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ABSTRACT

The simultaneous propagation of two optical pulses through a doped nonlinear dispersive medium

modelled by a resonant three-level system was investigated numerically, within the framework of

a pair of coupled extended nonlinear Schrödinger equations. These included the contribution of

the dopant resonances whose dynamics is governed by Bloch equations. In this work, we review

the interesting possibilities on the manipulation of fields such as cloning, breakup and soliton

interactions, that the combination of coherent population trapping with nonlinear dispersive media

offers.
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1. INTRODUCTION

Quantum interference in coherently prepared atomic systems has lead to dramatic new effects

such as laser without inversion and electromagnetic induced transparency (EIT) (Harris 1997).

The latter is an effect that permits the propagation of light through an otherwise opaque atomic

medium. Spectacular examples of quantum coherence effects have been provided by recent reports

on extremely slow group velocities (Hau et al. 1999) and light pulse localization and containment

within an atomic cloud (Liu et al. 2001).

The remarkable discovery of self induced transparency (SIT) has elucidated many physical

interesting propagation properties predicted by the area theorem, concerning the area of the pulse

defined as,θ = ∫ +∞
−∞

µ

�
E(t)dt, with E(t) representing electric field (McCall and Hahn 1969).
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For example, the propagation of a resonant sech shaped soliton pulse with area 2π which travels

stably through two-level media preserving its shape, the so-called SIT soliton. Furthermore, it

has been observed that 4π pulses do not propagate as single pulses but rather they break up into

two separate 2π pulses (Lamb 1971). Studies on soliton propagation in three-level atoms have

demonstrated important techniques with potential applications in pulse shaping and control (Eberly

1995). Recently, the cloning of a pulse from a pump frequency to a signal frequency, has been

demonstrated by numerical simulations (Vemuri et al. 1997) of the interaction of two fields with a

three-level atomic system, described by Maxwell-Bloch equations, within a
-scheme as depicted

in Fig. 1. The cloning process here is understood as the amplification and shaping of a weak field

of arbitrary profile at the signal frequency (ω12) into a replica of a soliton at the pump transition

(ω13). The physical mechanism behind most of these unexpected phenomena is known as coherent

population trapping (CPT) (Alzetta et al. 1976). These trapping states are stationary states, also

known as dark states of the Hamiltonian, which do not evolve in the presence of the radiative

relaxation of the system.

Fig. 1 – Sketch of the energy levels for a
 system.

Solitons are also present in dispersive nonlinear waveguides with great perspectives for high-

rate and long-distance communications systems (Agrawal 1992). The propagation of soliton pulses

through dispersive nonlinear media, the so-called nonlinear Schrödinger soliton (NLS-soliton),

has been another field of great interest in recent years not only from theoretical aspects but also

from the technological developments that it might provide. The idea to extend those new exciting

experiments based on CPT to nonlinear Kerr media, should prove itself worthwhile. The coexistence

of both solitons, named the NLS-SIT-soliton, has already been investigated in two-level media

(Maimistov and Manykin 1983, Nakazawa et al. 1991a). Experiments using an Erbium-doped fiber

waveguide (Nakazawa et al. 1991b, Nakazawa et al. 1991c) have been carried out exhibiting the

breakup of stable 2π , 4π and multiple soliton pulses. Furthermore, coherentπ -pulse propagation

in an Erbium-doped fiber waveguide amplifier showing pulse breakup has been observed.

In this work, we review the effects of the propagation of a SIT-NLS soliton in a three-level

atomic system, with the inclusion of the nonlinear term of cross-phase modulation, coupling through
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the Kerr effect both fields. To this end, we study the propagation properties of pulses that travel in

a doped, nolinear and dispersive waveguide as for example an optical fiber. By solving a system

of five coupled equations involving the three coefficients of the atomic wave function representing

the quantum levels and two extended NLS governing the fields propagation, we shall discuss in the

following sections numerical experiments involving various SIT-NLS inputs that reveal interesting

behaviour such as: soliton cloning, soliton breakup and soliton interactions.

2. BASIC THEORY

We consider the interaction of a three-level atomic system with two fields, described by the Hamil-

tonianH = H0+ H1. Here, the free Hamiltonian

H0 = �ω1 |1〉 〈1| + �ω2 |2〉 〈2| + �ω3 |3〉 〈3| (1)

is perturbed by the fields according with

H1 = −�

2

(
�13e

−iφ13e−iω13t |1〉 〈3| +�12e
−iφ12e−iω12t |1〉 〈2|) + c.c. (2)

where�13e
−iφ13 and�12e

−iφ12 are the complex Rabi frequencies associated with the coupling of

the field modes of frequenciesω13 andω12, resonant with the dipole allowed atomic transitions

|1〉 → |3〉 and|1〉 → |2〉 respectively. The time dependent atomic wave functions are written as

|ψ(t)〉 = c1(t)e
−iω1t |1〉 + c2(t)e

−iω2t |2〉 + c3(t)e
−iω3t |3〉 (3)

Using Schrödinger’s equation,H |ψ〉 = i�
∂ |ψ〉
∂t

andH0 |i〉 = �ωi |i〉 (i = 1,2,3) we obtain the

dynamical behaviour of the probability amplitudesci(t), i.e.

dc1

dt
= i[c2�12(t)+ c3�13(t)]

2
(4)

dc2

dt
= i[c1�12(t)]

2
(5)

dc3

dt
= i[c1�13(t)]

2
(6)

where�ij (t) = 2µijAij

�
with Aij as the slowly varying amplitudes that compose the incident total

electric field, i.e.

E = x̂ A13e
i(k13z−ω13t) + cc + x̂A12e

i(k12z−ω12t) + cc (7)

with kij c = ωij . µ12 andµ13 are the electrical dipole moments related to the associated transitions

i.e. µij = 〈i |µ| j〉 and we have chosenµ12 = µ13 = µ̂x.

The electric field in our context is treated as a classical wave, which is a good approximation

for the coherent state of light produced by a pulsed laser necessary to perform the experiments, to
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corroborate the numerical results obtained here. Therefore, wave propagation is considered within

the framework of extended nonlinear Schrödinger (NLS) equations, that include the contribution of

the three-level resonant system to the polarization,P = tr(ρµ) whereρ is the density matrix. The

usual NLS equation that describes the propagation of an electromagnetic field through a nonlinear

dispersive medium in the absence of resonances, as for example an optical fiber, is given by

∂E(z, t)

∂z
= − i

2
β
∂2E(z, t)

∂t2
+ iγ |E(z, t)|2 . (8)

whereβ is the group velocity dispersion parameter and we have introducedγ , the nonlinear

parameterγ = n2k with n2 as the Kerr index andk as the wave vector. This equation belongs

to a special class of completely integrable equations with exact soliton solutions derived from the

inverse scattering method (Gardner et al. 1967). Among these solutions, a special role is played

by those solitons whose initial amplitude atz = 0 is given by,

E(0, t) = N sech(t),

where the soliton orderN is an integer. The fundamental soliton corresponds to the caseN = 1

while higher order solitons correspond toN > 1. The peak power necessary to launch aNth−order

soliton isN2 times of that required for the fundamental soliton. An interesting property of higher

order solitons is that they follow a periodic evolution pattern with the same periodz0, i.e., the pulse

shape goes through contraction and splitting phases until it returns to its original shape at the end

of the soliton periodz0.

When two optical waves of different frequencies co-propagate in a medium and interact non-

linearly through the medium, the propagation equations can be considered together via two coupled

NLS-like equations. In the presence of resonances, one must take into account their contribution.

Therefore, the extended NLS equations that describe the propagation of the envelope of our two

optical fields through a nonlinear medium in the presence ofna resonant atoms per unit volume

are given by (Caetano et al. 1998):

∂A12

∂z
= − i

2
β12

∂2A12

∂τ 2
+ iγ12[|A12|2 + 2 |A13|2]A12 + iω12na

2ε0c
c∗

2c1µ12 (9)

∂A13

∂z
= − i

2
β13

∂2A13

∂τ 2
+ iγ13[|A13|2 + 2 |A12|2]A13 + iω13na

2ε0c
c∗

3c1µ13 (10)

This system of five coupled equations is studied numerically using a combination of the well-known

split-step algorithm to solve the NLS equations, with a Runge-Kutta algorithm to solve the Bloch

equations. The results of the simulations are described in the next section.

3. RESULTS

3.1. Soliton Cloning and Breakup
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Let us begin by choosing the following initial configuration: a 2π−(N = 1)soliton, that is, a soliton

of area 2π and orderN = 1 at the pump frequency and a weaker signal. These pulses are represented

by A13(τ ) = √
P0 sechτ andA12(τ ) = r

√
P0 sechτ , respectively. The coordinateτ represents a

normalized time for the initial pulse duration in a Galilean frame of reference, i.e.τ = t − z/vg

T0
with T0 as the pulse width andvg as a mean group velocity. We introduce the parameter) to

represent the intensity ratio between pump and signal at the input, i.e.) = |A12|2
|A13|2

= r2. We

consider the initial conditionsc1 = 0, c2 = 0, c3 = −1 so that the population is in the ground state

to start with. As demonstrated in the literature (Maimistov and Manikin 1983), the condition for the

coexistence of the SIT-NLS soliton is that, the amplitude and duration of a 2π -SIT pulse should be

the exact ones that allow the corresponding self phase modulation to balance the dispersion spread

of the pulse. Therefore, the parameters must be arranged in such a way that the input powerP0

satisfies the coexistence conditionP (NLS)

0(N=1) = P
(SIT )

0(2π) (Nakazawa et al. 1991a). We turn to Figs. 2(a)

and 2(b) where we have plotted the intensity profiles of pump and signal respectively, as functions

of z/z0 andτ . We may observe a cloning process whereupon a soliton at the pump frequency

disappears, reappearing at the signal frequency. Note that while the pump is being attenuated,

the small signal assumes the shape and properties of the soliton pump. At this stage the newly

created soliton begins to propagate freely undistorted and without being absorbed. The medium

has become transparent to the cloned SIT-NLS soliton.
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Fig. 2 – Intensity profiles of the pump (a) and signal (b) for a 2π − (N = 1) soliton and) = 0.05, as functions of the

normalized propagation distancez/z0 and normalized timeτ showing the energy transfer process.

Let us now raise the power of the pump and consider a 4π − (N = 2) soliton using the same

forms as used previously for both pump and signal. We refer to Figs. (3a) and (3b) where we

have depicted the intensity profiles of pump and signal respectively, as functions of the normalized

propagation distancez/z0 and of the normalized timeτ . Fig. (3a) shows that during the first

stage, due to the interaction between the nonlinearity and group velocity dispersion associated to

the NLS equation, aN = 2 soliton is excited but for a very short time. The SIT component

quickly dominates inducing the pump pulse to breakup into two 2π solitary waves. Subsequently,
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Fig. 3 – Same as in Fig. 2 except for the 4π − (N = 2) input, showing the breakup and the energy transfer process.

we note that while both splitted waves undergo strong attenuation the signal is simultaneously

amplified into two 2π solitary waves with the same properties as the waves just absorbed at the

pump frequency, demonstrating that the energy of the pump has been transferred to the former pair

(Caetano et al. 2000). It is important to compare our results with the results in the literature. The

three-level configuration has provided the cloning process of the pair, a result obtained previously

for a SIT soliton (Vemuri et al. 1997). It should be noted that this result would have not occurred in

a two-level system (Nakazawa et al. 1991a). Furthermore, an important physical aspect is observed

by considering the combined SIT-NLS effect after the energy transfer process is completed. At

this stage, the pump is gone and the pair travels unaltered in the absence of the NLS component,

as depicted in Fig. (4a). By contrast, in the presence of nonlinear dispersive effects Fig. (4b),

the amplitude of the taller pulse displays a small oscillation whose period is approximatez0, so

that one may identify this periodicity with the characteristic NLS soliton period [inset - Fig. (4b)].

Consequently the areas of both pulses oscillate around the 2π value (Fonseca et al. 2001).

3.2. Coherent population trapping

We now turn to Figs. 5(a), (b) and (c) where the population dynamics corresponding to the

propagation of the 2π soliton is illustrated. Notice that, while the energy transfer process occurs, the

population leaves the ground state and gets back to it, to remain there afterwards, characterizing the

trapping of the population at the lowest level. By considering the analytical solutions of equations

(4), (5) and (6) for the particular initial configuration used above, that is,

c1(t) = −i sin(�t2 )

�
�13

c2(t) = 2

�2
�12�13 sin2

(
�t

4

)

c3(t) = − 1

�2

[
�2

12 +�2
13 cos

(
�t

2

)] (11)
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Fig. 4 – Propagation under coherent population trapping for a 4π − (N = 2) soliton with) = 0.05: (a) in the absence

of dispersive nonlinear effects and (b) in their presence. Inset: oscillation displayed by the area of the taller pulse during

propagation. Pulse area is divided by 2π .

where�ij stands for the Rabi frequency correspondent to the fieldAij and� =
√
�2

12 +�2
13,

one may conclude that by the time the pump is gone, that is, as�13 → 0, |c1|2 → 0, |c2|2 → 0,

|c3|2 → 1, which means that the populations in levels|1〉 and |2〉 become zero and the entire

population settles in level|3〉, characterizing population trapping. The cloning process occurs

while the system is being driven to the trapping state by the combined action of a strong pump and

a weak signal. Finally, by the time that the system returns to the lowest level the pump has gone

and there is no possibility to promote the population. On the other hand, the remaining signal has

dragged the energy but the levels connected by it are empty and the system becomes transparent

explaining why the soliton propagates freely once the trapping is established, as seen previously.

For a 4π − (N = 2) soliton, this process is doubled, as illustrated in Fig. 6(a), 6(b) and 6(c). In

this case when the population returns for the first time to level|3〉 there is still energy available to

promote it again and that is why 4π pulses split in two 2π pulses. By varying the relation between

the intensities of pump and signal, one may accelerate the cloning process in such a way that it may

occur after the breakup as we show in Fig. 7 where the propagation of the pump pulse as well as

the signal is illustrated during the firstz0 for ratio intensities of 0.05, and 0.5. Fig. 7(d) shows that

pratically there are no two separated pulses in time. It is interesting to observe that in this situation

the pump [Fig. 7(c)] does not split before the cloning process.

3.3. Soliton interactions

We now turn to long propagation distances, after the pump pulse is depleted. This asymptotic

behaviour, is illustrated in Fig. (8) where one can clearly see a repulsive interaction between the

pair. At this propagation distance, the pump is already fully depleted and the population is trapped

in level |3〉 . Therefore the coupled set of equations(4) - (6) , (9) and(10) is reduced to one single

ordinary nonlinear Schrödinger equation for the amplified signal whose initial condition is given
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Fig. 5 – Dynamics of the atomic populations for a 2π − (N = 1) soliton and) = 0.05 in level|1〉 (a), level|2〉 (b) and

level |3〉 (c), illustrating the coherent population trapping effect.

by a two-soliton solution. The properties of such solitons, were defined in the beginning of the

propagation by the pump and signal interaction from which the soliton pair was originated. We can

see that the taller pulse moves forward with respect to the time coordinate frame employed here

while the smaller one suffers a delay. This means that the taller soliton goes faster than the group

velocity and gets ahead of the smaller one which propagates with a velocity smaller than the group

velocity. According to analytical, experimental and numerical work on soliton interactions (Gordon

1983, Aitchison et al. 1991, Hermansson and Yevick 1983), the nature of the interaction should be

determined by the phase differenceδ between the pair and a repulsive interaction should develop for
π
2 < δ < π making the pulses to separate monotonously. Using a variational approach (Anderson

and Lisak 1985), one may show that the phase difference between the pair is proportional to the

difference between their squared amplitudes, that is,δ = γ z(|A1|2 − |A2|2). By varying the ratio

of the pump intensity relative to the signal intensity one may change the relative amplitudes of the

resulting pair, controlling the phase difference between them and with it, the nature of the soliton
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Fig. 6 – Same as in Fig. 5 except for the input, a 4π − (N = 2) soliton.

interaction as we show in Fig. 8, for) = 0.05 (Fig. 8a) and) = 0.5 (Fig. 8b). These graphs

show clearly that by increasing), the interaction between the two soliton pulses is weakened.

Another parameter that influences the asymptotic soliton interaction is the initial overlap between

A12 andA13 as we show in Fig. 9, where we plot the asymptotic behaviour of the soliton pair for

) = 0.3. Comparing Fig. 9a (total overlap) with Fig. 9b (partial overlap according to the inset)

we notice that as the overlap decreases the interaction is modified from the repulsive behavior. In

fact we see one soliton crossing the other in a kind of an intermingled state.

4. CONCLUSIONS

In conclusion, we have studied the simultaneous propagation of a pair of optical pulses through

a doped optical fiber, taking into account the resonances provided by the impurities by modelling

these after a three-level system. We have found through numerical simulations the cloning of mixed

SIT-NLS solitons simultaneous with the transfer of the population until the atomic system evolves
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Fig. 7 – Intensity profiles of the pump (a), (c) and signal (b), (d), for a 4π − (N = 2) soliton, as functions of the

normalized propagation distancez/z0 and normalized timeτ . (a) and (b) for) = 0.05, and (c) and (d) for) = 0.5.

into a population trapped state. In the case of high order 4π solitons we have found breaking up

and cloning processes that are controlled by the initial relative intensities and overlaps of the pump

and signal pulses at the beginning of the whole process. In contrast with results in the literature,

we have shown that the pair resulting from the breaking up are not separate but rather interact just

like a two-soliton solution. Furthermore, we have demonstrated that the nature of this interaction

may be controlled by varying the initial intensity ratio and overlap between pump and signal from

which the pair has originated.

The investigation presented here shows remarkable properties of CPT states of atoms interact-

ing with pulses propagating in fibers, that can be used in optical based communication systems. As

an example, the effect of soliton cloning in doped fibers may be used to generate solitons streams

at different wavelengths with potential applications in soliton multiplexing.
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Fig. 8 – Asymptotic behaviour illustrating pair repulsion due to the soliton interaction for) = 0.05 (a) and

) = 0.5 (b).
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Investiga-se numericamente a propagação simultânea de dois pulsos ópticos através de um meio dispersivo

não linear dopado, modelado por um sistema ressonante de três níveis, usando-se uma abordagem de equações

generalizadas não lineares de Schrödinger. Estas últimas incluem a contribuição das ressonâncias do dopante

cuja dinâmica é regida pelas equações de Bloch. Neste trabalho, revemos as possibilidades interessantes que

a combinação de efeitos dispersivos não lineares com o aprisionamento coerente da população oferecem,

tais como: clonagem, quebra e interação entre solitons.

Palavras-chave: soliton, coerência quântica, não-linearidade, clonagem.
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