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ABSTRACT
We consider the question of relating extrinsic geometric characters of a smooth irreducible complex
projective variety, which is invariant by a one-dimensional holomorphic foliation on a complex
projective space, to geometric objects associated to the foliation.
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1 INTRODUCTION

H. Poincaré treated, in (1891), the question of bounding the degree of an algebraic curve, which is
a solution of a foliationF on IP% with rational first integral, in terms of the degree of the foliation.
This problem has been considered more recently in the following formulation: to bound the degree
of an irreducible algebraic cung invariant by a foliation” onPZ, in terms of the degree of the
foliation.

Simple examples show that, whénis a dicritical separatrix ofF, the search for a positive
solution to the problem is meaningless. The obstruction in this case was given by M. Brunella in
(1997), and reads: the numbgre1(N£) — S - S may be negative if is a dicritical separatrix (here,

Nz is the normal bundle of the foliation). More than that, A. Lins Neto constructs, in (2000), some
remarkable families of foliations dﬁ% providing counterexamples for this problem, all involving
singular separatrices and dicritical singularities.

However, as was shown in (Brunella 1997), witeis a non-dicritical separatrix, the number
[ c1(NF) — S-S is nonnegative and, i, this meang/®(F) +2 > d°(S), whered®(F) andd®(S)
are the degrees of the foliation and of the curve, respectively. Another solution to the problem, in
the non-dicritical case, was given by M.M. Carnicer in (1994), using resolution of singularities.
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Let us now consider one-dimensional holomorphic foliation®pm > 2, thatis, morphisms
F : O@m) — TPt ,m € Z, m < 1, with singular set of codimension at least 2. We write
m = 1—d°%F) and calld®°(F) > 0 the degree af. From now on we will consided®(F) > 2.
This is the characteristic number associated to the foliation. _

On the other hand, if we considéf-invariant algebraic varietieg —L P, it is natural to
consider other characters associated toot just its degree. This is the point of view we address.
More precisely, we pose the question of relating extrinsic geometric charactéroaeometric
objects associated tB.

This approach produces some interesting results. Let us illustrate the two-dimensional situ-
ation. Suppose we have drinvariant irreducible plane curvg. We associate t& a tangency
divisor Dy, (depending on a pencht), which is a curve of degre#’(F) + 1 and contains the first
polar locus ofS. Computing degrees we arrivet(S) < d°(F) + 2 in caseS is smooth, and at
d%($)(d%(S) = 1) = X csinesy(p — D < (d°(F) + DdO(S) in cases is singular, whergu, is
the Milnor number ofS at p. This allows us to recover a result of D. Cerveau and A. Lins Neto
(1991), which states that ¥ has only nodes as singularities, thél{S) < d°(F) + 2, regardless
of the singularities ofF being dicritical or non-dicritical.

In the higher dimensional situation, we obtain relations among polar classEsnfriant
smooth varieties and the degree of the foliation.

2 THE TANGENCY DIVISOR OF F WITH RESPECT TO A PENCIL

Let 7 be a one-dimensional holomorphic foliation B of degreed®(F) > 2, with singular set
of codimension at least 2. We associatargency divisor to F as follows:
Choose affine coordinates,, ..., z,) such that the hyperplane at infinity, with respect to

these, is notF-invariant, and letY = gR + Y _'_; Y,% be a vector field representirgg, where

R = Zlezi%, g(z1,...,2,) # 0 is homogeneous of degre@(F) and Y;(z1,...,z,) is a
polynomial of degree< d°(F), 1 <i < n. Let H be a generic hyperplane .. Then, the set of
points in H which are either singular points & or at which the leaves of are not transversal
to H is an algebraic set, notedng(H, F), of dimensiorm — 2 and degred®(F) (observe that

g(z1,...,2,) = 0is preciselyang (Hyo, F)).
DErFINITION. Consider a pencil of hyperplanes H = {H,}te% , With axis L"~2. The tangency
divisor of F with respect to H is

Dy = | tang(H,, F).
rePl
Lemma 2.1. Dy isa (possibly singular) hypersurface of degree d°(F) + 1.

PrOOF. Let p be a point inL"~2, the axis of the pencil. Ip € sing(F) thenp is necessarily in
Dy, otherwisep is a regular point ofF. In this case, ifC is the leaf of 7 throughp, then either
T,L C L"? or, T,L together withL"~2 determine a hyperplang, € H, and hence we have
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p € tang(H,, F) C Dy, so thatL"2 c Dy. Now, letp e L"~? be a regular point ofF and
choose a generic ling transverse td.”—2, passing througl and such thak”—2 and¢ determine a
hyperplanet,, distinct fromH, . This line¢ meetsDy; at p and atd®(F) further points, counting
multiplicities, corresponding to the intersections¢olvith tang(Hg, ). HenceDy has degree
d°(F) + 1. O
ExampLE. If we consider the two-dimensional Jouanolou’s example

§ = yd"F) _ ydP+1
y=1—yx®

and the penci{ = {(at,bt) :t € C, (a:b) € IP’}C}, a straightforward manipulation shows that
D4 Is given, in homogeneous coordinatés: Y : Z) in IP%, by

y P+ _ x 74P =,

3 F-INVARIANT SMOOTH IRREDUCIBLE VARIETIES

Let us recall some facts about polar varieties and classes (Fulton 198#1).—i|~f Pt is a smooth
irreducible algebraic subvariety &f., of dimensiom — k, andL**/=2 is a linear subspace, then
the j-th polar locus oV is defined by

P;(\V) ={q e VIdim(T,V N LF/7?) > j — 1}

for0 < j <n—k. If L¥/=2is a generic subspace, the codimensio®PglV) in V is precisely;.
The j-th classg;(V), of V is the degree oP;(V) and, since the cycle associated?g(V) is

/ fn—k—i+1 . .
[Pn)] =Y (- (" ; ' )ci<V>c1<u*0(1>>J—’
i=0

we have

d ifn—k—i+1 . n—k—i ;
0;j(\V) = /\; Z (=D i ci(V)e1(i*O(1)) , 0<j=<n—k
i=0

LEmMA 3.1. Let V beasmooth irreducible algebraic variety of dimension n — k, F-invariant and
not contained in sing (F). Then

’Pn,k(V) C DH and Po(V) =V ¢ DH.

Proor. Letus firstassum¥ is alinear subspace &f.. In this caseP; = ¢, for j > 1, so the first
assertion of the lemma is meaningless. Assumethismot a linear subspace and choose a pencil
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of hyperplanes{ = {H}cpt, with axis L"~2 generic, so that codit®,_;(V),V) = n — k. If
g € Pui(V), thenT,V meetsL.”~2in a subspac® of dimension at least—k — 1. IfT,V C L2
then any hyperplan&, € H contains TV, if not, a line¢ c T,V, ¢ ¢ L"=2, ¢ N W consisting
of a point determines, together witlf =2, a hyperpland?, € H such that TV C H,. SinceV is
F-invariant, we have J£ C T,V C H;, in casgy is not a singular point of-, where, is the leaf
of F throughg. This impliesqg € tang(H,, F) C Dy, so thatP,_,(V) C Dy. Also, it follows
from the definition ofD thatV is not contained in it. O

THEOREM 1. Let F be a one-dimensional holomor phic foliation on P7. of degree d°(F) > 2, with
singular set of codimension at least 2, and let V be an F-invariant smooth irreducible algebraic
variety, of dimension n — k, which is not a linear subspace of P}, and not contained in sing (F).
Suppose P, —i—; (V) C Dy but Py_i—;—1(V) ¢ Dy, for some0 < j <n —k — 1. Then

On—k—j (V) 0
—— < d(F 1.
On—i—j—-1(V) =P

Proor. Observe that we may assumg__; (V) C P,_x—;-1(V) and hence
Poi-j (V) € Dy N Pyg—j—1(V)
Bézout’s Theorem then gives

0n—i—;j(V) < (d°(F) + Doni—j-1(V). 0

CoroLLARY 1. Let V’(Zf‘__’dk) ¢ sing(F) be a smooth irreducible complete intersection in P,

which is not a linear subspace, defined by F; = 0,..., F, = 0 where F, € Clzo, ..., z,]
is homogeneous of degree dy, 1 < ¢ < k and F-invariant, where F is as in Theorem I. If
Pt i (V" 4)) C Dy but P ja(V ) & Dy then

.....

; W(k) (dl 1,... dk 1)

0 n—k—j 9 ’

( ) = W< ) (d -1 di — 1)
n—k—j— 1 s oeey Uk

where Wa(k) isthe Wronski (or complete symmetric) function of degree § in k variables

W (X1, ..., Xp) = Z XXk
i1t b=

Proor. Immediate since; (V{,* , ) = (d1.- - .doW(d—1.....d — D). O

Observe that itV is a smooth irreducible hypersurface, this reddgr) + 2 > 4°(V). In
(Soares 1997) we showedd(F) + 1 > d°(V), but assumedF to be a non-degenerate foliation on
P¢.
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Also, in (Soares 2000) the following estimate is obtained, providedk is odd and*F is
non-degenerate: if ¥ k <n — 2 then
dO(]_‘) Z (d1,...,

—k
On—k-1 (Vl(qdl """" a'k))

We remark that this estimate is sharper than that given in Corollary 1.

4 THETWO-DIMENSIONAL CASE

As pointed out in Corollary 1, whenever we have a smooth irredudiblevariant plane curve,
the relationd®(S) < d°(F) + 2 holds because; (S) = d°(S)(d°(S) — 1), regardless of the nature
of the singularities ofF, providedsing (F) has codimension two.

In order to treat the case of arbitrary irreducilflénvariant curves, let us recall the definition
(see R. Piene 1978) of thdass of a (possibly singular) irreducible cungin IP’(ZC. We let S,.,
denote the regular part ¢f and, for a generic poinp in P%, we consider the subs@ of S,.,
consisting of the pointg such thatp € T,S,.,. The closureP; of Q in § is the first polar locus
of S, and theclass 01(S) of S is its degree P is a subvariety of codimension 1 whose degree is
given by Teissier's formula (Teissier 1973):

01(8) = d%(S)(@°(S) =D =) (ug +my — 1)

q

where the summation is over all singular poiptsf S, 1, denotes the Milnor number ¢fatg and
m, denotes the multiplicity of atg. BecauseP; is a finite set of regular points if, revisiting
Lemma 3.1 we conclude:

PL1CDyNS.

Also, sing(S) C sing(F), so that
sing(S) S Dy NS

and hence
P1Using(S) S Dy NS.

It follows from Bézout’'s theorem that

01(8) + Y _my < (d°(F) + ()
q

Therefore we obtain the
THeoreM II. Let S be an irreducible curve, of degree d°(S) > 1, invariant by a foliation F on
P2, of degree d°(F) > 2 with sing(F) of codimension 2. Then

d°(8)(@°(S) = 1) = Y (g — D < ([@°F) + D)

q

where the summation extends over all singular points g of S. O
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This gives at once the following result, first obtained by Cerveau and Lins Neto (1991);

CoroLLAry 2. If all thesingularities of S are ordinary double points (so that ., = 1) then
d°(S) < d°(F) + 2. 0

Theorem Il illustrates one obstruction to solving Poincaré’s problem in general, since we cannot
estimate the surﬁ:q (nq—1) whendicritical singularities are present. Howeves,ig anirreducible
F-invariant algebraic curve, which is a non-dicritical separatrix, then it follows from (Brunella
1997) that

rq

D =D =D D GSV(F.BlL.g) =) 1y
q q i=1 q

where the sum is over all singular pointof S, B, ..., B{ are the analytic branches sfatg,
andG SV denotes the Gomez-Mont/Seade/Verjovsky index.

REMARK. Let S be a non-dicritical separatrix of, so that?®(S) < d°(F) + 2. Assume equality

holds in the expression in Theorem II, which amounts to

d°($)@°(S) = d°(F) =2 =) (1, — 1) = 0.
q
Hence we concludé®(S) = d°(F) + 2 andS has only ordinary double points as singularities.

5 F-INVARIANT SMOOTH IRREDUCIBLE CURVES
We have the following immediate consequence of Corollary 1: if we consideF-mvariant

smooth one-dimensional complete intersectfos VZ’d‘lfff:j()n_l)) ¢ sing(F), then

di+-+d,_1 <d°F)+n

so that

doF) +n\"
0
d-(S) < (—n — )

provided codinsing (F) > 2. In the general case we have:

COROLLARY 3. Let S & sing(F) bean F-invariant smoothirreducible curve of degreed®(S) > 1,
where F isa one-dimensional holomorphic foliation on Pf. of degree d°(F) = 2, withsingular set
of codimension at least 2. Then thefirst class 01(S) of S satisfies

01(8) < (@°(F) + 1)d°(S),

the geometric genus g of S satisfies

0 . 0
RNCLES 21>d ),
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Also, if N(F, S) isthe number of singularities of 7 along S, then

N(F,S) < (d°(F) + 1d°(S).

ProoOF. Sinces is a curve which is not a line, we have to consider @¢s) = d°(S) ando1(S).
The first inequality follows immediately from Theorem I. To bound the genus we observe that
Lefschetz’ theorem on hyperplane sections (Lamotke 1981) gives

01(S) = 2d°(S) +2g — 2

and the second inequality follows. On the other hand, shisirreducible and not contained in
sing (F), Whitney’s finiteness theorem for algebraic sets (Milnor 1968) impliesShating (F)
is connected, and hen®&(F, S) is necessarily finite. Also,

sing(F)yNnScDyNS
and Bézout's theorem implies
N(F, $) < (d°(F) + 1)d°(S). O

The first class of a smooth irreducible curvén Pf. was calculated by R. Piene (1976), and
is as follows:
01(8) = 2(d°($) + g — 1) — ko

whereg is the genus of andky > 0 is an integer, called the B ri stationary index. It follows
from Theorem I that:

CoroLLARY 4. With the same hypothesis of Corollary 3

2d°(S) — x(S) — ko < (d°(F) + 1)d°(S). O

REMARK ON EXTREMAL CURVES. We can obtain an estimate faf(S) in terms ofd®(F) and
n > 3, providedsS is non-degenerate (that is, is not contained in a hyperplanedsreinal (that
is, the genus of attains Castelnuovo’s bound). Recall that, o smooth non-degenerate curve
in P, of degree?®(S) > 2n, Castenuovo’s bound is (Arbarello et al. 1985):
-1
g =< %(n — 1) + me,
where
d°(S) —1=m@n —1) +e.
The inequality
(d°(F) — Dd°(S)
8§ = 5
together withS extremal give, performing a straightforward manipulation:

n—D(n+2)
—

+1

d%(S) <2@d°(F) - H(n—-1) +
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RESUMO

Consideramos o problema de relacionar carateres geométricos extrinsecos de uma variedade projetiva lisa e
irredutivel, que é invariante por uma folheacdo holomorfa de dimens&do um de um espaco projetivo complexo,

a objetos geométricos associados a folheacéo.

Palavras-chave: folheagcBes holomorfas, variedades invariantes, classes polares, graus.
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