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ABSTRACT

The design of  monopile foundations for offshore wind farms, the estimate of  wave loads, and the effect of  the structures on the 
environment usually consider one single vertical cylinder. This choice is based on the size of  the ratio cylinder diameter to wavelength, 
and on the large distances between turbines. However, for large arrays of  monopiles, the ensemble effect must be investigated. This 
study addresses monochromatic wave propagation through a rectangular array of  four cylinders 800 m and 300 m apart, considered 
here as the fundamental geometry for an arbitrary array of  monopiles turbines. Results for bottom velocities, mean water level, mass 
transport, and radiation stress tensor in the presence of  the array are compared with those for a single cylinder. The numerical model 
WAMIT is used to compute the potential velocity solution. Relevant spatial variations were found, especially for radiation stresses, 
for different periods and directions of  propagation. Diffraction effects on the wave field by the array are significantly stronger than 
the superposition of  individual effects of  isolated cylinders under the same conditions. Impacts of  the entire wind farm on bottom 
morphodynamics near the foundations, on the design loads, and on the wave climate past the wind farm are discussed.

Keywords: Wave-cylinder interaction; Monopile array; Radiation stress; Second-order effects; Offshore wind farms.

RESUMO

O cálculo das fundações das estruturas de suporte de turbinas (monopilares) de parques eólicos offshore, a estimativa dos esforços 
causados pelas ondas, e o efeito das estruturas no meio ambiente, costumam considerar estas estruturas como cilindros verticais 
isolados. Justifica-se esta escolha pelo pequeno valor da razão entre o diâmetro dos monopilares e o comprimento da onda, e pelas 
longas distâncias entre as turbinas. Contudo, no caso de um grande arranjo de monopilares, o efeito do conjunto deve ser investigado. 
Este trabalho aborda a propagação de ondas através de um arranjo retangular de quatro cilindros separados 800 m e 300 m, aqui 
considerada como a geometria básica para um parque offshore de turbinas monopilares de arranjo geométrico qualquer. Resultados 
para velocidades no fundo, nível médio da água, transporte de massa e tensor de radiação na presença do arranjo são comparados 
àqueles obtidos com um único cilindro. O modelo numérico WAMIT é usado para calcular a solução do potencial de velocidades. 
Os resultados mostram variações espaciais relevantes, especialmente para as tensões de radiação, para diferentes períodos de ondas 
incidentes e ângulos de propagação. Os efeitos de difração no campo de ondas pelo arranjo de cilindros foi significativamente maior 
que a superposição dos efeitos de difração de cilindros isolados nas mesmas condições de ondas. Os impactos da difração produzidos 
pelo conjunto do parque eólico sobre os processos morfodinâmicos no entorno das fundações, sobre as cargas atuantes nas estruturas, 
e sobre o clima das ondas após a passagem pelo parque são discutidos.

Palavras-chave: Interação onda-cilindro; Arranjo monopilar; Tensor de radiação; Efeitos de segunda-ordem; Parques eólicos 
offshore.
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INTRODUCTION

Policies to reduce carbon emission have changed the 
world energy matrix, gradually substituting fossil fuel sources 
by renewable ones: the use of  offshore wind energy has rapidly 
grown during the last two decades as being a viable option 
(Breton & Moe, 2009). By the end of  2018, the total offshore 
wind power capacity installed worldwide was 23.14 GW (Global 
Wind Energy Council, 2019). Most of  the offshore wind energy 
has been installed in the northern European waters, currently 
representing 79% of  the total installed capacity. The remaining 
21% is mostly installed in the Asia-Pacific area. However, a broader 
distribution among other areas of  the world is expected to happen 
in the next years. Like several other nations, Brazil has specific 
offshore plans for the next coming years. Soon, as offshore wind 
energy plays an important role in energy supply, it is necessary to 
improve the methodologies for environmental impact assessment 
and monitoring. This is particularly important as the number of  
turbines installed in wind farms has also significantly increased.

In 2018, the largest wind farms in generated power were Walney 
Extension-UK, with 659 MW and 87 monopile turbines (Ørsted, 
2017), London Array-UK, with 630 MW and 175 monopile turbines 
(Vanhellemont & Ruddick, 2014), and Gemini Wind Farm-NL, 
with 600 MW and 150 monopile turbines (Brasseur et al., 2018). 
Installed offshore wind turbines use various design configurations 
such as jackets, gravity foundations, or floating structures. The most 
common solution for shallow waters, up to 25-30 m, is monopile 
(Wei et al., 2014). Little attention is given to the occupied area of  
these large offshore wind farms. The existing literature on how 
large wind farms affect wave climate is still limited, although 
several authors have addressed the impacts on the ecosystem 
(Tucker, 1996), on local meteorology (Baidya Roy et al., 2004; 
Hasager et al., 2015), and on the ocean (Segtnan & Christakos, 
2015; Cazenave et al., 2016).

Distances between turbines (d ) vary normally from 
150-400 m in the wind dominant direction and 500-1200 m in 
the perpendicular wind dominant direction, and this distance is 
chosen relative to the rotor diameter size. For a fixed geometry, 
changes in wave periods will result in different wave lengths ( )L  
and, consequently, relative distances /d L will change. Therefore, 
waves will sense the monopile array geometry according to the 
frequencies of  the sea state. The monopile can be simulated as a 
vertical cylinder with diameter ( )D  within the range of  5-10 m. 
In comparison to typical wave lengths, of  the order of  102 m, the 
cylinder diameter is small ( ) /   .D L 0 2≤ .

The relative size of  the cylinder with respect to the 
incident waves ( )/D L  and the Keulegan-Carpenter number ( )KC  
determine the kind of  interaction between waves and vertical 
circular cylinders. The KC represents the relation between the 
excursion length of  the fluid particles and the size of  the flow 
obstacle in the direction of  the wave propagation. It measures 
the importance of  drag forces relative to inertial forces. 
For vertical circular cylinders, it is expressed as  /KC uT D= , 
where u is the amplitude of  the horizontal fluid velocity and 
T  is the wave period (Sumer & Fredsøe, 1997). Regarding 
diffraction effects for far apart isolated cylinders, when /d L 1>

, drag forces dominate and diffraction is less important when 
/   .D L 0 2≤  (Vepa, 2013). In this case, forces on the structure can 

be calculated using the velocity field for the incident waves (Kim 
& Chen, 1994). Consequently, the interaction between waves 
and monopiles has been traditionally approached considering 
extreme incident waves and one single monopile. However, a 
large number of  monopiles may generate a diffraction pattern 
different from the local, and relatively non relevant, diffraction 
effect of  one single monopile, even for /d L 1> , thus affecting 
velocities, accelerations and forces acting on the monopiles. 
The monopile array may also be capable of  modifying the 
incident wave pattern that goes through the wind farm and 
reaches the nearby coast.

The interaction between waves and a cylindrical structure 
has been investigated for decades, since the pioneering studies 
by Havelock (1940), who obtained an exact analytical solution 
for the diffraction of  linear waves by a single cylinder in infinite 
water depth, and by MacCamy & Fuchs (1954), who extended 
the theory for the case of  finite water depth. After these studies, 
numerous authors worked to obtain a direct second order solution 
(e.g. Kim, 1988; Kriebel, 1990, 1992), or compute the second order 
hydrodynamic loads using an indirect approach (Molin, 1979; 
Chau & Taylor, 1992; Taylor & Huang, 1997). The introduction 
of  numerical schemes and Green’s functions have been used 
to obtain second-order wave elevation and pressure loads for 
monochromatic, bichromatic and random waves (Kim, 1988; 
Kim & Yue, 1989, 1990; Kareem et al., 1994).

The interaction between waves and arrays of  vertical 
cylinders has also been investigated by many authors (Spring 
& Monkmeyer, 1974; Kagemoto & Yue, 1986; Abul-Azm & 
Williams, 1989; Linton & Evans, 1990; Ghalayini & Williams, 
1991; Moubayed & Williams, 1995) and an extensive review on this 
subject was conducted by McIver (2002). More recently, Huang 
(2004), Walker & Taylor (2005), Wang & Wu (2007), and Steward 
(2018), have studied arrays of  2, 4 and 25 cylinders separated by 
short distances, /d L 1< .

Experimental studies about one or more cylinders have 
been conducted by Ohl et al. (2001a, 2001b), Kagemoto et al. 
(2002), Kagemoto et al. (2014), and Kamra et al. (2019), among 
others. Kagemoto et al. (2002) studied regular wave interaction 
with an array of  50 truncated cylinders, and Kagemoto et al. (2014) 
presented experimental results of  the first and second-order free 
surface displacements between two rows of  vertical cylinders. 
Lately, the introduction of  Computational Fluid Dynamics (CDF) 
has allowed to solve the wave diffraction around a cylinder or a 
small group of  cylinders with a very detailed description of  the 
physical processes as the fluid physics are computed with a few 
assumptions (Kamath et al., 2016; Bihs et al., 2017; Mohseni et al., 
2018).

Research on the subject of  wave-cylinder interaction in the 
last decades, driven mostly by demands of  the offshore oil industry, 
have provided an extensive knowledge of  wave forces, run-up, the 
resulting free surface field, and the conditions and implications of  
near-trapping phenomenon for cylinders a few diameters apart from 
each other. Since Sharma & Dean (1981), little attention has been 
given to the velocity field and time averaged second order quantities 
which are derived from linear theory results such as mean water 
level, mass transport, and radiation stress (Dean & Darlymple, 1991). 
Besides, the growth of  the offshore wind energy has risen some 
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issues that require further study. First, previous investigations on 
arrays of  vertical cylinders have focused on the case of  cylinders 
separated by short distances ( / )d L 1< . Second, the literature on 
the diffracted velocities for arrays of  widely separated cylinders is, 
to the authors’ knowledge, inexistent. Third, although the effect 
of  offshore wind farms on the wind field has been extensively 
investigated, their effects on waves, morphological processes around 
the structures, and littoral processes and nearshore hydrodynamics 
are still ongoing basic research topics.

Taking a small array of  four cylinders, which could be 
considered as the basic unit of  a monopile offshore wind farm, it 
seems that they can induce significant changes as to be necessary 
to consider the whole monopile turbine array for environmental 
assessments and design purposes.

The present investigation aims at verifying whether the 
diffraction effects on the wave field by an array of  far apart cylinders 
( / )25 d L 1> >  can be studied as the effect of  isolated cylinders or if  
the scattered waves generated by each cylinder interact with each 
other and the array must be studied considering all the cylinders.

This paper presents the results of  wave-cylinder interaction for 
bottom velocities, mean water level, depth averaged mass transport, 
and radiation stress field for an array of  four cylinders separated 
by distances of  the order of  /x16 d L 7> >  and / .y6 d L 2 6> > , where 

xd  and yd  are the distances between turbines along the x and y axes, 
respectively, and compares these results with those obtained for 
one isolated cylinder. The effect of  the incident wave period and 
propagation angles has also been studied.

MATERIAL AND METHODS

This section includes a review of  the linear theory for 
wave-cylinder diffraction, and the second-order time averaged 
properties (mass transport, mean water level and radiation stresses) 
obtained from linear theory. From MacCamy & Fuchs (1954) 
analytical solution for the velocity potential of  diffracted waves 
by one cylinder, the analytical expressions of  velocities and mean 
water level are derived.

Wave-cylinder diffraction

Consider a monochromatic wave of  height H and angular 
frequency ω, propagating at uniform water depth h in the positive x 
direction, as shown in Figure 1. The formulation of  the diffraction 

problem by one single vertical cylinder of  radius a assumes ideal 
incompressible fluid and irrotational flow, the fluid velocity is 
represented by the gradient of  a scalar velocity potential, ( ), , ,r z tφ a
, which is the solution of  Laplace’s equation in the fluid domain 
in cylindrical coordinate, Equation 1.

rr r zz2
1 1 0
r r aaφ φ φ φ+ + + = 	 (1)

The total diffracted velocity potential is the sum of  the incident 
iφ  and the scattered velocity potential sφ . Assuming small amplitude 

waves, the velocity potential can be expanded in a perturbation series 
in terms of  the wave steepness /H Lε = , where H is the wave height. 
The boundary value problem, with the appropriate conditions at the 
bottom, at the free surface, around the cylinder, and the radiation 
condition in the far field, is expressed as Equation 2.
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The radiation condition imposes that the wave energy 
associated with the disturbance due to the presence of  the cylinder 
is carried away from the body in all directions in the far field. 
The general first order solution in cylindrical coordinates ( ), , ,r z ta  
was given by MacCamy & Fuchs (1954) in Equation 3, where ( )1

mH  
and mJ  are the Hankel and Bessel functions of  the first kind and m 
order, and the prime denotes the derivative relative to the argument 
of  these functions (in this case, the radial distance). The wave 
number k is given by the dispersion relationship ( )tanh /2k kh gω= , 
where g is the gravity acceleration constant.
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The formulation of  the diffraction problem for arrays 
of  vertical cylinders is similar to what has been presented in this 
section for the case of  one cylinder. Although, the total velocity 

Figure 1. Variables definition scheme for the case of  one isolated cylinder.
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potential is now the sum of  the velocity potential of  the incident 
waves and the scattered waves due to the presence of  all the 
bodies that form the array. In this study, the computer program 
WAMIT (WaveAnalysisMIT) is used to solve the diffraction 
boundary value problem to obtain the time harmonic solutions 
of  the first term of  the series expansion for a specific incident 
wave field. WAMIT has been widely used in the offshore and 
naval industry, but it has also been adopted in some recent studies 
to the case of  vertical cylinders in the field of  coastal engineering 
and studies of  wind farms (Christensen et al., 2014; Newman, 
2014; Mohseni et al., 2018; Read et al., 2018).

To solve the diffraction problem by the integral method, 
the boundary value problem of  Equation 2 is rewritten in integral 
equations form, using the wave source potential as a Green function. 
In a Cartesian coordinate system, where ( ), ,x y zΧ = , the velocity 
potential can be expressed as Equation 4.

( ) ( ), d i tt Re e ωφ Χ φ Χ= ∑ 	 (4)

Equation 5 (Korsmeyer et al., 1988) shows the corresponding 
expression for the diffraction potential dφ , where BS  denotes the 
cylinder boundary, n is the vector normal to the body boundary, 
and ( );G ξ Χ  is the Green function (the velocity potential at the 
point Χ  due to the source of  strength located at the point ξ), 
based on Bessel function of  zero order that satisfies the free-
surface condition.

( ) ( ) ( ) ( );
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∂
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Next, the integral equations are solved using a ‘panel’ method. 
In this method, the wetted surface of  the body is represented by 
an ensemble of  quadrilateral panels. The obtained linear system 
is, finally, solved by an iterative method to obtain the unknown 
velocity potential and the source strength on the cylinder surface. 
After this, the fluid velocity on the cylinder surface is evaluated.

WAMIT provides the results for the real and imaginary 
parts of  the dynamic pressure and the Cartesian components of  
the velocity field, at any point of  the fluid domain. From these 
quantities, the time series of  the pressure and the velocities are 
easily computed as shown in Equation 6, where Ν  is a complex 
variable, whose real and imaginary parts are rN  and iN , respectively, 
and it can represent either the dynamic pressure, p, or the 
Cartesian components of  the vector velocity, ( ), ,u v w . The free 
surface elevation is directly obtained from the dynamic pressure 
at the still water level.

( ) ( ){ } , , , Re  i t
r ix y z t i e ωΝ Ν Ν= + 	 (6)

Mass transport

Surface gravity waves induce a periodic motion to fluid 
particles. According to linear theory for monochromatic progressive 
waves, the Lagrangean particle trajectories are closed ellipses. 
In reality the oscillatory motion is not completely ‘closed’, though, 
and a net drift in the direction of  wave propagation, known as 
the Stokes drift, is produced (Stokes, 1880). The Stokes drift can 

be seen as the difference between the average Lagrangean flow 
velocity of  a fluid parcel and the average Eulerian flow velocity of  
the fluid and can be calculated as Equation 7 (Van Den Bremer 
& Breivik, 2018).

( ) ( )1 1
SD δ= ⋅∇V V 	 (7)

where ( )1V  is the first order in wave steepness velocity field at 
the mean water level; and ( )1δ  is the first order in wave steepness 
linear displacement vector.

Since Stokes drift can be understood as the vertical 
distribution of  mean wave momentum per unit volume, a new 
quantity can be defined which corresponds to the depth-integrated 
Stokes drift, also known as Stokes transport. The time averaged, 
depth integrated net mass transport per unit length of  wave 
crest and per unit is given by the Stokes transport multiplied by 
the water mass density ρ. Equations 8 and 9, (Longuet-Higgins, 
1969), give the projection of  the mass transport in the x and y 
directions as a function of  the instantaneous water level,  η, and 
the velocity components.

x z 0
M uρη

=
= 	 (8)

y z 0
M vρη

=
= 	 (9)

For regular periodic waves propagating in any given direction 
defined by the unit vector ( )cos ,sinθ θ=n , the mass transport in 
this direction is expressed as in Equation 10, where c is the wave 
phase speed and E is the wave energy density per unit area. For a 
fixed wave height, the smaller the wave period, the stronger the 
mass transport.

21 k EgH
8 c
ρ

ω
= =M 	 (10)

From WAMIT results for the free surface, ( ){ }i t
r iRe i e ωη η η= + , 

and for horizontal velocities u and v, the mass transport can be 
computed by Equations 11 and 12.

( )   x r r i i
1M u u u at z 0
2

ρη ρ η η= = + = 	 (11)

( )   y r r i i
1M v v v at z 0
2

ρη ρ η η= = + = 	 (12)

Quantifying Stokes drift and mass transport is important 
for nearshore circulation, as they affect the wave-induced sediment 
transport and sandbar migration (Van Den Bremer & Breivik, 
2018). When surface waves propagate normal to the shore, the 
Stokes drift produces an accumulation of  water in the surf  zone, 
which in turn builds up a pressure gradient which originates an 
offshore flow (undertow). Mass transport also plays an important 
role, in combination with Eulerian currents, transporting tracer 
substances, floating objects and fluid, such as micro-plastics and 
oil films in the upper ocean layer.

In case of  wave breaking within the offshore wind farm, 
the pattern of  mass transport would play an important role on 
bottom evolution. Otherwise, oil spills may also occur in the 
monopiles surrounding waters and may generate pollution with 
plastic debris during maintenance works. Therefore, studying mass 
transport is relevant for wind farms environmental assessments.
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Mean water level

As surface gravity waves approach the coast, they become 
shorter, steeper, and eventually break. After breaking, they keep 
moving forward to the beach with decreasing height, thus affecting 
the momentum flux and introducing changes in radiation stress 
and the mean water level. Negative and positive changes, usually 
called set-down and set-up, occur before and after the breaking 
point, respectively.

Wind farms are commonly installed in intermediate water 
depths, before the wave breaking point. In this case, the mean 
water level at the wind farm location will experience a set-down. 
For regular periodic progressive waves, Longuet-Higgins & Stewart 
(1962) obtained the expression of  wave set-down, Equation 13.

( )sinh

21 H k
8 2kh

η = − 	 (13)

Wave diffraction by vertical cylinders modifies the pattern 
of  the incident waves. Larger wave heights occur near the cylinder 
and areas with smaller wave heights might appear inside the array 
due to negative interferences (Wang & Wu, 2007). As a result, mean 
water level will be modified from the theoretical set-down that is 
associated with the periodic regular waves that are approaching 
the cylinders, Equation 13.

To obtain the expression of  the mean water level around 
one or more cylinders, the expression has been derived from 
Bernoulli’s equation, Equation 14.

( ) ( )   2 2 2
t x y z

1 g B t at z
2

φ φ φ φ η η+ + + + = = 	 (14)

Considering Bernoulli’s constant ( )B t 0= , the general 
expression of  the mean water level is obtained by following these 
steps: (1) taking Taylor’s expansion at z 0= ; (2) retaining only the 
terms up to second order ( )2O kH , and; (3) time averaging in wave 
period. After these steps, the expression of  the mean water level 
can be written as in Equation 15.

( )2 2 2
tz x y zz 0 z 0

1 1
g 2g

η ηφ φ φ φ
= =

= − − + + 	 (15)

The analytical expression for the mean water level for the 
case of  one cylinder is derived. Considering ( ) ( ) ( )cos sin2 t t i tϕ ω ω= − , 
and the real and imaginary part of  3ϕ  as P and Q, respectively, so 

3ϕ  can be written as ( ),3 r P iQϕ a = + , the expression of  the mean 
water level can be written as Equation 16, where K is ( )tanhk kh , 
and , , ,r rP Q P Qa a  are the radial and alpha derivatives of  the real and 
imaginary part of  3ϕ , respectively.

( )   
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From WAMIT results, the mean water level is calculated 
by Equation 17.

( ) ( )     2 2 2 2 2 2
r i i r r i r i r i

1 1w w u u v v w w at z 0
2g 2

η ω η η = − − + + + + + =  
	 (17)

The computation of  the mean water level within arrays 
of  vertical cylinders far apart provides information about the 
multiple interaction of  the scattered wave produced by each 

cylinder. In addition, calculating the mean water level is necessary 
to compute radiation stress.

Radiation stress

The definition of  the radiation stress tensor was first 
introduced by Longuet-Higgins & Stewart (1962), and physically 
discussed in (Longuet-Higgins & Stewart, 1964). The radiation stress 
is the depth-integrated – and thereafter phase-averaged – excess 
of  momentum flux on the mean flow caused by the presence of  
surface gravity waves. It describes the additional forcing due to 
the presence of  the waves. Spatial gradients in radiation stresses 
produce changes in the mean water level and generate a mean flow.

The general expressions for the second-order components 
of  the radiation stress tensor, ijS , are given by Equation 18, where 
u is the horizontal velocity, tp  is the total pressure term, ijδ  is the 
Kronecker delta, the i and j subscripts correspond to the Cartesian 
components x and y, respectively, and the overbar means time 
averaging.

( ) 2
ij i j t ijh

1S u u p dz g h
2

η ρ δ ρ η−= + − +∫ 	 (18)

For progressive monochromatic waves propagating at an 
angle θ relative to the coordinate x y−  system, the expressions of  the 
radiation stress tensor components are given by Equations 19 to 21, 
where n is the ratio of  group velocity to wave celerity, given by 
Equation 22.

( )( )cos2
xx

1S E n 1
2

θ = + −  
	 (19)

( )( )sin2
yy

1S E n 1
2

θ = + −  
	 (20)

( )sin xy
ES n 2
2

θ= 	 (21)

( )sinh
1 2khn 1
2 2kh
 

= +  
 

	 (22)

When a progressive wave train finds an obstacle, it is 
partially reflected, and the momentum reverses its initial direction. 
For momentum conservation, the obstacle experiences a force equal 
to the rate of  change of  the wave momentum. The force acting on 
the body is a manifestation of  the radiation stress. Analogously, one 
might consider what happens to the whole ensemble of  structures, 
like the monopile array. Changes on the radiation stress around 
an array of  vertical cylinders will induce different forces on the 
individual structures. Besides, radiation stresses are fundamental 
to characterize important mechanisms of  sediment transport at 
the bottom of  the array and in shallow regions.

To compute the radiation stresses from WAMIT results, 
the expressions of  ijS  have been derived from the general 
expression in Equation 18. The vertical dimension of  the fluid 
domain is discretized in z∆  equal increments. After some algebraic 
calculations, the resulting expressions are given by Equation 23 to 25, 

where *  denotes the modulus of  the complex amplitude and 
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the series correspond to the numerical integration in z, using the 
trapezoidal rule.

( )    
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SIMULATIONS SET-UP

To verify the importance of  diffraction effects on the wave 
field by cylinders far apart ( / )d L 1> , a set of  simulations have 
been conducted using the diffraction program WAMIT. In this 
paper, two scenarios were considered: one cylinder (N1) and an 
array of  four cylinders (N4), both for different combinations of  
wave period and propagation direction. Table 1 lists the wave 
properties and the values of  important wave-geometric relations 
for the diffraction problem, for both scenarios, considering 10 m 
water depth. The symbols have been previously defined.

Figure 2 shows the geometrical configurations. The distances 
between the cylinders ( ),x yd d , the cylinder diameter ( )D , and the 
depth ( )h , are representative of  monopile wind farms. Note that 
for the N4 case, different propagation angles imply that the wave 
crest is going to be diffracted by structures separated by different 
distances. Further, the phase of  the wave when encountering 
the cylinder will be different if  compared with the same period 
simulation but different propagation angle.

Data of  the velocity and pressure field have been collected 
within the shaded area shown in Figure 2, with a spatial discretization 
of   x 2m∆ = ,  y 2m∆ =  and  z 1m∆ = .

The simulations carried out in this study allow to investigate: 
(1) the effect of  introducing four cylinders separated a few hundred 
meters from each other with relatively small radius, if  compared 
with the diffraction effect of  one isolated cylinder; (2) the influence 
of  the wave period in the diffraction interferences in arrays of  
widely separated cylinders; and, (3) how modifications of  wave 
angles, hence different perturbation patterns, affect the resulting 
diffracted wave field.

Data analysis validation

To validate the method of  data analysis and the derived 
expressions for the second-order properties addressed in this 
paper, monochromatic waves with the same periods and angles of  
propagation listed in Table 1, were also simulated with WAMIT 
(case N0). The results of  the velocities at the bottom, the mean 
surface level, the mass transport, and the radiation stress were 
successfully validated with the theoretical values. The results from 
Equation 17 for N1 were compared with the results obtained with 
Equation 16, derived from the solution of  MacCamy & Fuchs (1954).

Table 1. Wave properties and values of  the most relevant diffraction wave-geometric relations that influence the studied problem. Note 
that T  is the wave period, H  is the wave height, θ  is the wave propagating angle, L is the wave length, KC is the Keulegan-Carpenter 
number, D is the cylinder diameter, and dx-d y are the distances between cylinders in the x-y directions.

( )sT ( )mH ( )° θ KC /D L /xd L /yd L

6 1 [0,15,30,45] 0.36 0.20 16.53 6.20
12 1 [0,15,30,45] 0.62 0.09 7.06 2.65

Figure 2. Scheme of  the Cartesian coordinates origin, wave propagation, cylinder positions and results area for the case of  one cylinder 
and four cylinders array. For all simulations, the origin of  the z-axis is in the position of  the still water level, water depth is 10 m, and 
the radius of  the cylinders is 5 m (  D 10 m= ).
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RESULTS AND DISCUSSION

Results for the bottom velocity field, mass transport, 
mean water level, and radiation stress components are shown in 
this section. In all illustrations in this section, wave propagates 
from left to right.

Bottom velocity field

This section presents the spatial distribution of  the modulus 
of  the bottom velocity at t 0 s= , and the amplitude of  the velocity 
field at the bottom. This means that, if  N represents the components 
of  the vector velocity ( ),u v  in Equation 6, the amplitude of  the 
velocity for each component is given by Equations 26 and 27.

2 2
A r iu u u= + 	 (26)

2 2
A r iv υ υ= + 	 (27)

Thus, the amplitude of  the velocity field is given by 
Equation 28.

,. 2 2
x y A AAmp V u v= + 	 (28)

Figure 3 shows the results for the case of  one isolated 
cylinder. Observing the results for the modulus of  the bottom 
velocity for  T 6 s= , the impact due to the presence of  the cylinder 

is evident. The diffracted velocities have velocity gradients at the 
same wave phase. These gradients are higher on the up-wave face 
of  the cylinder. The effect of  incrementing the wave period is clear. 
For  T 6 s= , / .D L 0 204= , the limit at where the diffraction effects 
are relevant, whereas for  T 12 s= , / .D L 0 088= , and the scattered 
wave produced by the presence of  the cylinder does not affect 
significantly the incident wave field, as expected.

For the case of   T 6 s= , the amplitudes of  the bottom velocity 
in Figure 3 show a pattern with half  the wave length of  the incident 
wave, in front of  the cylinder. The presence of  a standing wave 
causes increments of  velocity amplitudes from 113%-132% and 
decreases of  84%-71% at approximately 150 m updrift the cylinder. 
Behind the structure, two areas of  lower velocity amplitudes 
appear. They result from the destructive interaction between the 
scattered wave and the progressive incident waves, due to their 
phase differences. For the case of   T 12 s= , the presence of  the 
cylinder affects the velocity amplitudes near the structure, within 
the range of  18 m, with smaller/higher velocity amplitudes in the 
parallel/perpendicular direction of  wave propagation.

For the N4 case, Figure 4 represents the modulus of  the 
velocities at the bottom (bottom speed) and the velocity amplitude. 
Again, the diffraction effects on velocities for the case of   T 12 s=  
are restricted to the near field around the cylinders. For  T 6 s= , 
the results of  velocity modulus and velocity amplitude show a 
rhomboid pattern of  high and low velocities due to the diffraction 
interactions between the four cylinders. The influence of  the 
propagation angle in the resulting velocity field at the bottom is 

Figure 3. Velocity modulus and velocity amplitude around one cylinder for incident waves of  [ ],  T 6 s 12 s=  and 0θ = °.
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evident when comparing the results for 0θ = ° and 45θ = °. Different 
angles of  propagation mean that the incident waves will encounter 
the cylinders at different phases. Consequently, the patterns of  
velocity modulus and velocity amplitude change, and the location 
of  the maximum velocity amplitudes will be different. For the 
case of   T 6 s= , when diffraction interaction between cylinders is 
important, the effect of  the upstream side of  the array is noticeable, 
as if  the wave sensed the array before reaching it.

Mass transport

Equation 11 and 12 allows computing the Cartesian 
components of  the mass transport for any linear theory results 
of  pressure and velocity field obtained from WAMIT.

Figure 5 shows the results for N1 and N4 cases, for wave 
periods  T 6 s=  and  T 12 s= , and propagation angle 0θ = °. For  T 12 s= , 
mass transport is only affected by the cylinders approximately 20-30 m 

Figure 4. Velocity modulus and velocity amplitude around the array of  four cylinders for incident waves of  [ ] ,  T 6 s 12 s=  and [ ], 0 45θ = ° ° .
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Figure 5. Mass transport around one isolated cylinder and an array of  four cylinders for incident waves of  [ ] ,  T 6 s 12 s=  and 0θ = °. 
For each case, it is included at right a detailed figure of  the mass transport around the cylinder located at ( ),400 400 , including arrows 
that indicate mass transport direction.
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around the structure, and the results for one or four cylinders are 
essentially the same. For  T 6 s= , however, the presence of  one or 
four cylinders perturbs the value of  the mass transport. Again, 
as in the analysis of  the bottom velocities, it can be observed the 
diffraction interactions between all the cylinders. Nevertheless, for 
mass transport results, the presence of  the cylinders is noticeable 
essentially on the lee side of  the cylinder.

The mass transport directions for the entire domain 
does not suffer significant modifications at points located more 
than 20-30 m away from the cylinders. Therefore, considering 
the entire domain, the direction of  the mass transport would be 
approximately the same as that of  the incident waves.

Behind the cylinders, mass transport is reduced by 
approximately 80% for all periods and angles simulated in this 
study. At this location, vortex shedding is important in the 
wave period scale. If  oil or debris spill in this area, it would 
stay longer than it had occurred elsewhere due to the reduced 
mass transport capacity. Hence, the changes produced by the 

cylinders in the mass transport are important and worthy to 
be analyzed.

Mean water level

Mean water level can be computed from WAMIT pressure 
and velocity data using Equation 17. Figure 6 shows the results 
obtained for one isolated cylinder and an array of  four cylinders 
for propagating waves along the x-axis, for  T 6 s=  and  T 12 s= .

As it was observed in the bottom velocities, the presence 
of  the structure modifies the mean water level of  the incident 
wave field before encountering the cylinder(s). This is, again, 
a consequence of  the interaction between the progressive and 
the scattered waves ahead of  the structures. Due to reflection 
in front of  the cylinders, the mean water level is always higher, 
for all cases. For N4 scenario in case of   =T 6 s, the mean water 
level increases by 2 cm approximately in front of  the first row 
of  cylinders. Since the mean water level is related to the square 

Figure 6. Mean water level around one isolated cylinder and an array of  four cylinders for incident waves of  [ ] ,  T 6 s 12 s=  and 0θ = °.
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of  the wave height H , for wave heights of  3 m, mean water level 
would increase 20 cm. This fact brings important consequences 
on computing the loads on the monopiles; therefore the mean 
water level due to the diffraction effects should not be neglected.

Radiation stress

Although the theoretical expression for the radiation stresses, 
Equation 18, include the mean water level, after some algebraic 
work the expressions of  the radiation stress components from 
WAMIT data, Equations 23 to 25, do not include explicitly the 
mean water level. Yet, the results obtained in this study demonstrate 
clearly some relation between mean water level and radiation 
stresses. Spatial gradients in mean water level would force spatial 
gradients on the radiation stresses, which in turn drives mean 
currents. Figure 7 to Figure 9 show the results of  the radiations 

stresses. The results for xxS , yyS , xyS  are displayed using different 
color scales in each figure to avoid misinterpretation.

For the N1 case, Figure 7, the introduction of  the structure 
in a progressive wave field produces significant perturbations on 
the radiation stresses components in the entire modelling domain, 
these variations being greater near the structure. As an example of  
the magnitude of  the variations near the cylinder, comparing with 
the corresponding values of  xxS  without structures, xxS  is within 
152%-76% for  T 6 s= , and 122%-78% for  T 12 s= . It is important 
to note that the diffraction effects induce radiation stresses for 

xyS , that otherwise would be constant for monochromatic waves.
For the N4 case, Figure 8 and Figure 9, the resulting 

radiation stress field is the consequence of  the interaction 
processes between all the diffracted/scattered waves. 
The magnitude of  the fluctuations remains significant at 
hundreds of  meters away from the cylinders. Comparing 
different wave propagation angles, Figure  8 and Figure  9, 

Figure 7. Radiation stress components around one cylinder for incident waves of  [ ] ,  T 6 s 12 s=  and 0θ = °.
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the resulting radiation stress field is substantially different. 
Therefore, it can be deduced that the radiations stress field 
depends on the relative position between the cylinders, the 
number of  cylinders that interacts with the same crest, and 
the wave phase at which those interactions occur.

The radiation stress field around the cylinder that propagates 
away from the array is clearly modified from the incident one 
that reaches initially the group of  cylinders. Therefore, the wave 
forces on the cylinders and the hydrodynamic processes around 
the structures would be altered.

Another consequence is that the entire wave field, after 
crossing the wind farm, should be altered. Therefore, the momentum 
flux which would reach the shore, should be different from that 
if  the wind farm were not present. This is certainly an important 
finding, not much cited in the literature regarding environmental 
impact assessments of  wind farms (Christensen et al., 2014), with 
the advantage that the method herein described in this paper 
provides an objective way of  computing the overall effect of  a 
wind farm on the wave field, through the computation of  the 
modified field of  the radiation stress tensor.

Figure 8. Radiation stress components around an array of  four cylinders for incident waves of  [ ] ,  T 6 s 12 s=  and 0θ = °.
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CONCLUSION

Numerous investigators have addressed the interaction 
between waves and cylinders. Nevertheless, the knowledge about 
how groups of  cylinders, which are more than one wave length 
apart ( / )d L 1> , as monopile turbines in offshore wind farms, 
affect the incident wave field is still limited. The present work 
investigated the interaction between monochromatic waves and: 
(1) one isolated cylinder; and (2) an array of  four cylinders distant 
between 1 and 25 wave lengths from each other.

From the analytical solution for one cylinder, the analytical 
expressions for the velocities and the mean water level were derived. 
The expressions to compute mass transport, mean water level, 
and radiation stresses from WAMIT data, were also obtained. 

Using the numerical wave-diffraction program WAMIT, results 
were presented for one isolated cylinder and for an array of  
four cylinders (the assumed basic cell for offshore wind farms). 
The cylinders of  the array were separated  xd 800 m=  and  yd 300 m= . 
Different combinations of  wave periods ( ) ,  T 6 s T 12 s= =  and wave 
propagation angles ( ),0 45  θ θ= ° = °  were studied. Results from 
analytical expressions and theoretical results for monochromatic 
progressive waves were employed to verify the expressions and 
data analyses used with WAMIT data.

The results for bottom velocities, mass transport, mean 
water level and radiation stresses of  one isolated cylinder (N1) and 
the array of  four cylinders (N4) were compared. It was verified 
that the N4 case shows an ensemble effect, which corresponds 
to the interaction of  the incident wave field with all the cylinders 

Figure 9. Radiation stress components around an array of  four cylinders for incident waves of  [ ] ,  T 6 s 12 s=  and 45θ = °.
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of  the array. The ensemble effect modifies the maximum values 
of  all the properties studied in this work. For example, comparing 
the values of  the velocity amplitude for the case N4 with the case 
N1 in the total N1 result area, for 0θ = °, the velocity amplitude 
experience at certain points a maximum increment and reduction 
of  68% and 99%, respectively, for  T 6 s= , and 76% and 99%  T 12 s= . 
Therefore, even for cylinders /  25 d L 1> >  the system cannot be 
studied as individual cylinders.

For both N1 and N4 cases, bottom velocities, mean water 
level and radiation stresses experienced diffraction effects before 
the cylinders, whereas the diffraction effects on mass transport 
appears more significantly after the incident waves meet the 
structures. The effect of  the structures on the amplitude of  the 
bottom velocity and the mean water level showed the formation 
of  a reflective wave pattern in front of  the cylinders. This wave 
modifies the mean water level of  the incident waves with a periodicity 
of  /L 2 . Behind the structures, results for the diffracted wave 
confirm the interactions between the scattered and the incident 
waves. Spatial variations that depended on the wave propagation 
angle were observed for the N4 case, which means that the 
relative distances and positions of  the cylinders influence in the 
diffraction pattern. For  T 12 s= , ( / )D L 2≤ , the diffraction effects 
due to the presence of  four cylinders are significant and greater 
than the results of  one cylinder, especially for bottom velocities 
and radiations stresses.

Concerning the radiation stress tensor, an oscillating 
pattern of  radial and azimuthal radiation stresses, for one cylinder 
and four cylinders, respectively, manifests on the up-wave side. 
Down-wave, the pattern also varies spatially but strongly depends 
on the incident wave direction. Special attention should be given 
to the shear stress component xyS . While it remains constant for 
progressive monochromatic waves on a mild constant sloped 
bottom (or constant depth), in the present case it undergoes 
significant spatial variations after the introduction of  the cylinders.

Important spatial variations in bottom velocities, mass 
transport, mean water level and radiation stresses due to diffraction 
effects of  all the cylinders for the N4 case have been presented. 
Bottom velocities are important for sediment and morphodynamic 
processes around the cylinders; mass transport is relevant for oil 
dispersion and debris transport; variations on the mean water level 
can affect the calculations of  loads on the cylinders; and, radiation 
stresses affect the momentum flux through the array, which will 
propagate away from the array towards the coast and ultimately 
affect nearshore processes. If  the four cylinders array is considered 
as the basic unit of  offshore monopile turbines, computing those 
quantities and analyzing the effect of  the completed array was 
proved to be necessary. The results of  this paper also indicate 
that further investigations with larger monopile/cylinder arrays 
should be investigated for the environmental impact assessment 
on wave climate due to large wind farms.
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