in Teresina, PI, and São Domingos do Maranhão, MA, that showed significant correlation with grain yield in Teresina, PI, Brazil, in 2018

Source of variation df
SL (mm) 100SW (g)

Mean square F Mean square F
Genotype 9 270.43 141.10** 6309.00 304.48**
Environment 1 29.99 15.64** 8382.10 404.53**
G × E 9 4.22 2.20* 192.40 9.28**
Error 57 1.91 20.70
Overall mean 13.99 49.13
CV (%) 9.87 9.25

* and ** significant at 5% and 1% probability by the F test.

is, the lowest Pi value. Thus, genotypes with lower Pi values 
respond in a more similar way to the ideal hypothetical 
genotype, since they have greater general adaptability.

For Mattos (2013), an ideal genotype should have high 
mean yield and maintain this yield in all the environments. 
Thus, the variety Mulatinha stood out by exhibiting 
performance nearest that of a hypothetical “ideal genotype” 
(Table 5). This genotype had lower Pi values and a satisfactory 
overall average, with higher yield than the others. Oda et 
al. (2019) states that genotypes identified as more stable 
and adapted are generally among the highest yielding when 
evaluated by this method. Melo et al. (2018) obtained 
similar results when evaluating adaptability and stability of 
15 bean (Phaseolus vulgaris L.) genotypes in family farming 
systems in the state of Goiás, Brazil.

The varieties Fava Branca MA, Boca-de-Moça, Fava Amarela, and Raio de Sol also performed better than the overall 
average and showed good stability. In contrast, Branquinha, Fígado de Galinha, Rajada, Fava Branca CE, and Chumbino 
did not have good grain yield, meaning that their relative performance is still far from ideal. In fact, high stability only 
makes sense when associated with high mean performance for the trait of interest (Yan 2011).

The variety Mulatinha is recommended for growing in São Domingos and Teresina. The landrace varieties Fava 
Branca CE and Chumbinho are not recommended for growing in these environments. The Lin and Binns method can be 
recommended for use in phenotypic stability studies of lima bean cultivars since it is simple to use and identifies stable 
genotypes among the most productive ones.  
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