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ABSTRACT
A theory of differentia charactersis developed for manifolds with boundary. Thisis done from
both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper
is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the
pairing
H*(x,0x) x A" *1(x) — §t

givenby («, 8) +— (a * ) [X] inducesisomorphisms

D B (X, X) — Home (" *~1(X), §1)
D' HF1(X) — Homao (HX (X, 8X), SY

onto the smooth Pontrjagin duals. In particular, D and D’ are injective with dense range in the
group of al continuous homomorphisms into the circle. A coboundary map is introduced which
yields along sequence for the character groups associated to the pair (X, 0 X). Therelation of the
sequence to the duality mappings is analyzed.
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INTRODUCTION

Thetheory of differential characters, introduced by Jim Simons and Jeff Cheeger in 1973, isof basic
importancein geometry. It providesawealth of invariantsfor bundleswith connection starting with
the classical one of Chern-Simonsin dimension 3 and including large families of invariantsfor flat
bundlesand foliations. Itscardinal property isthat it formsthe natural receiving spacefor arefined
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Chern-Weil theory. This theory subsumes integral characteristic classes and the classical Chern-
WEell characteristic forms. It also tracks certain “transgression terms’ which give cohomologies
between smooth and singular cocycles and lead to interesting secondary invariants.

Each standard characteristic class has arefinement in the group of differential characters. Thus
for a complex bundle with unitary connection, refined Chern classes ¢; are defined and the total
class gives a natural transformation

=140+ + - KX) — H(X)

from the K -theory of bundles with connection to differential characterswhich satisfiesthe Whitney
sum formula: ¢(E @ F) = ¢(E) x ¢(F). Thislast property leads to non-conformal immersion
theorems in riemannian geometry.

Differential characters form a highly structured theory with certain aspects of cohomology:
contravariant functoriality, ring structure, and a pairing to cycles. There are deRham-Federer
formulations of the theory (Gillet and Soulé 1989), (Harris 1989), (Harvey et a. 2001), analogous
to those given for cohomol ogy, which are useful for example in the theory of singular connections
(Harvey and Lawson 1993, 1995). Furthermore, the groups H¥(X) of differential characters carry
anatural topology. The connected component of 0 in thisgroup consists of the smooth characters
those which can be represented by smooth differential forms.

In (Harvey et a. 2001), where the deRham-Federer appoach is developed in detail, the au-
thors showed that differential characters satisfy Poincaré-Pontrjagin duality: On an oriented n
dimensional manifold X the pairing

H*(X) x Higt2(X) — §*

given by
(a, B) > (o * P)[X]

(where ]ﬁlﬁm denotes characters with compact support) induces injective maps

f*(x) — Hom (ﬁg,;k—l(m,sl) and LX) — Hom (B*(x), 1)

with dense range in the groups of continuous homomorphismsinto the circle. Moreover thisrange
consists exactly of the smooth homomorphisms. These are defined precisely in 84 but can be
thought of roughly as follows. The connected component of 0in H¥(X) consists essential ly (i.e.,
up to afinite-dimensional torusfactor) of the exact (k + 1)-formsd£¥+1(X) with the C*-topol ogy.
Now Hom(d&F1(X), §1) = Hom(dET1(X), R) isjust the vector space dual. Thisis simply a
guotient of the space of currents, the (n — k — 1)-formswith distribution coefficients. The smooth
dual corresponds to those forms which have smooth coefficients.

In this paper we formulate the theory of differential characters for compact manifolds with
boundary (X, 0 X) and prove a Lefschetz-Pontrjagin Duality Theorem anal ogous to the one above.

An. Acad. Bras. Cienc., (2001) 73 (2)



LEFSCHETZ-PONTRJAGIN DUALITY 147

To do this we introduce the relative groups H* (X, 9X) and develop the theory from (Harvey et al.
2001) for this case. The main theorem asserts the existence of a pairing

A (X) x H"*1(X, 0X) — St

givenby (a, B) — (a * 8)[X] and inducing injective maps with dense range as above.

The two pairings above have aformal similarity but are far from the same. The delicate part
of these dualities comesfrom the differential form component of characters. Inthefirst pairing (on
possibly non-compact manifolds) we contrast forms having no growth restrictions at infinity with
forms with compact support. The second dualtiy (on compact manfiolds with boundary) opposes
forms smooth up to the boundary with forms which restrict to zero on the boundary.

In cohomology theory there are long exact sequences for the pair (X, d X) which interlace the
Pontrjagin and Lefschetz Duality mappings. In the last sections of this paper the parallel structure
for differential charactersis studied. We introduce coboundary maps 8 : Hf(X) — HF(X, §X),
yielding long sequences which intertwine the duality mappings and reduce to the standard picture
under the natural transformation to integral cohomology.

1. DIFFERENTIAL CHARACTERS ON MANIFOLDS WITH BOUNDARY

Let X be acompact oriented differentiable n-manifold with boundary 9 X. Let £*(X) denote the
de Rham complex of differential forms which are smooth up to the boundary, and set

ENX,0X) = {¢p € EX(X) : ¢],, =0}

The cohomology of this complex is naturally isomorphicto H*(X, dX; R). Let C,(X) denotethe
complex of C*°-singular chainson X and C.(X,0X) = C.(X)/C.(9X) the relative complex.
Denote by

Z.(X,0X) = {ce Cu(X,0X) : 9c =0}

the cycles in this complex. We begin with definitions of differential characters in the spirit of
Cheeger-Simons.
DEerINITION 1.1. The group of differential characters of degree k on X isthe set of homomor-
phisms

HYX:R/Z) = {a € Hom(Z;(X), $Y) : 8() € EL(X)}

where § denotesthe coboundary. Similarly the group of relative differential characters of degree
k on (X, 9X) isdefined to be

HY(X,0X;R/Z) = {a € HOM(Zy (X, 3X), SY) : 8(a) € EN(X, X))}

Inclusion and restriction give maps H¥ (X, 9X) > H¢(X) 2 HF(9X). withp o j = 0.
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There is an aternative de Rham-Federer approach to these groups. Set
8’2%6 (X) = k-formson X with L. -coefficients
R¥(X) = the rectifiable currents of degree k (dimensionn — k) on X
E’Zl (X,9X) = {a e Szl (X) : ainsmoothin aneighborhood of X and a|,, = 0}

Repn(X —9X) = {R € R"(X) : supp(R) C X — 93X}

DEFINITION 1.2. Anelement a € 5"1 (X) iscalled aspark of degree k on X if

Ioc

= ¢—R whee ¢c&F(X) and R e RL(X). (1.3

Denote by S*(X) the group of all such sparks and by 7*(X) the subgroup of al a € S*(X) such
that a = db + S whereb € 5" 1(X )S e cht(X ). Then the group of deRham-Federer characters
of degree k on X isdefined to bethe guotient

HX) = SHX)/THX).

Given aspark a € S¥(X) we denote its associated character by (a) Iﬁ["(x ).

We define relative sparks and relative deRham-Federer characterson (X, 0 X) by
SKX,0X)={a € E’Z%C(X, 0X) : da=¢—R, ¢ &N X, 0X)and R € REGHX — 0X)}
THX,0X)={a e S*(X,0X) : a=db+ S, be Ekll(X 0X)and S € Ry (X — 0X))
HAX, 0X) = SMX, aX)/Tr(X, 9X).

The decomposition (1.3) is unique. In fact we have the following. Recall that acurrent T is

said to be integrally flat if it can be writtenas T = R + dS where R and S are rectifiable. Then
from §1.5in (Harvey et al. 2001) one concludes:

PropPOSITION 1.4. Leta beany current of degreek on X suchthat da = ¢ — R where¢ € £1(X)
and R isintegrally flat. If da = ¢’ — R’ isa similar decomposition, then¢ = ¢’ and R = R'.
Furthermore,

d¢ =0 and dR|, , =0

and ¢ hasintegral periodsoncyclesin X. Inthecasethat¢ € £%(X, 3X) andsupp(R) C X—dX,
one hasthat dR = 0 and ¢ hasintegral periodson all relative cyclesin (X, 0 X).
Set
Z5(X) = {¢ € E'(X) : dp = 0and ¢ hasintegral periods}
Z5(X,0X) = {¢p € E'(X,3X) : dp = 0and ¢ has
integral periods on relative cyclesin (X, 0X) } (1.5
Ziw(X) = (R e RYX) : dR|,_,,=0)
Zrer(X, 0X) = {R € Rgy(X — 0X) : dR = 0}
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CoroLLARY 1.6. Taking dia = ¢ and d,a = R from the decomposition (1.3) gives well-defined
mappings
di: SFX) — ZETNX), dy: SN(X) — ZEE(X),
and
di:SKX,0X) — ZEN(X,0X),  do:SM(X,0X) — ZMNX —8X)

ProposiTION 1.7. There are natural isomorphisms
W HNX) = A%X: R/Z) and W XX, 0X) — HY(X, 9X; R/7Z)

induced by integration.

Proor. Thefirstisproved in (Harvey et al. 2001). The argument for the second is exactly the
same. 0

ReEMaRK 1.8. In(Harvey et a. 2001) we showed that there are many different (but equivalent)
deRham-Federer definitions of differential characters on a manifold without boundary. Each of
these different presentations has obvious analogues for ﬁ*(X ) and H*(X, X ). The proof of the
equivalence of these definitions closely follows the arguments in 82 of (Harvey et a. 2001) and
will not be given here. However, this flexibility in definitions is important in our treatment of the
x-product.

To illustrate the point we give one example. Recall that a current R on X is called integrally
flat if R = S + dT where S and T arerectifiable. Denote by D*(X) = (£ F(X)) the space of
currents of degree k on X. Let Sk, (X, 9X) denotethe set of a ¢ D’*(X) such that a is smooth
near

X, a|,,=0, and da=¢— R where ¢ (X,3X)

and Risintegrally flat. Let 7, (X, 3 X) denotethesubgroup of elementsof theformdb+ S whereb
issmoothnear 9 X, b|aX= 0,and S isintegrally flat. Thentheinclusion S*(X, 9X) c Sk, (X, 3X)
induces an isomorphism

H (X, 0X) = Sk (X, 0X)/TE, (X, 0X)

2. THE EXACT SEQUENCES

The fundamental exact sequences established by Cheeger and Simons in (Cheeger and Simons
1985) carry over to the relative case.

DErFINITION 2.1. A character o € ﬁk(X, 0X) is said to be smoothif @« = (a) for a smooth
forma € £%(X, 3X). The set of smooth characters is denoted ﬁﬁo(x, 9X). Thereis a natural
isomorphism

HE (X, 0X) = XX, 0X)/Zk(X, 0X)
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ProrosiTION 2.2. The mappingsd; and d, induce functorial short exact sequences:

0— HYX,3X; $Y -2 kX, 9X) =2 25X, 9X) — O, A)
0— [k (X, 8X) -2 B*(X, 9X) -2 H*Y(X, 8X; Z) — O. (B)

Proor. Notethat 8 X hasacofinal system of tubular neighborhoodseach of whichisdiffeomorphic
to dX x [0, 1). We shall use the following elementary result.

Lemma 23. Foranya € EX(3X x [0, 1)) such that da = 0 and a|,, = O, there exists b €
E1(9X x [0, 1)) suchthat db = a and b|, = 0.

Proor. Writea = ay + dt A ap, where a; and a, are forms on X whose coefficients depend
smoothly on ¢ € [0, 1), or in other words, ay(t), a»(¢) are smooth curvesin £¢(X) and £-1(X)
respectively with a;(0) = 0. Now da = day + dt A %3 — dt A d.a; = 0. We conclude that
d.a; = 0and d.a; = %2. Sincea;(0) = 0 we have

t aal t t
ay(t) = / —(s)ds = / diax(s)ds = dx/ ax(s)ds
o Ot 0 0
Seth = [, ax(s)ds, and notethat: b|,, = 0, db = a1 and 22 = ap. Hence, a = db. O
We shall also need the following result. On any manifold Y let
FHY) = &) (V) +dE ()

denoteflat currents and}"‘t(Y) those with compact support. Notethat d 7% (V) = dé"‘l (Y) This

definition of FX (Y arisesnaturally in sheaf theory. However, the following equival ent deﬁ nition
will aso be useful here.

LEMMA 24. Fh(Y) = (Y)+d€k;lct(Y) and so dF,(Y) = d&} 1n )

Ll ,cpt
PrOOF.  Fix f € F&,(Y) and write f = a + db wherea € 5"1 (Y)and b € 8"11(Y) Let
K = supp(f), and note that in N = Y — K we have that a = Zdb. By standard de Rham
theory there exists an L .-form by on N such that a., = a + dbg is smooth on N. Furthermore
since a., isweakly exact on N there exists a smooth form b, with a,, = —db, on N. Choose
n € C&(Y) withn = linaneighbothood of K, let x =1 —nandsetd = a + d(xbo + xbeo)
and b = b — xbo — xboo With x asabove. Then f = & + db and @ has compact support in Y.
Observe now that f — @ is d-closed and has compact support in Y. Since H* (€ o) =
H*(F&(Y)) we conclude that there exist a smooth form » and aflat form g, both having compact
support on Y suchthat f — @ = w + dg. Now by the paragraph above we can write g = b + de
where b is L. with compact support. Hence f =@ + w + db. O
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We first prove the surjectivity of 8;. Fix ¢ € Z&T(X, 3X). Then by Lemma 2.3 there is
aneighborhood N = 39X x [0,1) of 3X and aform A € £(N) withdA = ¢ and A|3X: 0.
Choose x € Cg°(N) with x = 1 in a neighborhood of dX, and set ¢o = ¢ — d(xA). Now
supp(¢o) CC X — aX and ¢ hasintegral periods, so there existsacycle R € Z5, (X, 3X) with
[po— R]1=0inH (X —0X;R). By Lemma24 thereare L|oc—f0rmSa, b with compact support
inX — X suchthat d(a +db) = da = ¢o— R. Thend(x A + a) = ¢ and surjectivity is proved.

We now construct the map j;. Recall from 81 in (Harvey et al. 2001) that

{f € Féay(X —0X) 1 df € R’é;tl(X —9X))
dFEHX — 0X) + REL(X — 9X)

HY(X,0X; S = Hiy(X —0X; SH =

Choose f € k(X — 0X) withdf = R € Rgi' (X — 9X), and write f = a + db where a and
b are L. -forms with compact support in X — 89X (cf. Lemma2.4). Thena € S*(X, 3X) and
weset j1(f) = (a) € H*(X, 3X). Note that if f = a’ + db' isanother such decomposition, then
a—a =d(c —c)and (a) = (a’). Clearly j; = 0on

AFSHX = 0X) + Ry (X — 0X) = dEHX — 9X) + R (X — 3X),
and so it descends to the quotient H¥(X, 9X; SY).

To see that j; isinjective, let f = a + db as above and suppose a = dc + S € T*(X, 3X)
where ¢ is smooth and zero on 9 X. By Lemma 2.3 there exists an L} -form e, smooth near 9 X,
suchthat co = ¢ —de =0near 3X. Thena = dco+ S =0in H*(X, 9X; SY).

We now prove the exactness of (A) in the middle. Supposea € S*(X, 9X) and 81({a)) = 0.
Thenda = —R € R’é (X — 90X). Thus, in aneighborhood N of X we have that a is smooth,
da =0anda|,,= 0. By Lemma 23 there exists b € £X(N) withdb = a and b|,,= 0. Then
a =a—d(xb),with x asabove, isequivaenttoa in H* (X, 8X). Sinced has compact support in
X — 90X anddad = —R, we seethat (@) liesin theimage of jj.

We now prove the surjectivity of 8,. Fix u € H*(X,3X; Z) and choose acycle R € u.
Then thereis asmooth form ¢ € Z5+'(X, 8X) suchthat ¢ — R = df for f € F&, (X — 8X). By
Lemma2.4 f = a + db wherea is L} with compact support in X — 3X. Thena € S*(X, 9X)
and 8,({a)) = u.

Now consider an element a € S*(X, 9X) with 8,((a)) = 0. Thenda = ¢ — R where ¢ is
smoothand R = d§ for some S € REy (X —3X). Thend = a — S = a inH* (X, 8X) andda =0
on X. Sincea issmooth near 3X, standard de Rham theory showsthat thereisan L{ -form b with
compact support in X — d X suchthat @ — db is smooth. Hence, (a) = (a) € H’;O(X, 9X). O

Note that

HY(X,3X: R HE (X —0X; R)
ker(op) Nker(sp) = 02 Y o (2.5)
H*(X,0X; Z)free Hcp[(X — 0X; Zfree

An. Acad. Bras. Cienc., (2001) 73 (2)



152 REESE HARVEY and BLAINE LAWSON

3. THE STAR PRODUCT
In this section we prove the following.

TueoreM 3.1. There are functorial bilinear mappings

H (X, 8X) x HY (X, 0X) = HY(X,9X) and
f*(x, 0x) x {(Xx) = T@Lx, aXx)
which make H¥ (X, 8 X) a graded commutative ring and H*(X) a graded H¥ (X, 9 X)-module. With
this structure the maps 81, 8, are ring and module homomor phisms.
Proor. Fixa € HF(X, X) and 8 € H'(X). Then from (Harvey et al. 2001) we know that there
exist sparksa € o and b € 8 with

di = ¢—R and db = ¢ —§

with¢ € Z5™(X,3X), ¥ € Z5MH(X), R € ZIH (X, 9X) and S € Z{H (X), so that the wedge-
intersection products R A b and R A S are well defined. Furthermore, if suppS CcC X — X we
can also assumethat a A S iswell defined. We then define

axbh = any+ (DR A b, (3.2)
andif S € Z& (X, 0X) orif a € £5,(X — 0X), we can also define
a¥b = a A S+ (=D Ab. (3.3)

Since a issmooth near 9X and a}axz 0, a * b also has these properties (as well as a*b wheniitis
defined). Note that

da*b) = da¥h) = ¢ Ay —RAS (3.4)

The arguments from (Harvey et al. 2001) easily adapt to show that (a * b) depends only on (a)
and (b), and that (a * b) = (a*b) (when it is defined). Associativity, commutativity, etc. are
straightforward. Equation (3.4) establishes the homomorphism propertes of §; and §5. OJ

4. SMOOTH PONTRJAGIN DUALS

The exact sequences of Proposition 2.2 show that H*(X, X) has a natural topology making it a
topological group (in fact atopological ring) for which §; and 8, are continuous homomorphisms.
Essentialy it is a product of the standard C°°-topology on forms with the standard topology on
the torus H* (X, 3X; R)/H}(X,dX; Z). It can aso be defined as the quotient of the topology
induced on sparks by the embedding S¥(X,0X) C FX(X) x E1(X, 0X) x Reg (X — 9X)
sending a — (a, dia, dya). (Similar remarks apply to H*(X).)
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It is natural to consider the dual to H*(X, 8X) in the sense of Pontrjagin. For an abelian
topological group A wedenoteby A* = Homgy(A, S1) thegroup of continuous homomorphisms
h:A — S Then2.2(B) yields adual sequence

0— Hk+l(X, dX: Z)* N ]ﬁlk(X, 8X)* L [/[-\[[];O(X, BX)* — 0. (4.1

where p is the restriction mapping.

DEFINITION 4.2. An dement f € HF (X, 0X)* is called smoothif there exists a form o ¢
Z47%(X) such that

fla) = / aAw (mod Z)
X

fora € o € HE (X, 3X). Anelement 7 € H¥*(X, 3X)* iscalled smoothif p(f) issmooth. The
set of theseiscalled the smooth Pontrjagin dual of H¥ (X, 9 X) and isdenoted by H¥ (X, 9 X)*~ =
Homeo (H (X, 8X), S1).

PropoSITION 4.3. The smooth Pontrjagin dual H¥ (X, 3 X)*= isdensein Ht (X, 0 X)*.
Proor. Applying §; to ]ﬁl’go (X, 0X) gives an exact sequence
0— T — HE (X,0X) — dEX(X,3X) — O
where T = H¥(X, 3X; R)/Hf (X, dX; Z), with dual sequence
0— d&(X,0X)* — HE (X, 9X)* - T* - 0 (4.4)

Observe that T* = HX(X,0X; Z) = H{}(X; Z), and that d€¥(X, dX)* = (dEX(X, dX)Y

free
(the topological vector space dual) which is exactly the space of currents of degreen — k — 1 on

X restricted to the closed subspace d£X (X, 3X). This gives acommutative diagram

0 — d&" (X)) — Z207%X) —— HiJX;2Z) —— 0

| ! l

0 —— dD" X)) —— HE (X, 0X)X —— T* — 50

with exact rows. Since £"*-1(X) isdensein D" *~1(X), the result follows. O

Thereisaparalel story for ﬁ*(X). The analogue of 2.2(B) gives an exact sequence
0— H"Y(X; 2)* — B 0)* 5 B (X)*. - 0. (4.5)
DErFINITION 4.6. An element f € ﬁ[’go(X)* is called smooth if there exists a form w €

Z87%(X, 3X) such that
fla) = / aAnw (mod Z)
X
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fora ea e ﬁ’;O(X)An dement 7 € H*(X)* iscalled smoothif p( £) issmooth. The set of these
is called the smooth Pontrjagin dual of H¥(X) and is denoted HF (X)** = Hom, (HF(X), S1).

ProposITION 4.7. The smooth Pontrjagin dual H¥ (X)*= is densein Hk (X)*.

Proor. Applying §; to ]ﬁl’;o(X ) gives an exact sequence
0— T — HE (X) - dEX(X) — 0,
where T = HX(X; R)/H*(X; Z), with dual sequence
0— dE*(X)* - HE (X)* - T* - 0. (4.8)

Observe now that 7* = H*(X; Z) = H"*(X, 3X; Z), and dEX(X)* = {dE¥ (X)) isthe space
of currents of degree n — k — 1 on X restricted to the closed subspace d€%(X). This gives a
commutative diagram:

EkL(X, 9X) —1s ZIH(X,0X) —— H"*(X,9X; Z) —> 0

l l l%

Dty s BLoX  — T* —— 0

with exact rows. Since £"*1(X, 8X) isdensein D" *71(X), the result follows. O

5. LEFSCHETZ-PONTRJAGIN DUALITY

This brings us to the main result of the paper.

THEOREM 5.1. Let X be a compact, oriented n-manifold with boundary 0 X. Then the biadditive
mapping

HY (X, 0X) x H**Y(x) — St
given by
(o, B) = (axp)[X]
induces isomor phisms
D (X, 8X) —> AP *1(x)*=
and
DN (X) = E (X, ax) X

ProoF. Fix o € H¥(X, 3X) and suppose (a x B)[X] = Ofor al B € H"*~1(X). We shall show
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that « = 0. Choose aspark ¢ € o and writeda = ¢ — R asin 1.4. Then for all smooth forms
b € £"*1(X) we have by (3.3) that

x (b) [X] = (—1)k+1/¢/\b =0 modZ
X

sinced,b = 0. It followsthat ¢ = 0.

Hence, da = —R € Rig' (X —0X)isacyclewith[R] € Hyf (X —0X; Z)ior = Hy—p-1(X —
0X; Z)or. Chooseany u € H" ¥(X; Z)or = Hy(X, 0X; Z)or, and choose arelativecycle S € u.
Let m betheorder of u. Thenthereisa(k+1)-chanT on X withdT = mSrel 9X. Setb = —n—11T
and consider b asaspark of degreen — k — 1 on X withdb = —S. Now we may assume S and T
to have been chosen so that supp(S) N supp(R) = @ and T meets R properly. Then

0=oaxb)[X] = —D"'RAb[X] modZ
= (—1)’<+11R ATI[X] modZ
m

= (—D**LK(R],[S]) mod Z
= (—=D*Lk(Sa, u) mod Z

where Lk denotes the de Rham-Seifert linking between the groups H,_;_1(X — 9X; Z)ir and
H (X, 0X; Z)ir. By the non-degeneracy of this pairing we conclude that §,a = 0.

Thereforea e ker(81) Nker(8,) can berepresented by asmooth d-closedforma e £X(X, 3 X).
In fact by Lemma 2.3 we may choose a to have compact support in X — 9X. Now for any cycle
S e Zfe;t"(X), i.e., any k-dimensional rectifiable current S € R (X) withdS € Ry_1(0X), wecan
findy € £ %(X)and b € 525*1()() withdb =  — S. Then by (3.3) we have that

0 =oax()[X] =aAS[X] modZ

= /a mod Z.
S

Hence, a represents the zero classin
Hom(H (X, dX; Z), R)/Hom(Hy(X, 0X; Z), Z) = H*(X, 3X; R)/H*(X, 0X; Z)tree,

and by (2.2) and (2.5) we conclude that @ = 0. Thusthe map D isinjective.
To seethat D is surjective consider the commutative diagram with exact rows:

0 ——  HYX.0X; Y I WX, 0X) —2> 2HLX,9X) —— 0

=| |» |

0 —— Hom(H" *(X; Z), §Y) —— H*1x)* —2— H*1(X)* —— 0

where the top row is 2.2(A) and the bottom row isthe dua of 2.2(B). By definition Dy is onto the
smooth elementsin H**~1(X)* and therefore the map D is surjective.
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Theproof that D’ isanisomorphismisparallel. Fix 8 € H"—*~1(X) and suppose (a+B)[X] = 0
foradl a e ]T-TI"(X, 9X). We shall show that 8 = 0. Chooseaspark b € g and writedb = ¢ — S
asin 1.4. Then for al smooth formsa € £4(X, dX) we have by (3.3) that

(a) x B[X] =/a/\w =0 modZ
X

since d,a = 0. It followsthat ¢ = 0.
Hence, db = —S € R"*(X) isarelative cycle with torsion homology class

[S]€ H" "(X; Z)or = Hy(X, 3X; Lror.

Choose u € H*"Y(X,3X; Z)ior = H,_r—1(X; Z)or, and choose a cycle R € u with support in
X — 0X. Letm betheorder of u. Thenthereisa(n —k — 1)-chanT in X — X withdT = mR.
Seta = —%T and consider a as aspark of degree k on X with da = —R. Now we may assume
R and T to have been chosen so that supp(R) N supp(S) = ¥ and T meets S properly. Then

0= (@)xB[X] = (- AS[X] modZ

= (—1)’<+11T AS[X] mod Z
m

= (=D*Lk(R], [S]) mod Z
= (—=D*Lk(u, 5,8 mod Z
where Lk denotes the de Rham-Seifert linking as before. We conclude that . = 0.

Therefore B € ker(81) Nker(8,) can berepresented by asmooth d-closed formb e £ 7*1(X).
Now for any cycle R € Z&HH (X, 8X), i.e, any (n — k — 1)-dimensional rectifiable current R €
Ru—i—1(X — 3X) with dR = 0, we can find ¢ € E1(X,9X) and a € gf%c(x, 9X) with
da = ¢ — R. Then by (3.2) we have that

0= (@)*xB[X] = (-D"RADL[X] modZ
= (—1)”("+1)/R b mod Z.
Hence, b represents the zero classin
Hom(H,—-1(X; Z), R)/ Hom(H,—-1(X; Z), Z) = H" ™1 (X; R)/H" 1 (X; Ltree,

and by (2.2) and (2.5) we conclude that 8 = 0. Thusthe map D’ isinjective.
The surjectivity of D’ follows as before from the commutative diagram with exact rows:

0 — H' (X, §Y A iy 2 Z14(X) —— 0

.| o o

0 —— Hom(H*"'(X,0X; Z), §Y) —— H(X,0x)* —2— Ht (X,0X)* —— 0.

This completes the proof. O
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6. COBOUNDARY MAPS
It isnatural to ask if there is a coboundary mapping d with the property that the sequence
o B 0x) =5 TR x, ax) L TR <2 BFOX) -5 BFYX, 0X) — ..
(6.2)

isexact. The differential-form-component of characters makesthisimpossible. However, there do
exist natural coboundary maps o with the following properties:

(1) Under 8, the sequence (6.1) becomesthe standard |ong exact sequenceinintegral cohomology.

(2) Under §; the sequence (6.1) becomes a sequence of smooth d-closed formswhich inducesthe
standard long exact sequence in real conomology.

Recall that the definitions of Thom maps and Gysin maps for differential characters depend
essentially on achoice of “normal geometry”. Thiswill aso betruefor our coboundary maps. Fix a
tubular neighborhood Ng of 3 X in X and anidentification Nog = 90X x [0, 2),andletw : No — 90X
be the projection. Set N = 9X x [0,1) C Np and let Ty be the characteristic function of this
subset. Let x be asmooth approximation to Iy; specifically choose x (x, 1) = x(t) where y = 1
near Oand x (r) = Ofor s > 1. Then set

A= x—Iy e HO(X)

Notethat dA = dx — [0N] has compact supportin X — 0X.
DEFINITION 6.2, We define the coboundary map 8 = 9, : Hf(9X) — H1(X, 9X) by

9(a) = (w*a) * A.
Verification of (1) and (2) above is straightforward, and the details are omitted.

7. SEQUENCES AND DUALITY

At thelevel of cohomology the long exact sequencesfor the pair (X, 0 X) arerelated by the duality
mappings. Thereisan analogous diagram for differential characters:

(X, 0x) —2 Ik (X) ., Brex) —s AFYX,X)

i | | |
ﬁn—k—l(x)* J N ]ﬁln—k—l(x’ax)* " N ﬁn—k—Z(ax)* P N ﬁn—k—Z(X)*

anditisnatural to ask whether thisdiagram commutes (upto sign). Thesquareontheleftisevidently
commutative. The other two squares commute up to an error term which we now analyse.

We begin with the square on the right. Fix « € H¥(0X) and 8 € H"*~2(X) and choose
Li.-sparksap € o and b € B with dag = ¢o — Ro and db = ¢ — S asusual. Leta = w*ap,

An. Acad. Bras. Cienc., (2001) 73 (2)



158 REESE HARVEY and BLAINE LAWSON

¢ = n*¢ppand R = m* Ry denote the pull-backsto the collar neighborhood of 3 X viathe projection
7 : Ng — 90X definedin 86. Then

{(Dod)@)}(B) = (mraxbxM[X] = {(axb) Adx + (=1)"dz(a * b)AHX]. (7.1)

Now we may assume that S|NO= m*So for some Sy € R¥1(9X), and we may further assume that
supp(Ro) NSUppP(So) = ¥ becausedim(Ry) +dim(Sp) = n—2. Hence, da(axb) = n*RoAT* Sy =
*(Ro A Sp) = 0, and from (7.1) we see that
(D" H(Dod)@)}(B) = (=1 axb) Adx[X]
= (axb)[0X] — xd(a = b)[X]
= {(p" o D)()}(B) — xd(a * b)[X].
Nowd(a xb) = Ay — RAS = ¢ Ay andwe canwrite y = vy + dt A Yrp asin the proof of

Lemma2.3. Since ¢ = m*¢pg we seethat ¢ A 1 = 0 and we conclude that

{(p* o DY)} (B) + (=D"{(D o d)()}(B) = /NchxdtNﬁz

1
:/ ¢A/ x () dt Ao (7.2
X 0
:/ O AT Ax @) dt A2} = EN).
X

Thusfor exampleweseethat (p*oD)(«) = (—1)"1(Dod) () onall B whicharesx*-pull backsin
N. Furthermore, we can consider thefamily of sparksi. = r A wherer. : 9X x[0, €) — 0X][O, 1)
isgivenby r.(x, t) = (x, t/€). From (7.2) we see that

Iing] E(e) =0.
A similar analysis applies to the middle square in the diagram and we have the following.
ProposiTION 7.3. The duality diagram above commutesin the limit ase — 0.

Thisis the best one can expect. The “commutators’ in this diagram do not lie in the smooth
dual. Of course by Propositions 4.3 and 4.7 they do liein its closure.

Here is an explicit example of this non-commutativity. Let X = S2 x D? be the product of
the 2-sphere and the 3-disk. Choose sparks« € S(5?) and b € S?(D?) withda = w — [xo] and
db = Q — [0] for some xy € S2, where w and 2 are unit volume forms on 2 and D? respectively.
Direct calculation shows that

(axb)oX] =1 but (axixb)[X] = / 1-xQ < 1L
D3
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RESUMO

Uma teoria de caracteres diferenciais € agui desenvolvida para variedades com bordo. Isto é feito tanto do
ponto de vistade Cheeger-Simons como do deRham-Federer. O resultado central desteartigo éaformulagdo
e a prova de um teorema da dualidade de L efschetz-Pontrjagin, que afirma que o pareamento

Hfx, 0x) x A" *1(x) — st
dado por («, B) +— (a * 8) [X] induz isomorfismos
D Tk (X, 8X) — Home (A" *1(X), $1)

D B % 1(X) - Homs (HF (X, 8X), S1

sobre os duais diferencidveis de Pontrjagin. Em particular, D e D’ sdo injetivos com dominios densos no
grupo de todos os homeomorfismos continuos no circulo. Uma aplicagéo de cobordo é introduzida, a qual
fornece uma sequéncia longa para os grupos de caracteres associados ao par (X, 0X). A relacdo desta
sequéncia com as aplicagdes de dualidade é analisada.

Palavras-chave:caracteres diferenciais, dualidade de L ef schetz, teoria de deRham.
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