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1.	 Introduction 

Eragrostis plana (Ness), known as South African lovegrass or Tough lovegrass, is the 
primary invasive weed in over two million hectares of the Pampa Biome (Medeiros, 
Focht, 2007) in southern Brazil. South African lovegrass is a slow-growing C4 grass 
with high seed production and dormancy, allelopathic activity, and tolerance to abiotic 
stresses (Bastiani et al., 2021).

The most used herbicide to control E. plana in the grassland is glyphosate 
(N-phosphonomethyl glycine). Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS), reducing the synthesis of aromatic amino acids, which 
are intermediate compounds in the shikimate pathway (glycolytic and phosphate 
pathways), proteins, and secondary metabolism (Maroli et al., 2015). The shikimic 
acid pathway route expends around 30% of the fixed carbon, which is used by plants 
to synthesize intermediate compounds, auxins, lignins, secondary metabolism, and 
aromatic amino acids (Maroli et al., 2015). Therefore, interruption of the shikimate 
pathway by glyphosate triggers several metabolic and physiological processes, leading 
to plant death (Gaines et al., 2020). In addition to the direct effects of EPSPS inhibition, 
glyphosate indirectly induces some ROS production, leading to lipid peroxidation, DNA, 
RNA, and protein oxidation, and slow cell death (Gomes et al., 2017; Maroli et al., 2015). 

Despite the efficient action of glyphosate, plants have evolved multiple mechanisms 
to mitigate the herbicide effects (Gaines et al., 2020). The known resistance mechanisms 
are classified into target-site resistance (TSR) and non-target-site resistance (NTSR) 
mechanisms, being the latter the most complex, involving several genes and metabolic 
routes (Gaines et al., 2020). TSR mechanisms include mutation and upregulation 
of the target gene (Gaines et al., 2020). The main known NTSR mechanisms for 
glyphosate are reduction of absorption and translocation of the herbicide, metabolism 
of the molecule (forming mainly aminomethylphosphonic acid - AMPA), and exclusion 
of the herbicide (mainly in vacuole) (Gaines et al., 2020). 

Abiotic stress and herbicide sub-lethal doses lead to several plant responses, 
such as NTSR regulation and other pleiotropic effects (Dyer, 2018). These defense 
responses are similar and interconnected (Burns et al., 2018). Therefore, it is expected 
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that plants adapted to abiotic stresses may have greater 
tolerance to herbicide stresses and vice-versa (Burns et al., 
2018; Fipke et al., 2022). An increase in ROS-detoxifying 
enzymes promotes acclimation to drought and heat stress 
in Conyza bonariensis and Abutilon theophrasti, increasing 
the tolerance to paraquat and glyphosate (Dyer, 2018; 
Zhou et al., 2007).

As transcriptome, proteome, and plant metabolism 
changes caused by herbicide stress are similar to abiotic 
stresses, plants adapted to abiotic stresses are likely more 
tolerant to herbicides (Yuan et al., 2010). In this context, 
the study’s objectives were to ascertain whether the 
transgenerational effect of acclimatization to stress due 
to water deficit and sub-lethal doses of glyphosate may 
decrease herbicide sensitivity and investigate whether 
antioxidant enzymes and other resistance mechanisms are 
involved in this process.

2.	 Material and Methods

2.1  Establishment of the populations

Seeds of E. plana were collected in an experimental field 
(bulk of seed) in the Embrapa located in Bagé (RS Brazil) 
and denominated G0. In the greenhouse facility at UFPel, 
the populations G1 and G2 were generated in 2017 and 2018 
(Figure 1). In order to build the populations, the initial G0 
population seeds were divided into four groups (each group 
with eight plants) and exposed to the treatments: untreated 
Check (CHK - without stress); drought treatment (DRY - 
water deficit until 35% of stomatal conductance in relation 
to unstressed plants); glyphosate treatment (GLY - 120 g 
a.e. ha-1 of glyphosate); DRY×GLY (water deficit until 35% of 
stomatal conductance and after recovery, sprayed with 120 
g a.e. ha-1 of glyphosate). The dose of glyphosate (dose to 
caused 30% to injury, data are not shown) or level of drought 

were defined in the pre-experiment (data are not shown), 
aiming at plant stress. The drought stress was performed 
according to the methodology described by Bastiani et al. 
(2021). In each treatment group, eight plants were used. As 
E. plana is probably predominantly allogamous, the plants 
from each treatment were isolated (in different greenhouse, 
avoiding any crossing among treatments) and subsequently 
seeds were collected (in bulk), generating G1 population. 
G1 populations were planted and exposed to the same 
treatments to obtain G2 generation.

2.2  Dose-response curves with glyphosate

After obtaining all the population’s offspring, a growth 
chamber experiment was conducted, with experimental 
units consisting of 1 L pots filled with sieved soil (Haplosol) 
organized in a randomized block design with six replications. 
Factor A included the different populations G0, G1 (CHK, 
DRY, GLY, and DRY×GLY) and G2 (CHK, DRY, GLY, and 
DRY×GLY), and factor B was of glyphosate doses (0, 90, 120, 
180, 250, 360, 540 and 720 a.e. g ha-1). All treatments were 
performed when plants reached an average of eight tillers, 
using glyphosate (Monsanto, Roundup Original™) applied 
with a CO2 sprayer calibrated to deliver 150 L ha-1 of spray 
solution. At 35 days after application (DAA), the visual injury 
(%) and shoot dry weight (SDW) ratings were analyzed. 
The SDW was transformed as the percentage compared to 
the plants without herbicide (%) of each population and 
generation. The experiment was repeated twice.

2.3  Physiological, biochemical, and profiling analysis of  
G2 populations

The experiments were carried out in a growth chamber 
(temperature 32/28 °C and photoperiod of 12 h). The 
experiments had three replications and consisted of 8 L 

Figure 1 - Design of CHK (check), DRY (drought), GLY (glyphosate), and DRY×GLY (drought plus glyphosate) populations in two 
generations (G1 and G2) from this G0 E. plana plants
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surface. Herbicide extraction was performed according to 
the methodology described by Gomes et al. (2015). 

To quantify glyphosate and metabolites, HPLC-MS/MS 
system equipped with a mass spectrometer (Quadrupole-
Orbitrap, Q-Exactive Focus, Thermo ScientificTM). For 
separation, a Hypercarb (5 µm 250 Å, 50 mm x 3 mm) column 
was used, and as mobile phase: (A) 5 mM of ammonium acetate 
in water (pH 7.0) and (B) 5 mM of ammonium acetate in 
methanol (pH 7.0), in gradient condition. Calibration curves 
were prepared in water employing analytical standards with 
purity ≥99% (Sigma-Aldrich, St. Louis, MO, USA). Method 
linear range (R2 ≥ 0.99) was 1 to 500 µg L-1 for all compounds, 
and samples were diluted when necessary. 

2.4  Gene expression analysis

In this study we evaluated the expression of the target 
genes 5-Enolpyruvylshikimate-3-phosphate synthase gene 
(EcEPSPS) Aldo-keto reductase (EcAKR), ABC-C Family 
MRP10 (EcM10), and ABC-C Family MRP8 (EcM11). EPSPS 
was chosen because it is directly involved in synthesizing 
the enzyme inhibited by glyphosate (Gaines et al., 2010). 
The AKR, M10, M11 genes are known to be involved in 
the process of glyphosate metabolism (Pan et al., 2019; 
Piasecki et al., 2019a).

Oligonucleotides for the target genes were obtained 
based on the Eragrostis curvula’s genome available in 
the National Center for Biotechnology Information – 
NCBI (National Center for Biotechnology Information, 
2020) and were designed using Primer3Plus software 
(Untergasser et al., 2007). In addition, rice (Oryza sativa L.) 
reference genes were used (Table 1). The GenBank IDs are 
EcAKR (TVU36522.1), EcEPSPS (AP014962.1), EcMRP10 
(TVU07241.,1), and EcMRP8 (TVU00075.1).

The total RNA was extracted from leaves (three biological 
replicates) using PureLink™ (Plant RNA Reagent-InvitrogenTM, 
Carlsbas, USA) following the manufacturer’s instructions. 
RNA concentration, quality and integrity were assessed 
using NanoVue™ (GE HealthcareTM, Buckinghamshire, UK) 
and agarose gel electrophoresis, respectively. RNA (1 µg) of 
each sample was treated with DNase I (Invitrogen) according 
to the manufacturer’s recommendations and converted into 

pots filled with the same soil described in the 2.2 section. 
Factor A consisted of populations of G2 generation: 
CHK and DRY×GLY (more and less sensitive glyphosate, 
respectively). Factor B: doses of 0 and 360 g a.e. ha-1 of 
glyphosate. The glyphosate dose used was the one that 
previously demonstrated plant injury without plant death, 
allowing the study of the physiological state of responses 
to the herbicide. The herbicide was applied when plants 
reached an average of 10 tillers. In experiment 1, plants 
were collected at 24, 48, 96, and 144 h after glyphosate 
application (HAA), and in experiment 2 were collected at 
48, 96, and 192 HAA. Samples were kept in an ultra-freezer 
(-80 °C). Leaf samples (second and third fully expanded 
leaves) were collected and immediately frozen in liquid 
nitrogen and stored in an ultra-freezer (-80 °C).

2.3.1.  Measurements

Stomatal conductance was measured with an LI-1600 
steady-state porometer (Li-Cor Biosciences™ - Lincoln, NE 
USA). All plants were evaluated, taking measures in the 
adaxial leaf face. 

H2O2 content and lipid peroxidation measurement 
were performed using leaf tissues (0.250 g) to determine 
H2O2 content according to Fipke et al. (2022); and 
malondialdehyde (MDA) determination was performed 
according to (Fipke et al., 2022; Velikova et al., 2000). 

Antioxidant enzymes: were performed with leaf 
tissues (0.250 g) to extract and determine SOD (EC 
1.15.1.1), CAT (EC 1.11.1.6), APX (EC 1.11.1.11) activity 
adapted by Fipke et al. (2022). 

2.3.2.  Quantification of glyphosate, AMPA, and aromatic  
amino acids

The concentrations of glyphosate, AMPA, shikimic acid, 
phenylalanine, and tyrosine were determined in duplicate 
using High-Performance Liquid Chromatography (HPLC) 
coupled with Tandem Mass Spectrometry (MS/MS). 
First, the treated leaves were immersed in a 10-mL wash 
solution (water in pH 2.5 with phosphoric acid 6 M) and 
the unabsorbed glyphosate was removed from the leaf 

Table 1 - Oligonucleotides for the reference and target genes used to study the Eragrostis plana gene expression in RT-qPCR.

Gene Forward (5’-3’) Reverse (5’-3’) Reference

OsACT1 CCTTCAACACCCCTGCTATG CAATGCCAGGGAACATAGTG Zhou et al., 2012

Os18S CTACGTCCCTGCCCTTTGTACA ACACTTCACCGGACCATTCAA Jain et al., 2006

OsEF1α TTTCACTCTTGGTGTGAAGCAGAT GACTTCCTTCACGATTTCATCGTAA Zhou et al., 2012

EcAKR AGGCCGGTTACAGACACATC CACTACGCCCTCCTGGAATA

EcEPSPS GACCGATTGGTGACTTGGTT TCCTCCAATTCCCTTGACAC

EcMRP10 CACAGCATTTGTTGCTCAGACT GACTTCTGAATATCTCTCCGGTTG

EcMRP8 AGTGGATTTCTTGCATAATGTTGA GACTGTGCAATCATACCATCTCTC

Os: Oryza sativa L.; Ec: Eragrostis curvula.
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log-logistic (y = a/[1 + (x/GR50)b]) regressions model. The 
sensitivity reduction rate was calculated with ED50 or 
GR50 (DRY, GLY or DRY×GLY) / ED50 or GR50 (CHK) in the  
same generation.

The stomatal conductance, H2O2 content, lipid 
peroxidation, antioxidant enzyme activity, glyphosate, 
AMPA, shikimate acid, L-tyrosine, and L-phenylalanine 
concentration were subjected to analysis of variance, 
calculated confidence intervals (CI; 95%). For plants of the 
same population with and without herbicide, a t-test was 
performed. The statistical analysis was conducted using 
SAS University EditionTM (SAS Institute, Inc.TM, Cary, NC, 
USA) statistical program.

3.	 Results and Discussion

3.1  Dose-response curves for populations to check for  
sensitivity shift

In G0 plants (Figure 2A), the dose of glyphosate required 
to cause 50% plant injury (ED50) was 173 g a.e. ha-1 (Table 2). 
Regarding G1 and G2 generation, CHK populations showed 

cDNA using oligo(dT) and the SuperScript™ III First-Strand 
Synthesis System kit (Invitrogen). 

RT-qPCR experiments were performed in LightCycler™ 
480 thermocycler with three biological and three technical 
replicates using oligonucleotides for the target and 
reference genes (Table 1), according to the MIQE Guidelines 
(Bustin et al., 2009). The amplification efficiency and 
specificity of each oligonucleotide were determined in 
validation experiments using four dilutions of cDNA. 
The reactions were performed following the protocol 
described by Fipke et al. (2022). Gene expression was 
calculated following the 2^(-delta-delta CT) method 
(Livak, Schmittgen, 2001), using CHK population without 
glyphosate (0 g a.e. ha-1) at each time of collection as a 
baseline and normalized with OsACT1, Os18S, and OsEF1α 
reference genes.

2.5  Statistics analysis

Data were tested for homogeneity of variance and 
normality. Visual injury and SDW data were fitted with 
a nonlinear sigmoid (y = a/(1+exp(-(x-ED50)/b))) and 
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Figure 2 - Visual injury (A, B and C) and shoot dry weight (D, E and F) of Eragrostis plana populations from generations G0 (A and D), 
G1 (B and E), and G2 (C and F) at 35 DAA of glyphosate doses. Parameters estimated for the curves are presented in Table 1. Vertical 
error bars represent a 95% confidence interval 
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an increased dose of glyphosate compared to G0, with ED50 
229 and 278 g a.e. ha-1, respectively. In G1 there were no 
differences in the ED50 of the DRY, GLY, and DRY×GLY 
populations compared to the CHK population. When 
analyzing the G2 generation, the DRY×GLY population 
presented the highest ED50, 443 g a.e. ha-1, among 
populations. In G2 generation, the sensitivity reduction rate 
(Table 2) showed 1.59 in the DRY×GLY population.

In the dose of glyphosate required to cause 50% 
of shoot dry weight reduction (GR50), there were no 
differences between the CHK populations of the G0, G1, 
and G2 generations, with 122, 199, and 152 g a.e. ha-1, 
respectively. In G1 generations, there were no differences in 
GR50 between populations. However, in the G2 generation, 
the DRY, GLY, and DRY×GLY populations presented higher 
GR50 (284, 308, and 436 g a.e. ha-1, respectively) than the 
CHK population. In G2 generation, the sensitivity reduction 
rate demonstrated 1.85, 2.02, and 2.85 for DRY, GLY, and 
DRY×GLY populations, respectively.

These results indicated that the offspring of plants 
exposed to water stress decreased sensitivity to glyphosate, 

mainly in G2. Plants from the DRY×GLY population, which 
received both stresses (drought followed by a sub-lethal 
dose of glyphosate), were less sensitive to glyphosate. It is 
well known that plants exposed to previous stresses may 
have improved tolerance to other stresses, a phenomenon 
related to memory mechanisms in plants (Galviz et al., 
2020). For instance, in another study, E. plana submitted 
to drought, quizalofop, and drought plus quizalofop had a 
lesser sensitivity to quizalofop than non-stressed plants 
(Fipke et al., 2022). Consequently, the current study also 
sought to determine the possible biochemical mechanisms 
involved in priming for glyphosate reduced sensitivity in 
E. plana.

3.2  Physiological, biochemical, and metabolites analysis of  
G2 populations

3.2.1.  Stomatal conductance

At 24 and 48 HAA (Figures 3A and 3B), all plants 
treated with glyphosate had lower stomatal conductance 

Table 2 - Parameters estimates for the curves for visual injury and shoot dry weight of Eragrostis plana populations of 
glyphosate doses.  

aPOP bGen
cEquation parameters (SE)

dD50 CI 95%
Sensitivity 
reduction  

ratea b R² P

eVisual injury

CHK G0 99.0 (1.92)** 37.29 (3.68)** 0.96 <0.01 172.9 (166.2-178.7) 1.00

CHK G1 98.5 (1.57)** 50.59 (3.59)** 0.98 <0.01 228.8 (222.6-234.2) 1.00

DRY G1 95.7 (1.99)** 47.42 (4.47)** 0.96 <0.01 216.2 (207.9-223.3) 0.94

GLY G1 94.8 (2.92)** 67.19 (8.16)** 0.92 <0.01 215.9 (201.8-226.9) 0.94

DRY×GLY G1 101.3 (3.76)** 99.15 (13.07)** 0.91 <0.01 215.3 (185.8-244.7) 0.94

CHK G2 97.2 (3.00)** 102.8 (9.19)** 0.95 <0.01 278.0 (253.1-302.8) 1.00

DRY G2 97.4 (1.50)** 57.24 (3.65)** 0.98 <0.01 223.4 (217.3-228.9) 0.80

GLY G2 100.0 (2.86)** 90.73 (8.42)** 0.94 <0.01 244.1 (231.8-253.7) 0.88

DRY×GLY G2 124.9 (32.50)** 222.06 (47.45)** 0.86 <0.01 443.0 (425.6-462.7) 1.59

Shoot dry weight

CHK G0 100.6 (8.64)** 0.91 (0.22)** 0.60 <0.01 122.4 (55.8-189.0) 1.00

CHK G1 101.4 (6.05)** 1.24 (0.18)** 0.77 <0.01 199.4 (144.0-254.7) 1.00

DRY G1 102.8 (7.10)** 1.51 (0.27)** 0.68 <0.01 273.7 (194.6-352.9) 1.37

GLY G1 101.1 (6.74)** 1.46 (0.26)** 0.70 <0.01 278.9 (198.8-358.9) 1.39

DRY×GLY G1 100.0 (8.06)** 0.97 (0.25)** 0.56 <0.01 251.2 (130.1-372.2) 1.25

CHK G2 99.9 (5.89)** 0.89 (0.55)** 0.73 <0.01 152.5 (94.5-210.5) 1.00

DRY G2 98.8 (6.47)** 2.19 (0.43)** 0.74 <0.01 283.6 (218.6-348.6) 1.85

GLY G2 95.6 (6.29)** 1.64 (0.30)** 0.72 <0.01 308.5 (226.9-390.2) 2.02

DRY×GLY G2 99.5 (6.41)** 1.31 (0.70)** 0.63 <0.01 435.9 (294.0-577.7) 2.85
aPOP: Populations of Eragrostis plana, CHK (no stress), DRY (drought), GLY (glyphosate), and DRY×GLY (drought followed by glyphosate).
bGen: generations of Eragrostis plana populations submitted to different stresses.
cEquation parameters used, SE: standard error of estimate, *p<0.05, **p<0.01, R2: Adjusted R-squared, P: model probability.
dHerbicide dose required to injury (ED50) or shoot dry weight (GR50) by 50%, confidence interval (CI 95%).
eVisual injury equation was nonlinear sigmoid (y=a/(1+exp(-(x-ED50)/b))); Shoot dry weight equation was log-logistic y = a/[1 + (x/GR50)b].
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than untreated plants (without glyphosate). DRY×GLY 
population glyphosate-treated at 24, 48, and 144 HAA 
(Figures 3A and 3B) also presented reduced stomatal 
conductance compared with untreated plants. 

In our study, the reduction in stomatal conductance in all 
populations was a typical response to glyphosate (Figure 3). 
However, this response is not necessarily involved in harmful 
effects caused by the herbicide in plants. Lolium perenne 
resistant to glyphosate had a stomatal closure regulation; 
however, it was linked to carbon fixation optimization 
according to assimilated demands (Yanniccari et al., 2012). 
Stomatal conductance can be used as a biomarker in plants 
sensitive to glyphosate (Yanniccari et al., 2012). 

3.2.2.  H2O2 content and lipid peroxidation

Glyphosate-treated CHK population produced 82 
and 80% higher hydrogen peroxide than untreated 
plants at 96 and 144 HAA (Figure 4a). At 144 HAA, the 
glyphosate-treated DRY×GLY population (Figure 4b) also 
showed higher hydrogen peroxide than untreated plants. 
Depending on the efficiency of redox homeostasis, it can 
be related to apparent antagonistic functions such as, on 
the one hand, signaling to prevent stressful situations 
and, on the other hand, causing oxidative stresses  
(Moretti et al., 2017).

Inhibition of EPSPS by glyphosate indirectly induces 
ROS production (Maroli et al., 2015). This unregulated 
accumulation of H2O2 and other ROS causes lipid 
peroxidation and loss of membrane integrity, and, 
ultimately, cell death (Foyer, Noctor, 2005). The glyphosate-

treated CHK population showed the highest lipid 
peroxidation levels (Figure 4c), with an increase of 49, 75, 
and 70% (48, 96, and 144 HAA, respectively). On the other 
hand, primed DRY×GLY plants (Figure 4d) had no ROS 
increases in the evaluated periods.

Accumulation of H2O2 and the concomitant increase of 
lipid peroxidation (Figure 4) could explain the susceptibility 
of the CHK population to glyphosate. At 96 and 144 HAA, 
the high production of H2O2 likely triggered an increase in 
lipid peroxidation. At 48 HAA, although H2O2 apparently 
did not induce lipid peroxidation, it could be reached by 
other types of ROS responsible for this process. In C. 
bonariensis, susceptible plants showed 5.2 and 3.2-fold 
higher in H2O2 and lipid peroxidation than untreated plants 
(Piasecki et al., 2019a). Salix miyabeana plants subjected 
to glyphosate had an increase in the production of H2O2 
after 6 HAA, reaching a peak at 72 HAA. Likely, from 6 
HAA, a gradual increase in lipid peroxidation has occurred  
(Gomes et al., 2017).

3.2.3.  Antioxidant enzymes

SOD activity differed only at 24 and 96 HAA in the 
glyphosate-treated DRY×GLY population compared 
to the untreated plants (Figure 5b). In offspring of 
plants DRY×GLY population, it was observed to have 
a higher baseline of SOD activity than untreated CHK 
population. All plants presented increased SOD activity 
following glyphosate application, with 16 and 56% for 
CHK and DRY×GLY, respectively, demonstrating that 
plants submitted to stresses in previous generations 
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abet stimulated SOD activity. SOD is a crucial enzyme in 
regulating oxidative stress. For instance, C. bonariensis GLY 
resistant had 1.6-fold SOD activity than the susceptible 
biotype (Piasecki et al., 2019a). 

CHK population exhibited differences in CAT activity 
at 24, 48, and 144 HAA (Figure 5c), showing increases 
of 81, 60, and 49% in glyphosate-treated plants than the 
untreated. However, this increase in CAT activity in the 
CHK population was like or less than the glyphosate-
treated DRY×GLY population. In 144 HAA (Figure 5d), the 
glyphosate-treated DRY×GLY population presented the 
highest CAT activity. APX activity (Figure 5f) exhibited 
differences for the DRY×GLY population (24 and 96 HAA). 

CHK population did not differ from APX activity with or 
without quizalofop-treated (Figure 5e).

SOD, CAT, and APX enzymes play an essential role 
in ROS detoxification. In C. bonariensis, a glyphosate-
resistant biotype demonstrated higher CAT and APX 
activity than a susceptible biotype when the herbicide 
was applied (Piasecki et al., 2019a). Application of 
glyphosate in S. miyabeana stimulated ROS production and, 
consequently, increased enzymatic activities of CAT and 
APX (Gomes et al., 2017). Antioxidant enzymes SOD, CAT, 
and APX are responsible for reducing oxidative stress and 
complement important resistance mechanisms enabling 
plants to tolerate herbicide glyphosate (Maroli et al., 2015).
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3.2.4.  Glyphosate, AMPA, shikimic acid, and amino acids con-
centration in plants

Glyphosate concentration in CHK and DRYxGLY 
populations (Figure 6a) reveals that in the CHK population, 
there was 72% higher glyphosate concentration at 48 HAA 
compared to the DRYxGLY population. There were no 
differences in glyphosate concentration regarding sampling 
times in CHK and DRYxGLY populations. In CHK and 
DRYxGLY populations, glyphosate concentration remained 
similar in the leaf tissues until 144 HAA, indicating low 
translocation and/or metabolization in the leaf tissues. 

Glyphosate degradation in plants generates  
metabolites AMPA and glyoxylate (Rojano-Delgado et al.,  
2012). Herein, AMPA metabolite was found in both 
populations CHK and DRYxGLY (Figure 6b). In the CHK 
population, AMPA was detected only at 24 and 48 HAA, 
with a concentration of 4.4 and 2.5 µg g-1. In the DRYxGLY 
population, AMPA was found in all evaluation periods, 
with the highest concentration at 24 HAA and the lowest 
at 144 HAA (3.1 and 0.8 µg g-1, respectively).

These results indicated that there was detoxification of 
glyphosate forming AMPA and that it was present in both 
more sensitive and less sensitive populations to glyphosate 
(CHK and DRYxGLY, respectively). However, AMPA levels 
represent 13.6 and 4.9% of glyphosate concentration at 24 
and 48 HAA in the CHK population, while in the DRYxGLY 
population, AMPA levels were equivalent to 10.2, 8.8, 6.9, 
and 1.6% of the glyphosate concentration at 24, 48, 96 and 
144 HAA, respectively. 

EPSPS inhibition by glyphosate leads to rapid accumulation 
of shikimic acid and reduced synthesis of aromatic amino 

acids (Rojano-Delgado et al., 2012). All glyphosate-treated 
plants had a greater accumulation of shikimic acid than plants 
without glyphosate (Figure 7a). At all evaluated periods, the 
CHK population showed a higher concentration of shikimic 
acid than DRYxGLY populations, exhibiting an increase of 291, 
97, 35, and 195% at 24, 48, 96, and 144 HAA, respectively. 
These results explain the lower sensitivity of DRYxGLY 
compared to CHK population. Comparing both populations, 
when the plants were not treated with glyphosate, there were 
no differences in shikimic acid concentration.

In the glyphosate-treated CHK population, an increase 
in shikimic acid was observed after 24 HAA and later 
remained constant at 48 and 144 HAA. At 96 HAA, a 
reduction in shikimic acid was detected, consistent with 
the lower glyphosate concentration (Figure 6a) in the CHK 
population. In the glyphosate-treated DRYxGLY population, 
shikimic acid accumulation initiates at 24 HAA, reaching 
the highest concentration at 48 and 96 HAA and reducing 
to 144 HAA. Plants with faster and higher shikimic acid 
accumulation over time demonstrate substantial inhibition 
of EPSPS and, therefore, greater sensitivity to glyphosate 
(Tani et al., 2015). Conyza canadensis plants susceptible to 
glyphosate showed higher shikimic acid accumulation than 
resistant plants (Tani et al., 2015).

Tyrosine and phenylalanine are aromatic amino acids 
from the shikimic acid pathway (Fernández-Escalada et al., 
2017). Between CHK and DRYxGLY, there was a difference 
in L-tyrosine concentration only for untreated plants 
(Figure 7b). In glyphosate-treated CHK population had 
increased L-tyrosine concentration compared to untreated 
plants at 48 and 96 HAA. However, at 144 HAA, there was 
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an inversion, and glyphosate-treated plants presented a 
reduction of 11%. Regarding the DRYxGLY population, 
contrasts were found at 24 and 96 HAA, with a difference 
of -25% and 16% in glyphosate-treated plants compared to 
untreated plants. 

The L-phenylalanine concentration (Figure 7c) varied 
between populations at different times and glyphosate 
application. In the glyphosate-treated CHK population, 
an increased L-phenylalanine concentration was observed 
from the initial evaluation at 24 HAA until 96 HAA and a 
reduction at 144 HAA (Figure 7C). From the glyphosate-
treated DRYxGLY population, differences of -9, -42, -18, 
and 92% occurred compared to untreated plants (24, 48, 
96, and 144 HAA, respectively). 

Amino acid concentrations usually vary among plants; 
however, the increase in phenylalanine and tyrosine 
concentrations may be due to increased protein turnover 
following glyphosate treatment (Fernández-Escalada et al., 
2017). In Amaranthus palmeri, susceptible to glyphosate, an 
increase in phenylalanine and tyrosine concentration at 72 
HAA was reported. In contrast, in an A. palmeri population 
resistant to glyphosate, differences in concentration of these 
amino acids were not detected (Fernández-Escalada et al., 
2017). Also, Lolium multiflorum plants susceptible to glyphosate 
showed a higher concentration of tyrosine than plants resistant 
to 72 HAA, while no changes in phenylalanine concentrations 
were observed (Barroso et al., 2018).

3.3  Gene expression

In this study, EPSPS expression was relative to the 
untreated CHK population (Figure 8A). At 48 HAA, 

EPSPS was downregulated in glyphosate-treated CHK and 
DRYxGLY populations. However, EPSPS was upregulated 
relative to the untreated CHK population in all other 
treatments and evaluation periods. At 96 HAA, the 
glyphosate-treated DRYxGLY population demonstrated the 
highest EPSPS expression, with 4-fold more transcripts than 
the untreated CHK population and 1.92-fold more than the 
untreated DRYxGLY population. At 192 HAA, glyphosate-
treated CHK and untreated DRYxGLY populations showed 
the higher EPSPS expressions, with 2.3-fold and 2.6-fold, 
respectively, compared to the untreated CHK population.

A mechanism of resistance to glyphosate that has been 
widely studied is the upregulation of the EPSPS gene. 
Increased copies of the EPSPS gene allows for a higher 
synthesis of the EPSPS enzyme, as there is more enzyme 
than glyphosate molecules for inhibition, making the plant 
resistant (Gaines et al., 2010). Plants C. bonariensis and C. 
canadensis, both glyphosate-resistant, EPSPS expression 
was observed two times compared to susceptible plants. 
However, the authors report other NTSR mechanisms 
involved (Dinelli et al., 2008). In A. palmeri, it was found 
that increased expression of EPSPS was responsible for 
the resistance (Gaines et al., 2010). The increase in EPSPS 
expression was explained by the amplification of genes, 
where several copies of the gene are present in the genome 
(Gaines et al., 2010).

Studies have recently shown that plants that have 
submitted stress, such as herbicides, transmit pre-regulated 
expression patterns to the progeny (transgenerational) 
through epigenetic processes (Délye et al., 2013; 
Margaritopoulou et al., 2018). In C. canadensis resistant 
to glyphosate, there was an upregulation mechanism of 
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EPSPS, and it was reported that this upregulation was 
due to the DNA methylation process affecting regions of 
EPSP-synthase 1 (Margaritopoulou et al., 2018). 

The AKR gene at 48 HAA was downregulated in all 
populations compared to the CHK population without 
herbicide (Figure 8B). The CHK population with herbicide 
did not differ in expression levels at any time. In contrast, 
the DRYxGLY population showed a relative increase of 
1.1 and 0.6-fold at 96 HAA and 2.6 and 1.6-fold at 192 
HAA compared to the CHK population without herbicide. 
DRYxGLY population had no difference in glyphosate 
application at any evaluation time. Aldo-keto reductase is 
a superfamily of enzymes responsible for catalyzing the 
reduction of NAD(P) H-dependent aldehydes and ketones 
(Pan et al., 2019). However, this superfamily is also involved 
in the metabolism of xenobiotics, secondary metabolism, 
and protection of osmolytes. It was recently reported that 
EcAKR4-1 is involved in the metabolization of glyphosate 
(Pan et al., 2019). However, it is reported that Echinochloa 

colona had resistance to glyphosate by Pro-106-Thr EPSPS 
target-site mutation (McElroy, Hall, 2020). 

These data suggest that the DRYxGLY population that 
has undergone two generations of drought stress and a sub-
lethal dose of glyphosate was able to positively regulate AKR 
gene expression compared to the CHK population. A previous 
report demonstrates that E. colona could detoxify glyphosate, 
forming AMPA, by the AKR enzyme. The EcAKR4-1 gene was 
upregulated in this species (Pan et al., 2019). 

ABC-transporter MRP8 (M11) was differentially 
expressed among treatments (Fig 8C). The glyphosate-
treated CHK and DRYxGLY populations were not very 
responsive to M11, except for CHK at 96 HAA, where an 
M11 was upregulated. At 192 HAA, there was 1.7-fold M11 
expression in the DRYxGLY population without herbicide. 
These results demonstrate that M11 was not responsive 
to glyphosate in E. plana and suggest that other ABC-
transporter codifying gene may be involved in glyphosate 
responses in this species.
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ABC-transporter MRP10 (M10) was upregulated in 
almost all populations and times analyzed (Figure 8D). 
In the glyphosate-treated CHK population, M10 was 
upregulated in all periods analyzed, with 4.8-fold, 1.4-
fold, and 2.8-fold at 48, 96, and 192 HAA, respectively. 
M10 was upregulated in the glyphosate-treated DRYxGLY 
population at 48 and 96 HAA and downregulation at 192 
HAA. The higher difference between populations was 
detected at 96 HAA, where glyphosate-treated DRYxGLY 
showed the highest expression of M10, 6.3-fold, thus 
being upregulated in this period. The untreated DRYxGLY 
population also showed upregulation of the M10 gene, 
demonstrating a greater baseline expression than the 
untreated CHK population.

M10 and M11 genes are ABC-transporters located in 
the tonoplast (Moretti et al., 2017). These transporters 
are related to weed resistance to glyphosate, acting on 
the active transport of this molecule to the vacuole 
(Moretti et al., 2017; Piasecki et al., 2019b). In C. canadensis 
and C. bonariensis, the ABC- transporters M10 and M11 are 
involved in resistance to glyphosate (Piasecki et al., 2019b; 
Tani et al., 2015). In resistant C. canadensis, an upregulation 
of M10 and M11 was reported upon glyphosate treatment 
(Nol et al., 2012). The ABC-transporter M10 was 2.3-fold 
overexpressed in the resistant C. canadensis than the 
sensitive biotype (Tani et al., 2015). The authors suggest 
that the ABC-transporters resistance in glyphosate-treated 
plants is mainly due to the exclusion of glyphosate in the 
vacuole and reduced herbicide translocation to the other 
plant tissues (Nol et al., 2012; Tani et al., 2015).

3.4  Enhanced mechanisms of response to glyphosate in E. plana

The ability of plants to adapt to environmental stresses 
allows regulating their metabolism to increase their tolerance 
(Délye et al., 2013). Mechanisms of resistance to herbicides 
that do not involve a site of action are the same as those used 
by plants in responding to abiotic stresses (Délye et al., 2013; 
Fipke et al., 2022). According to our results, E. plana G1 and 
G2 generations, when exposed to combined stress (drought 
plus a sub-lethal dose of glyphosate), allowed a decrease 
in sensitivity compared with plants that did not undergo 
any stress. This transgenerational effect can be caused by 
epigenetic processes, allowing differentiated regulation 
of the expression of stress tolerance mechanisms, such as 
antioxidant machinery (Galviz et al., 2020). However, there 
is a need for further studies to explain the epigenetic role in 
this observed effect.

In addition to the antioxidant processes presented, it 
is suggested that the reduced sensitivity of the DRYxGLY 
population to glyphosate is due to multiple mechanisms. It is 
important to note that a high accumulation of shikimic acid 
was detected in both populations. However, the DRYxGLY 
population had a lower shikimate acid concentration than 
the CHK population in all evaluation periods (Figure 7a). 
The increased expression of EPSPS in DRYxGLY at 96 

HAA (Figure 8a) may be one factor in reducing shikimic 
acid concentration at 144 HAA (Figure 7a). The tyrosine 
and phenylalanine amino acids pool showed contrasting 
responses (Figures 7b and 7c).

Regarding the involved NTSR mechanisms, it was found 
that the concentration of glyphosate in the leaf tissue 
remained constant over time, which may demonstrate a 
reduction in translocation to other plant tissues (Figure 6A). 
Also, AMPA was detected due to glyphosate detoxification 
(Figure 6B), together with the increase in AKR expression 
(Figure 6B). However, AMPA concentration was relatively 
low to explain the difference in sensitivity to glyphosate. 
Also, an increased expression of M10 in DRYxGLY at 
96 HAA (Figure 8D) may help exclude glyphosate in the 
vacuole and, consequently, reduce its translocation to other 
plant tissues.

4.	 Conclusions

Eragrostis plana exposed to combined stress (drought 
followed by a sub-lethal dose of glyphosate) showed 
induced transgenerational memory allowing acclimation 
to stressful conditions and decreasing sensitivity to 
glyphosate. The increased activity of the enzimes SOD, 
CAT, and APX following homeostatic adjustment in the 
DRYxGLY population, relieves glyphosate’s oxidative 
stress. Additionally, the set of mechanisms such as the 
possible metabolization of glyphosate in AMPA and the 
upregulation of AKR, and the upregulation of MRP10 
(exclusion of glyphosate in the vacuole) seem to be 
involved in decreasing glyphosate sensitivity in Eragrostis 
plana DRYxGLY population.
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