On the geometry of Poincaré's problem for one-dimensional projective foliations

MARCIO G. SOARES*
Departamento de Matemática, ICEx, UFMG - 31270-901 Belo Horizonte, Brazil
Manuscript received on June 28, 2001; accepted for publication on July 18, 2001.

Abstract

We consider the question of relating extrinsic geometric characters of a smooth irreducible complex projective variety, which is invariant by a one-dimensional holomorphic foliation on a complex projective space, to geometric objects associated to the foliation.

Key words: holomorphic foliations, invariant varieties, polar classes, degrees.

1 INTRODUCTION

H. Poincaré treated, in (1891), the question of bounding the degree of an algebraic curve, which is a solution of a foliation \mathcal{F} on $\mathbb{P}_{\mathbb{C}}^{2}$ with rational first integral, in terms of the degree of the foliation. This problem has been considered more recently in the following formulation: to bound the degree of an irreducible algebraic curve S, invariant by a foliation \mathcal{F} on $\mathbb{P}_{\mathbb{C}}^{2}$, in terms of the degree of the foliation.

Simple examples show that, when S is a dicritical separatrix of \mathcal{F}, the search for a positive solution to the problem is meaningless. The obstruction in this case was given by M. Brunella in (1997), and reads: the number $\int_{S} c_{1}\left(N_{\mathcal{F}}\right)-S \cdot S$ may be negative if S is a dicritical separatrix (here, $N_{\mathcal{F}}$ is the normal bundle of the foliation). More than that, A. Lins Neto constructs, in (2000), some remarkable families of foliations on $\mathbb{P}_{\mathbb{C}}^{2}$ providing counterexamples for this problem, all involving singular separatrices and dicritical singularities.

However, as was shown in (Brunella 1997), when S is a non-dicritical separatrix, the number $\int_{S} c_{1}\left(N_{\mathcal{F}}\right)-S \cdot S$ is nonnegative and, in $\mathbb{P}_{\mathbb{C}}^{2}$, this means $d^{0}(\mathcal{F})+2 \geq d^{0}(S)$, where $d^{0}(\mathcal{F})$ and $d^{0}(S)$ are the degrees of the foliation and of the curve, respectively. Another solution to the problem, in the non-dicritical case, was given by M.M. Carnicer in (1994), using resolution of singularities.

[^0]Let us now consider one-dimensional holomorphic foliations on $\mathbb{P}_{\mathbb{C}}^{n}, n \geq 2$, that is, morphisms $\mathcal{F}: \mathcal{O}(m) \longrightarrow \mathbb{P}_{\mathbb{C}}^{n}, m \in \mathbb{Z}, m \leq 1$, with singular set of codimension at least 2 . We write $m=1-d^{0}(\mathcal{F})$ and call $d^{0}(\mathcal{F}) \geq 0$ the degree of \mathcal{F}. From now on we will consider $d^{0}(\mathcal{F}) \geq 2$. This is the characteristic number associated to the foliation.

On the other hand, if we consider \mathcal{F}-invariant algebraic varieties $\mathbf{V} \xrightarrow{\mathbf{i}} \mathbb{P}_{\mathbb{C}}^{n}$, it is natural to consider other characters associated to \mathbf{V}, not just its degree. This is the point of view we address. More precisely, we pose the question of relating extrinsic geometric characters of \mathbf{V} to geometric objects associated to \mathcal{F}.

This approach produces some interesting results. Let us illustrate the two-dimensional situation. Suppose we have an \mathcal{F}-invariant irreducible plane curve S. We associate to \mathcal{F} a tangency divisor $\mathcal{D}_{\mathcal{H}}$ (depending on a pencil \mathcal{H}), which is a curve of degree $d^{0}(\mathcal{F})+1$ and contains the first polar locus of S. Computing degrees we arrive at $d^{0}(S) \leq d^{0}(\mathcal{F})+2$ in case S is smooth, and at $d^{0}(S)\left(d^{0}(S)-1\right)-\sum_{p \in \operatorname{sing}(S)}\left(\mu_{p}-1\right) \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)$ in case S is singular, where μ_{p} is the Milnor number of S at p. This allows us to recover a result of D. Cerveau and A. Lins Neto (1991), which states that if S has only nodes as singularities, then $d^{0}(S) \leq d^{0}(\mathcal{F})+2$, regardless of the singularities of \mathcal{F} being dicritical or non-dicritical.

In the higher dimensional situation, we obtain relations among polar classes of \mathcal{F}-invariant smooth varieties and the degree of the foliation.

2 THE TANGENCY DIVISOR OF \mathcal{F} WITH RESPECT TO A PENCIL

Let \mathcal{F} be a one-dimensional holomorphic foliation on $\mathbb{P}_{\mathbb{C}}^{n}$ of degree $d^{0}(\mathcal{F}) \geq 2$, with singular set of codimension at least 2 . We associate a tangency divisor to \mathcal{F} as follows:

Choose affine coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that the hyperplane at infinity, with respect to these, is not \mathcal{F}-invariant, and let $X=g R+\sum_{i=1}^{n} Y_{i} \frac{\partial}{\partial z_{i}}$ be a vector field representing \mathcal{F}, where $R=\sum_{i=1}^{n} z_{i} \frac{\partial}{\partial z_{i}}, g\left(z_{1}, \ldots, z_{n}\right) \not \equiv 0$ is homogeneous of degree $d^{0}(\mathcal{F})$ and $Y_{i}\left(z_{1}, \ldots, z_{n}\right)$ is a polynomial of degree $\leq d^{0}(\mathcal{F}), 1 \leq i \leq n$. Let H be a generic hyperplane in $\mathbb{P}_{\mathbb{C}}^{n}$. Then, the set of points in H which are either singular points of \mathcal{F} or at which the leaves of \mathcal{F} are not transversal to H is an algebraic set, noted $\operatorname{tang}(H, \mathcal{F})$, of dimension $n-2$ and degree $d^{0}(\mathcal{F})$ (observe that $g\left(z_{1}, \ldots, z_{n}\right)=0$ is precisely tang $\left.\left(H_{\infty}, \mathcal{F}\right)\right)$.

Definition. Consider a pencil of hyperplanes $\mathcal{H}=\left\{H_{t}\right\}_{t \in \mathbb{P}_{\mathbb{C}}}$, with axis L^{n-2}. The tangency divisor of \mathcal{F} with respect to \mathcal{H} is

$$
\mathcal{D}_{\mathcal{H}}=\bigcup_{t \in \mathbb{P}_{\mathbb{C}}^{1}} \operatorname{tang}\left(H_{t}, \mathcal{F}\right)
$$

Lemma 2.1. $\mathcal{D}_{\mathcal{H}}$ is a (possibly singular) hypersurface of degree $d^{0}(\mathcal{F})+1$.
Proof. Let p be a point in L^{n-2}, the axis of the pencil. If $p \in \operatorname{sing}(\mathcal{F})$ then p is necessarily in $\mathcal{D}_{\mathcal{H}}$, otherwise p is a regular point of \mathcal{F}. In this case, if \mathcal{L} is the leaf of \mathcal{F} through p, then either $\mathrm{T}_{p} \mathcal{L} \subset L^{n-2}$ or, $\mathrm{T}_{p} \mathcal{L}$ together with L^{n-2} determine a hyperplane $H_{\alpha} \in \mathcal{H}$, and hence we have
$p \in \operatorname{tang}\left(H_{\alpha}, \mathcal{F}\right) \subset \mathcal{D}_{\mathcal{H}}$, so that $L^{n-2} \subset \mathcal{D}_{\mathcal{H}}$. Now, let $p \in L^{n-2}$ be a regular point of \mathcal{F} and choose a generic line ℓ, transverse to L^{n-2}, passing through p and such that L^{n-2} and ℓ determine a hyperplane H_{β}, distinct from H_{α}. This line ℓ meets $\mathcal{D}_{\mathcal{H}}$ at p and at $d^{0}(\mathcal{F})$ further points, counting multiplicities, corresponding to the intersections of ℓ with $\operatorname{tang}\left(H_{\beta}, \mathcal{F}\right)$. Hence $\mathcal{D}_{\mathcal{H}}$ has degree $d^{0}(\mathcal{F})+1$.

Example. If we consider the two-dimensional Jouanolou's example

$$
\begin{gathered}
\dot{x}=y^{d^{0}(\mathcal{F})}-x^{d^{0}(\mathcal{F})+1} \\
\dot{y}=1-y x^{d^{0}(\mathcal{F})}
\end{gathered}
$$

and the pencil $\mathcal{H}=\left\{(a t, b t): t \in \mathbb{C},(a: b) \in \mathbb{P}_{\mathbb{C}}^{1}\right\}$, a straightforward manipulation shows that $\mathcal{D}_{\mathcal{H}}$ is given, in homogeneous coordinates $(X: Y: Z)$ in $\mathbb{P}_{\mathbb{C}}^{2}$, by

$$
Y^{d^{0}(\mathcal{F})+1}-X Z^{d^{0}(\mathcal{F})}=0 .
$$

$3 \mathcal{F}$-INVARIANT SMOOTH IRREDUCIBLE VARIETIES

Let us recall some facts about polar varieties and classes (Fulton 1984). If $\mathbf{V} \xrightarrow{\mathbf{i}} \mathbb{P}_{\mathbb{C}}^{n}$ is a smooth irreducible algebraic subvariety of $\mathbb{P}_{\mathbb{C}}^{n}$, of dimension $n-k$, and L^{k+j-2} is a linear subspace, then the j-th polar locus of \mathbf{V} is defined by

$$
\mathcal{P}_{j}(\mathbf{V})=\left\{q \in \mathbf{V} \mid \operatorname{dim}\left(\mathrm{T}_{q} \mathbf{V} \cap L^{k+j-2}\right) \geq j-1\right\}
$$

for $0 \leq j \leq n-k$. If L^{k+j-2} is a generic subspace, the codimension of $\mathcal{P}_{j}(\mathbf{V})$ in \mathbf{V} is precisely j. The j-th class, $\varrho_{j}(\mathbf{V})$, of \mathbf{V} is the degree of $\mathcal{P}_{j}(\mathbf{V})$ and, since the cycle associated to $\mathcal{P}_{j}(\mathbf{V})$ is

$$
\left[\mathcal{P}_{j}(\mathbf{V})\right]=\sum_{i=0}^{j}(-1)^{i}\binom{n-k-i+1}{j-i} c_{i}(\mathbf{V}) c_{1}\left(\mathbf{i}^{*} \mathcal{O}(1)\right)^{j-i}
$$

we have

$$
\varrho_{j}(\mathbf{V})=\int_{\mathbf{V}} \sum_{i=0}^{j}(-1)^{i}\binom{n-k-i+1}{j-i} c_{i}(\mathbf{V}) c_{1}\left(\mathbf{i}^{*} \mathcal{O}(1)\right)^{n-k-i} \quad, \quad 0 \leq j \leq n-k
$$

Lemma 3.1. Let \mathbf{V} be a smooth irreducible algebraic variety of dimension $n-k$, \mathcal{F}-invariant and not contained in $\operatorname{sing}(\mathcal{F})$. Then

$$
\mathcal{P}_{n-k}(\mathbf{V}) \subset \mathcal{D}_{\mathcal{H}} \quad \text { and } \quad \mathcal{P}_{0}(\mathbf{V})=\mathbf{V} \not \subset \mathcal{D}_{\mathcal{H}}
$$

Proof. Let us first assume \mathbf{V} is a linear subspace of $\mathbb{P}_{\mathbb{C}}^{n}$. In this case $\mathcal{P}_{j}=\emptyset$, for $j \geq 1$, so the first assertion of the lemma is meaningless. Assume then \mathbf{V} is not a linear subspace and choose a pencil
of hyperplanes $\mathcal{H}=\left\{H_{t}\right\}_{t \in \mathbb{P}_{\mathbb{C}}^{1}}$, with axis L^{n-2} generic, so that $\operatorname{codim}\left(\mathcal{P}_{n-k}(\mathbf{V}), \mathbf{V}\right)=n-k$. If $q \in \mathcal{P}_{n-k}(\mathbf{V})$, then $\mathrm{T}_{q} \mathbf{V}$ meets L^{n-2} in a subspace W of dimension at least $n-k-1$. If $\mathrm{T}_{q} \mathbf{V} \subset L^{n-2}$ then any hyperplane $H_{t} \in \mathcal{H}$ contains $\mathrm{T}_{q} \mathbf{V}$, if not, a line $\ell \subset \mathrm{T}_{q} \mathbf{V}, \ell \not \subset L^{n-2}, \ell \cap W$ consisting of a point determines, together with L^{n-2}, a hyperplane $H_{t} \in \mathcal{H}$ such that $\mathrm{T}_{q} \mathbf{V} \subset H_{t}$. Since \mathbf{V} is \mathcal{F}-invariant, we have $\mathrm{T}_{q} \mathcal{L} \subset \mathrm{~T}_{q} \mathbf{V} \subset H_{t}$, in case q is not a singular point of \mathcal{F}, where \mathcal{L} is the leaf of \mathcal{F} through q. This implies $q \in \operatorname{tang}\left(H_{t}, \mathcal{F}\right) \subset \mathcal{D}_{\mathcal{H}}$, so that $\mathcal{P}_{n-k}(\mathbf{V}) \subset \mathcal{D}_{\mathcal{H}}$. Also, it follows from the definition of $\mathcal{D}_{\mathcal{H}}$ that \mathbf{V} is not contained in it.

Theorem I. Let \mathcal{F} be a one-dimensional holomorphic foliation on $\mathbb{P}_{\mathbb{C}}^{n}$ of degree $d^{0}(\mathcal{F}) \geq 2$, with singular set of codimension at least 2 , and let \mathbf{V} be an \mathcal{F}-invariant smooth irreducible algebraic variety, of dimension $n-k$, which is not a linear subspace of $\mathbb{P}_{\mathbb{C}}^{n}$, and not contained in $\operatorname{sing}(\mathcal{F})$. Suppose $\mathcal{P}_{n-k-j}(\mathbf{V}) \subset \mathcal{D}_{\mathcal{H}}$ but $\mathcal{P}_{n-k-j-1}(\mathbf{V}) \not \subset \mathcal{D}_{\mathcal{H}}$, for some $0 \leq j \leq n-k-1$. Then

$$
\frac{\varrho_{n-k-j}(\mathbf{V})}{\varrho_{n-k-j-1}(\mathbf{V})} \leq d^{0}(\mathcal{F})+1
$$

Proof. Observe that we may assume $\mathcal{P}_{n-k-j}(\mathbf{V}) \subset \mathcal{P}_{n-k-j-1}(\mathbf{V})$ and hence

$$
\mathcal{P}_{n-k-j}(\mathbf{V}) \subseteq \mathcal{D}_{\mathcal{H}} \cap \mathcal{P}_{n-k-j-1}(\mathbf{V})
$$

Bézout's Theorem then gives

$$
\varrho_{n-k-j}(\mathbf{V}) \leq\left(d^{0}(\mathcal{F})+1\right) \varrho_{n-k-j-1}(\mathbf{V})
$$

Corollary 1. Let $\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k} \nsubseteq \operatorname{sing}(\mathcal{F})$ be a smooth irreducible complete intersection in $\mathbb{P}_{\mathbb{C}}^{n}$, which is not a linear subspace, defined by $F_{1}=0, \ldots, F_{k}=0$ where $F_{\ell} \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is homogeneous of degree $d_{\ell}, 1 \leq \ell \leq k$ and \mathcal{F}-invariant, where \mathcal{F} is as in Theorem I. If $\mathcal{P}_{n-k-j}\left(\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k}\right) \subset \mathcal{D}_{\mathcal{H}}$ but $\mathcal{P}_{n-k-j-1}\left(\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k}\right) \not \subset \mathcal{D}_{\mathcal{H}}$ then

$$
d^{0}(\mathcal{F})+1 \geq \frac{\mathcal{W}_{n-k-j}^{(k)}\left(d_{1}-1, \ldots, d_{k}-1\right)}{\mathcal{W}_{n-k-j-1}^{(k)}\left(d_{1}-1, \ldots, d_{k}-1\right)}
$$

where $\mathcal{W}_{\delta}^{(k)}$ is the Wronski (or complete symmetric) function of degree δ in k variables

$$
\mathcal{W}_{\delta}^{(k)}\left(X_{1}, \ldots, X_{k}\right)=\sum_{i_{1}+\cdots+i_{k}=\delta} X_{1}^{i_{1}} \ldots X_{k}^{i_{k}}
$$

Proof. Immediate since $\varrho_{i}\left(\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k}\right)=\left(d_{1} \ldots . d_{k}\right) \mathcal{W}_{i}^{(k)}\left(d_{1}-1, \ldots, d_{k}-1\right)$.
Observe that if \mathbf{V} is a smooth irreducible hypersurface, this reads $d^{0}(\mathcal{F})+2 \geq d^{0}(\mathbf{V})$. In (Soares 1997) we showed $d^{0}(\mathcal{F})+1 \geq d^{0}(\mathbf{V})$, but assumed \mathcal{F} to be a non-degenerate foliation on $\mathbb{P}_{\mathbb{C}}^{n}$.

Also, in (Soares 2000) the following estimate is obtained, provided $n-k$ is odd and $\mathbf{i}^{*} \mathcal{F}$ is non-degenerate: if $1 \leq k \leq n-2$ then

$$
d^{0}(\mathcal{F}) \geq \frac{\varrho_{n-k}\left(\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k}\right)}{\varrho_{n-k-1}\left(\mathbf{V}_{\left(d_{1}, \ldots, d_{k}\right)}^{n-k}\right)}
$$

We remark that this estimate is sharper than that given in Corollary 1.

4 THE TWO-DIMENSIONAL CASE

As pointed out in Corollary 1, whenever we have a smooth irreducible \mathcal{F}-invariant plane curve S, the relation $d^{0}(S) \leq d^{0}(\mathcal{F})+2$ holds because $\varrho_{1}(S)=d^{0}(S)\left(d^{0}(S)-1\right)$, regardless of the nature of the singularities of \mathcal{F}, provided $\operatorname{sing}(\mathcal{F})$ has codimension two.

In order to treat the case of arbitrary irreducible \mathcal{F}-invariant curves, let us recall the definition (see R. Piene 1978) of the class of a (possibly singular) irreducible curve S in $\mathbb{P}_{\mathbb{C}}^{2}$. We let $S_{\text {reg }}$ denote the regular part of S and, for a generic point p in $\mathbb{P}_{\mathbb{C}}^{2}$, we consider the subset \mathcal{Q} of $S_{\text {reg }}$ consisting of the points q such that $p \in T_{q} S_{\text {reg }}$. The closure \mathcal{P}_{1} of \mathcal{Q} in S is the first polar locus of S, and the class $\varrho_{1}(S)$ of S is its degree. \mathcal{P}_{1} is a subvariety of codimension 1 whose degree is given by Teissier's formula (Teissier 1973):

$$
\varrho_{1}(S)=d^{0}(S)\left(d^{0}(S)-1\right)-\sum_{q}\left(\mu_{q}+m_{q}-1\right)
$$

where the summation is over all singular points q of S, μ_{q} denotes the Milnor number of S at q and m_{q} denotes the multiplicity of S at q. Because \mathcal{P}_{1} is a finite set of regular points in S, revisiting Lemma 3.1 we conclude:

$$
\mathcal{P}_{1} \subseteq \mathcal{D}_{\mathcal{H}} \cap S
$$

Also, $\operatorname{sing}(S) \subseteq \operatorname{sing}(\mathcal{F})$, so that

$$
\operatorname{sing}(S) \subseteq \mathcal{D}_{\mathcal{H}} \cap S
$$

and hence

$$
\mathcal{P}_{1} \cup \operatorname{sing}(S) \subseteq \mathcal{D}_{\mathcal{H}} \cap S
$$

It follows from Bézout's theorem that

$$
\varrho_{1}(S)+\sum_{q} m_{q} \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)
$$

Therefore we obtain the
Theorem II. Let S be an irreducible curve, of degree $d^{0}(S)>1$, invariant by a foliation \mathcal{F} on $\mathbb{P}_{\mathbb{C}}^{2}$, of degree $d^{0}(\mathcal{F}) \geq 2$ with $\operatorname{sing}(\mathcal{F})$ of codimension 2 . Then

$$
d^{0}(S)\left(d^{0}(S)-1\right)-\sum_{q}\left(\mu_{q}-1\right) \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)
$$

where the summation extends over all singular points q of S.

This gives at once the following result, first obtained by Cerveau and Lins Neto (1991);
Corollary 2. If all the singularities of S are ordinary double points (so that $\mu_{q}=1$) then

$$
d^{0}(S) \leq d^{0}(\mathcal{F})+2
$$

Theorem II illustrates one obstruction to solving Poincaré's problem in general, since we cannot estimate the sum $\sum_{q}\left(\mu_{q}-1\right)$ when dicritical singularities are present. However, if S is an irreducible \mathcal{F}-invariant algebraic curve, which is a non-dicritical separatrix, then it follows from (Brunella 1997) that

$$
\sum_{q}\left(\mu_{q}-1\right) \leq \sum_{q} \sum_{i=1}^{r_{q}} \operatorname{GSV}\left(\mathcal{F}, B_{i}^{q}, q\right)-\sum_{q} r_{q}
$$

where the sum is over all singular points q of $S, B_{1}^{q}, \ldots, B_{r_{q}}^{q}$ are the analytic branches of S at q, and GSV denotes the Gomez-Mont/Seade/Verjovsky index.

Remark. Let S be a non-dicritical separatrix of \mathcal{F}, so that $d^{0}(S) \leq d^{0}(\mathcal{F})+2$. Assume equality holds in the expression in Theorem II, which amounts to

$$
d^{0}(S)\left(d^{0}(S)-d^{0}(\mathcal{F})-2\right)=\sum_{q}\left(\mu_{q}-1\right) \geq 0
$$

Hence we conclude $d^{0}(S)=d^{0}(\mathcal{F})+2$ and S has only ordinary double points as singularities.

$5 \mathcal{F}$-INVARIANT SMOOTH IRREDUCIBLE CURVES

We have the following immediate consequence of Corollary 1 : if we consider an \mathcal{F}-invariant smooth one-dimensional complete intersection $S=\mathbf{V}_{\left(d_{1}, \ldots, d_{(n-1)}\right)}^{n-(n-1)} \not \subset \operatorname{sing}(\mathcal{F})$, then

$$
d_{1}+\cdots+d_{n-1} \leq d^{0}(\mathcal{F})+n
$$

so that

$$
d^{0}(S) \leq\left(\frac{d^{0}(\mathcal{F})+n}{n-1}\right)^{n-1}
$$

provided codim $\operatorname{sing}(\mathcal{F}) \geq 2$. In the general case we have:
Corollary 3. Let $S \nsubseteq \operatorname{sing}(\mathcal{F})$ be an \mathcal{F}-invariant smooth irreducible curve of degree $d^{0}(S)>1$, where \mathcal{F} is a one-dimensional holomorphic foliation on $\mathbb{P}_{\mathbb{C}}^{n}$ of degree $d^{0}(\mathcal{F}) \geq 2$, with singular set of codimension at least 2 . Then the first class $\varrho_{1}(S)$ of S satisfies

$$
\varrho_{1}(S) \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S),
$$

the geometric genus g of S satisfies

$$
g \leq \frac{\left(d^{0}(\mathcal{F})-1\right) d^{0}(S)}{2}+1
$$

Also, if $N(\mathcal{F}, S)$ is the number of singularities of \mathcal{F} along S, then

$$
N(\mathcal{F}, S) \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)
$$

Proof. Since S is a curve which is not a line, we have to consider only $\varrho_{0}(S)=d^{0}(S)$ and $\varrho_{1}(S)$. The first inequality follows immediately from Theorem I. To bound the genus we observe that Lefschetz' theorem on hyperplane sections (Lamotke 1981) gives

$$
\varrho_{1}(S)=2 d^{0}(S)+2 g-2
$$

and the second inequality follows. On the other hand, since S is irreducible and not contained in $\operatorname{sing}(\mathcal{F})$, Whitney's finiteness theorem for algebraic sets (Milnor 1968) implies that $S \backslash \operatorname{sing}(\mathcal{F})$ is connected, and hence $N(\mathcal{F}, S)$ is necessarily finite. Also,

$$
\operatorname{sing}(\mathcal{F}) \cap S \subset \mathcal{D}_{\mathcal{H}} \cap S
$$

and Bézout's theorem implies

$$
N(\mathcal{F}, S) \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)
$$

The first class of a smooth irreducible curve S in $\mathbb{P}_{\mathbb{C}}^{n}$ was calculated by R. Piene (1976), and is as follows:

$$
\varrho_{1}(S)=2\left(d^{0}(S)+g-1\right)-\kappa_{0}
$$

where g is the genus of S and $\kappa_{0} \geq 0$ is an integer, called the $0-t h$ stationary index. It follows from Theorem I that:

Corollary 4. With the same hypothesis of Corollary 3

$$
2 d^{0}(S)-\chi(S)-\kappa_{0} \leq\left(d^{0}(\mathcal{F})+1\right) d^{0}(S)
$$

Remark on Extremal Curves. We can obtain an estimate for $d^{0}(S)$ in terms of $d^{0}(\mathcal{F})$ and $n \geq 3$, provided S is non-degenerate (that is, is not contained in a hyperplane) and extremal (that is, the genus of S attains Castelnuovo's bound). Recall that, for S a smooth non-degenerate curve in $\mathbb{P}_{\mathbb{C}}^{n}$ of degree $d^{0}(S) \geq 2 n$, Castenuovo's bound is (Arbarello et al. 1985):

$$
g \leq \frac{m(m-1)}{2}(n-1)+m \epsilon,
$$

where

$$
d^{0}(S)-1=m(n-1)+\epsilon
$$

The inequality

$$
g \leq \frac{\left(d^{0}(\mathcal{F})-1\right) d^{0}(S)}{2}+1
$$

together with S extremal give, performing a straightforward manipulation:

$$
d^{0}(S) \leq 2\left(d^{0}(\mathcal{F})-1\right)(n-1)+\frac{(n-1)(n+2)}{n}
$$

ACKNOWLEGMENTS

I'm grateful to M. Brunella for useful conversations, to PRONEX-Dynamical Systems (Brazil) for support and to Laboratoire de Topologie, Univ. de Bourgogne (France) for hospitality.

RESUMO

Consideramos o problema de relacionar carateres geométricos extrínsecos de uma variedade projetiva lisa e irredutível, que é invariante por uma folheação holomorfa de dimensão um de um espaço projetivo complexo, a objetos geométricos associados à folheação.
Palavras-chave: folheações holomorfas, variedades invariantes, classes polares, graus.

REFERENCES

Arbarello E, Cornalba M, Griffiths PA and Harris J. 1985. Geometry of Algebraic Curves, volume I. Grundlehren der mathematischen Wissenschaften 267, Springer-Verlag.

Brunella M. 1997. Some remarks on indices of holomorphic vector fields. Publicacions Mathemàtiques 41: 527-544.

Carnicer MM. 1994. The Poincaré problem in the non-dicritical case. An Math 140: 289-294.
Cerveau D and Lins Neto A. 1991. Holomorphic Foliations in $\mathbb{P}_{\mathbb{C}}^{2}$ having an invariant algebraic curve. An Institut Fourier 41(4): 883-904.

Fulton W. 1984. Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge - Band 2, Springer-Verlag.

Lamotкe K. 1981. The Topology of Complex Projective Varieties after S. Lefschetz. Topology 20: 15-51.
Lins Neto A. 2000. Some examples for Poincaré and Painlevé problems. Pre-print IMPA.
Milnor J. 1968. Singular points of complex hypersurfaces. An Math Studies 61.
Piene R. 1976. Numerical characters of a curve in projective n-space, Nordic Summer School/NAVF. Symposium in Mathematics, Oslo, August 5-25.

Piene R. 1978. Polar Classes of Singular Varieties. An scient Éc Norm Sup $4{ }^{e}$ série 11: 247-276.
Poincaré H. 1891. Sur l'Intégration Algébrique des Équations Differentielles du Premier Ordre et du Premier Degré. Rendiconti del Circolo Matematico di Palermo 5: 161-191.

Soares MG. 1997. The Poincaré problem for hypersurfaces invariant by one-dimensional foliations. Inventiones mathematicae 128: 495-500.

Soares MG. 2000. Projective varieties invariant by one-dimensional foliations. An Math 152: 369-382.
Teissier B. 1973. Cycles évanescents, sections planes et conditions de Whitney. Astérisque 8-9: 285-362.

[^0]: *Member of Academia Brasileira de Ciências
 E-mail: msoares@math.ufmg.br

