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ABSTRACT

We consider the question of relating extrinsic geometric characters of a smooth irreducible complex

projective variety, which is invariant by a one-dimensional holomorphic foliation on a complex

projective space, to geometric objects associated to the foliation.
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1 INTRODUCTION

H. Poincaré treated, in (1891), the question of bounding the degree of an algebraic curve, which is

a solution of a foliationF onP
2
C

with rational first integral, in terms of the degree of the foliation.

This problem has been considered more recently in the following formulation: to bound the degree

of an irreducible algebraic curveS, invariant by a foliationF onP
2
C

, in terms of the degree of the

foliation.

Simple examples show that, whenS is a dicritical separatrix ofF , the search for a positive

solution to the problem is meaningless. The obstruction in this case was given by M. Brunella in

(1997), and reads: the number
∫
S
c1(NF )−S ·S may be negative ifS is a dicritical separatrix (here,

NF is the normal bundle of the foliation). More than that, A. Lins Neto constructs, in (2000), some

remarkable families of foliations onP2
C

providing counterexamples for this problem, all involving

singular separatrices and dicritical singularities.

However, as was shown in (Brunella 1997), whenS is a non-dicritical separatrix, the number∫
S
c1(NF )−S ·S is nonnegative and, inP2

C
, this meansd0(F)+2 ≥ d0(S), whered0(F) andd0(S)

are the degrees of the foliation and of the curve, respectively. Another solution to the problem, in

the non-dicritical case, was given by M.M. Carnicer in (1994), using resolution of singularities.

∗Member of Academia Brasileira de Ciências
E-mail: msoares@math.ufmg.br

An. Acad. Bras. Cienc., (2001)73 (4)



476 MARCIO G. SOARES

Let us now consider one-dimensional holomorphic foliations onP
n
C

, n ≥ 2, that is, morphisms

F : O(m) −→ TP
n
C

, m ∈ Z, m ≤ 1, with singular set of codimension at least 2. We write

m = 1 − d0(F) and calld0(F) ≥ 0 the degree ofF . From now on we will considerd0(F) ≥ 2.

This is the characteristic number associated to the foliation.

On the other hand, if we considerF-invariant algebraic varietiesV
i−→ P

n
C

, it is natural to

consider other characters associated toV, not just its degree. This is the point of view we address.

More precisely, we pose the question of relating extrinsic geometric characters ofV to geometric

objects associated toF .

This approach produces some interesting results. Let us illustrate the two-dimensional situ-

ation. Suppose we have anF-invariant irreducible plane curveS. We associate toF a tangency

divisorDH (depending on a pencilH), which is a curve of degreed0(F)+ 1 and contains the first

polar locus ofS. Computing degrees we arrive atd0(S) ≤ d0(F) + 2 in caseS is smooth, and at

d0(S)(d0(S) − 1) −∑
p∈sing(S)(µp − 1) ≤ (d0(F) + 1)d0(S) in caseS is singular, whereµp is

the Milnor number ofS atp. This allows us to recover a result of D. Cerveau and A. Lins Neto

(1991), which states that ifS has only nodes as singularities, thend0(S) ≤ d0(F) + 2, regardless

of the singularities ofF being dicritical or non-dicritical.

In the higher dimensional situation, we obtain relations among polar classes ofF-invariant

smooth varieties and the degree of the foliation.

2 THE TANGENCY DIVISOR OF F WITH RESPECT TO A PENCIL

Let F be a one-dimensional holomorphic foliation onP
n
C

of degreed0(F) ≥ 2, with singular set

of codimension at least 2. We associate atangency divisor to F as follows:

Choose affine coordinates(z1, . . . , zn) such that the hyperplane at infinity, with respect to

these, is notF-invariant, and letX = gR + ∑n
i=1 Yi

∂
∂zi

be a vector field representingF , where

R = ∑n
i=1 zi

∂
∂zi

, g(z1, . . . , zn) �≡ 0 is homogeneous of degreed0(F) andYi(z1, . . . , zn) is a

polynomial of degree≤ d0(F), 1 ≤ i ≤ n. LetH be a generic hyperplane inPn
C

. Then, the set of

points inH which are either singular points ofF or at which the leaves ofF are not transversal

to H is an algebraic set, notedtang(H,F), of dimensionn − 2 and degreed0(F) (observe that

g(z1, . . . , zn) = 0 is preciselytang(H∞,F)).

Definition. Consider a pencil of hyperplanes H = {Ht}t∈P1
C

, with axis Ln−2. The tangency

divisor of F with respect to H is

DH =
⋃
t∈P1

C

tang(Ht,F).

Lemma 2.1. DH is a (possibly singular) hypersurface of degree d0(F) + 1.

Proof. Let p be a point inLn−2, the axis of the pencil. Ifp ∈ sing(F) thenp is necessarily in

DH, otherwisep is a regular point ofF . In this case, ifL is the leaf ofF throughp, then either

TpL ⊂ Ln−2 or, TpL together withLn−2 determine a hyperplaneHα ∈ H, and hence we have
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p ∈ tang(Hα,F) ⊂ DH, so thatLn−2 ⊂ DH. Now, letp ∈ Ln−2 be a regular point ofF and

choose a generic line�, transverse toLn−2, passing throughp and such thatLn−2 and� determine a

hyperplaneHβ , distinct fromHα. This line� meetsDH atp and atd0(F) further points, counting

multiplicities, corresponding to the intersections of� with tang(Hβ,F). HenceDH has degree

d0(F) + 1. �

Example. If we consider the two-dimensional Jouanolou’s example

ẋ = yd0(F) − xd0(F)+1

ẏ = 1 − yxd0(F)

and the pencilH = {(at, bt) : t ∈ C , (a : b) ∈ P
1
C
}, a straightforward manipulation shows that

DH is given, in homogeneous coordinates(X : Y : Z) in P
2
C

, by

Y d0(F)+1 − XZd0(F) = 0.

3 F -INVARIANT SMOOTH IRREDUCIBLE VARIETIES

Let us recall some facts about polar varieties and classes (Fulton 1984). IfV
i−→ P

n
C

is a smooth

irreducible algebraic subvariety ofP
n
C

, of dimensionn − k, andLk+j−2 is a linear subspace, then

the j-th polar locus ofV is defined by

Pj (V) = {
q ∈ V| dim

(
TqV ∩ Lk+j−2

) ≥ j − 1
}

for 0 ≤ j ≤ n− k. If Lk+j−2 is a generic subspace, the codimension ofPj (V) in V is preciselyj .

The j-th class,#j (V), of V is the degree ofPj (V) and, since the cycle associated toPj (V) is

[Pj (V)
] =

j∑
i=0

(−1)i
(
n − k − i + 1

j − i

)
ci(V)c1(i∗O(1))j−i

we have

#j (V) =
∫

V

j∑
i=0

(−1)i
(
n − k − i + 1

j − i

)
ci(V)c1(i∗O(1))n−k−i

, 0 ≤ j ≤ n − k.

Lemma 3.1. Let V be a smooth irreducible algebraic variety of dimension n− k, F-invariant and

not contained in sing(F). Then

Pn−k(V) ⊂ DH and P0(V) = V �⊂ DH.

Proof. Let us first assumeV is a linear subspace ofP
n
C

. In this casePj = ∅, for j ≥ 1, so the first

assertion of the lemma is meaningless. Assume thenV is not a linear subspace and choose a pencil
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of hyperplanesH = {Ht}t∈P1
C

, with axisLn−2 generic, so that codim(Pn−k(V),V) = n − k. If

q ∈ Pn−k(V), then TqV meetsLn−2 in a subspaceW of dimension at leastn−k−1. If TqV ⊂ Ln−2

then any hyperplaneHt ∈ H contains TqV, if not, a line� ⊂ TqV, � �⊂ Ln−2, � ∩ W consisting

of a point determines, together withLn−2, a hyperplaneHt ∈ H such that TqV ⊂ Ht . SinceV is

F-invariant, we have TqL ⊂ TqV ⊂ Ht , in caseq is not a singular point ofF , whereL is the leaf

of F throughq. This impliesq ∈ tang(Ht,F) ⊂ DH, so thatPn−k(V) ⊂ DH. Also, it follows

from the definition ofDH thatV is not contained in it. �

Theorem I. Let F be a one-dimensional holomorphic foliation on P
n
C

of degree d0(F) ≥ 2, with

singular set of codimension at least 2, and let V be an F-invariant smooth irreducible algebraic

variety, of dimension n − k, which is not a linear subspace of P
n
C

, and not contained in sing(F).

Suppose Pn−k−j (V) ⊂ DH but Pn−k−j−1(V) �⊂ DH, for some 0 ≤ j ≤ n − k − 1. Then

#n−k−j (V)

#n−k−j−1(V)
≤ d0(F) + 1.

Proof. Observe that we may assumePn−k−j (V) ⊂ Pn−k−j−1(V) and hence

Pn−k−j (V) ⊆ DH ∩ Pn−k−j−1(V)

Bézout’s Theorem then gives

#n−k−j (V) ≤ (d0(F) + 1)#n−k−j−1(V). �

Corollary 1. Let Vn−k
(d1,...,dk)

�⊆ sing(F) be a smooth irreducible complete intersection in P
n
C

,

which is not a linear subspace, defined by F1 = 0, . . . , Fk = 0 where F� ∈ C[z0, . . . , zn]
is homogeneous of degree d�, 1 ≤ � ≤ k and F-invariant, where F is as in Theorem I. If

Pn−k−j (Vn−k
(d1,...,dk)

) ⊂ DH but Pn−k−j−1(Vn−k
(d1,...,dk)

) �⊂ DH then

d0(F) + 1 ≥ W (k)
n−k−j (d1 − 1, . . . , dk − 1)

W (k)
n−k−j−1(d1 − 1, . . . , dk − 1)

where W (k)
δ is the Wronski (or complete symmetric) function of degree δ in k variables

W (k)
δ (X1, . . . , Xk) =

∑
i1+···+ik=δ

X
i1
1 . . . X

ik
k .

Proof. Immediate since#i(Vn−k
(d1,...,dk)

) = (d1. · · · .dk)W (k)
i (d1 − 1, . . . , dk − 1). �

Observe that ifV is a smooth irreducible hypersurface, this readsd0(F) + 2 ≥ d0(V). In

(Soares 1997) we showedd0(F)+ 1 ≥ d0(V), but assumedF to be a non-degenerate foliation on

P
n
C

.
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Also, in (Soares 2000) the following estimate is obtained, providedn − k is odd andi∗F is

non-degenerate: if 1≤ k ≤ n − 2 then

d0(F) ≥ #n−k(Vn−k
(d1,...,dk)

)

#n−k−1(Vn−k
(d1,...,dk)

)

We remark that this estimate is sharper than that given in Corollary 1.

4 THE TWO-DIMENSIONAL CASE

As pointed out in Corollary 1, whenever we have a smooth irreducibleF-invariant plane curveS,

the relationd0(S) ≤ d0(F)+ 2 holds because#1(S) = d0(S)(d0(S)− 1), regardless of the nature

of the singularities ofF , providedsing(F) has codimension two.

In order to treat the case of arbitrary irreducibleF-invariant curves, let us recall the definition

(see R. Piene 1978) of theclass of a (possibly singular) irreducible curveS in P
2
C

. We letSreg

denote the regular part ofS and, for a generic pointp in P
2
C

, we consider the subsetQ of Sreg

consisting of the pointsq such thatp ∈ TqSreg. The closureP1 of Q in S is the first polar locus

of S, and theclass #1(S) of S is its degree.P1 is a subvariety of codimension 1 whose degree is

given by Teissier’s formula (Teissier 1973):

#1(S) = d0(S)(d0(S) − 1) −
∑
q

(µq + mq − 1)

where the summation is over all singular pointsq of S, µq denotes the Milnor number ofS atq and

mq denotes the multiplicity ofS at q. BecauseP1 is a finite set of regular points inS, revisiting

Lemma 3.1 we conclude:

P1 ⊆ DH ∩ S.

Also, sing(S) ⊆ sing(F), so that

sing(S) ⊆ DH ∩ S

and hence

P1 ∪ sing(S) ⊆ DH ∩ S.

It follows from Bézout’s theorem that

#1(S) +
∑
q

mq ≤ (d0(F) + 1)d0(S)

Therefore we obtain the

Theorem II. Let S be an irreducible curve, of degree d0(S) > 1, invariant by a foliation F on

P
2
C

, of degree d0(F) ≥ 2 with sing(F) of codimension 2. Then

d0(S)(d0(S) − 1) −
∑
q

(µq − 1) ≤ (d0(F) + 1)d0(S)

where the summation extends over all singular points q of S. �
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This gives at once the following result, first obtained by Cerveau and Lins Neto (1991);

Corollary 2. If all the singularities of S are ordinary double points (so that µq = 1) then

d0(S) ≤ d0(F) + 2. �

Theorem II illustrates one obstruction to solving Poincaré’s problem in general, since we cannot

estimate the sum
∑

q(µq−1)when dicritical singularities are present. However, ifS is an irreducible

F-invariant algebraic curve, which is a non-dicritical separatrix, then it follows from (Brunella

1997) that ∑
q

(µq − 1) ≤
∑
q

rq∑
i=1

GSV (F, B
q

i , q) −
∑
q

rq

where the sum is over all singular pointsq of S, Bq

1 , . . . , B
q
rq are the analytic branches ofS at q,

andGSV denotes the Gomez-Mont/Seade/Verjovsky index.

Remark. Let S be a non-dicritical separatrix ofF , so thatd0(S) ≤ d0(F) + 2. Assume equality

holds in the expression in Theorem II, which amounts to

d0(S)(d0(S) − d0(F) − 2) =
∑
q

(µq − 1) ≥ 0.

Hence we concluded0(S) = d0(F) + 2 andS has only ordinary double points as singularities.�

5 F -INVARIANT SMOOTH IRREDUCIBLE CURVES

We have the following immediate consequence of Corollary 1: if we consider anF-invariant

smooth one-dimensional complete intersectionS = Vn−(n−1)
(d1,...,d(n−1))

�⊂ sing(F), then

d1 + · · · + dn−1 ≤ d0(F) + n

so that

d0(S) ≤
(
d0(F) + n

n − 1

)n−1

provided codimsing(F) ≥ 2. In the general case we have:

Corollary 3. Let S �⊆ sing(F) be an F-invariant smooth irreducible curve of degree d0(S) > 1,

where F is a one-dimensional holomorphic foliation on P
n
C

of degree d0(F) ≥ 2, with singular set

of codimension at least 2. Then the first class #1(S) of S satisfies

#1(S) ≤ (d0(F) + 1)d0(S),

the geometric genus g of S satisfies

g ≤ (d0(F) − 1)d0(S)

2
+ 1.
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Also, if N(F, S) is the number of singularities of F along S, then

N(F, S) ≤ (d0(F) + 1)d0(S).

Proof. SinceS is a curve which is not a line, we have to consider only#0(S) = d0(S) and#1(S).

The first inequality follows immediately from Theorem I. To bound the genus we observe that

Lefschetz’ theorem on hyperplane sections (Lamotke 1981) gives

#1(S) = 2d0(S) + 2g − 2

and the second inequality follows. On the other hand, sinceS is irreducible and not contained in

sing(F), Whitney’s finiteness theorem for algebraic sets (Milnor 1968) implies thatS \ sing(F)

is connected, and henceN(F, S) is necessarily finite. Also,

sing(F) ∩ S ⊂ DH ∩ S

and Bézout’s theorem implies

N(F, S) ≤ (d0(F) + 1)d0(S). �

The first class of a smooth irreducible curveS in P
n
C

was calculated by R. Piene (1976), and

is as follows:

#1(S) = 2(d0(S) + g − 1) − κ0

whereg is the genus ofS andκ0 ≥ 0 is an integer, called the 0− th stationary index. It follows

from Theorem I that:

Corollary 4. With the same hypothesis of Corollary 3

2d0(S) − χ(S) − κ0 ≤ (d0(F) + 1)d0(S). �

Remark on Extremal Curves. We can obtain an estimate ford0(S) in terms ofd0(F) and

n ≥ 3, providedS is non-degenerate (that is, is not contained in a hyperplane) andextremal (that

is, the genus ofS attains Castelnuovo’s bound). Recall that, forS a smooth non-degenerate curve

in P
n
C

of degreed0(S) ≥ 2n, Castenuovo’s bound is (Arbarello et al. 1985):

g ≤ m(m − 1)

2
(n − 1) + mε,

where

d0(S) − 1 = m(n − 1) + ε.

The inequality

g ≤ (d0(F) − 1)d0(S)

2
+ 1

together withS extremal give, performing a straightforward manipulation:

d0(S) ≤ 2(d0(F) − 1)(n − 1) + (n − 1)(n + 2)

n
. �
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RESUMO

Consideramos o problema de relacionar carateres geométricos extrínsecos de uma variedade projetiva lisa e

irredutível, que é invariante por uma folheação holomorfa de dimensão um de um espaço projetivo complexo,

a objetos geométricos associados à folheação.

Palavras-chave: folheações holomorfas, variedades invariantes, classes polares, graus.
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