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ABSTRACT

The generator coordinate Hartree-Fock method is used to generate adapted Gaussian basis sets for the atoms

from Li (Z=3) through Xe (Z=54). In this method the Griffin-Hill-Wheeler-Hartree-Fock equations are

integrated through the integral discretization technique. The wave functions generated in this work are

compared with the widely used Roothaan-Hartree-Fock wave functions of Clementi and Roetti (1974), and

with other basis sets reported in the literature. For all atoms studied, the errors in our total energy values

relatively to the numerical Hartree-Fock limits are always less than 7.426 mhartree.
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1 INTRODUCTION

Hartree-Fock (HF) wave functions for atoms may

be computed numerically by standard methods

(Froese Fischer 1977). Algebraic approximations

to HF wave functions in which the radial orbitals

are expanded by the Roothaan procedure (Roothaan

1960) in a set of basis functions such as Slater-

type functions (STFs) or Gaussian-type functions

(GTFs), are known as Roothaan-HF wave func-

tions. Roothaan-HF wave functions are convenient

for many purposes, as indicated by the large

impact of the work of Clementi and Roetti (CR)

(1974).

An alternative to the Roothaan-HF method is

the generator coordinate HF (GCHF) method devel-

oped by Mohallem et al. (1986). In the last years,

this method has been used with success to gener-
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ate atomic and molecular wave functions (Jorge et

al. 1998, Jorge and Martins 1998, Jorge and Fantin

1999, Jorge and Franco 2000, Jorge andAboul Hosn

2001, Centoducatte et al. 2001, de Castro and Jorge

1998, Pinheiro et al. 1997a, b, da Costa et al. 1991,

Custodio et al. 1992a, b).

In this paper we present accurate adapted Gaus-

sian basis sets (AGBSs – a specific basis set for each

atom studied here) for the atoms from Li through

Xe, generated with the GCHF method (Mohallem

et al. 1986). These basis sets are appropriate to be

contracted and enriched with polarization functions

and, then, can be used in nonrelativistic molecular

calculations.

2 METHOD

The GCHF method (Mohallem et al. 1986) is based

in choosing the one-electron functions as the con-

tinuous superpositions
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�i(1) =
∫

φi(1, α)fi(α)dα ,

i = 1, . . . , n,

(1)

where n is the number of one-electron functions of

the system,φi are the generator functions (GTFs –

in our case),fi are the weight functions andα is

the generator coordinate. Using Eq. (1) to build

a Slater determinant for the multi-electronic wave

functions, and minimizing the total energy E with

respect to thefi(α), one arrives at the Griffin-Hill-

Wheeler-HF (GHWHF) equations (Mohallem et al.

1986)
∫

[F(α, β) − εiS(α, β)]fi(β)dβ = 0 ,

i = 1, . . . , n,

(2)

whereF andS are Fock and overlap kernels, re-

spectively (for more details about these kernels see

Mohallem et al. (1986)).

The GHWHF equations are integrated using

a procedure known as integral discretization (ID)

(Mohallem 1986). The ID technique is implemented

through a relabelling of the generator coordinate

space, i.e.,

� = ln
α

A
, A > 1, (3)

whereA is a scaling factor determined numerically.

In the new generator coordinate space�, an equally

spaced N-point mesh{�i} is selected, and the in-

tegration range is characterized by a starting point

�min, an increment��, and the number of dis-

cretization points N. The highest value(�max) for

the generator coordinate is given by

�max = �min + (N − 1)�� . (4)

The choice of the discretization points determines

the exponents of the GTFs.

3 RESULTS AND DISCUSSION

Self-consistent-field ground state total energy calcu-

lations are performed for the atoms from Li (Z=3)

through Xe (Z=54), using the GCHF method (Mo-

hallem et al. 1986) presented in the last section.

Throughout the calculations we used the scaling fac-

torA [see Eq. (3)] equal to 6.0. For all atoms studied

here, we searched the best discretization parameters

(�min and��) values for each s, p and d symme-

try. The AGBS exponents generated in this work for

the above atoms can be easily reproduced by using

Eqs. (3) and (4) and the discretization parameters

showed in Table I. All calculations were carried out

using a modified version of the ATOMSCF program

(Chakravorty et al. 1989). For each atom, the op-

timization process is repeated until the total energy

stabilize within ten significant figures.

Table II shows the ground state total en-

ergies (in hartree) for Li-Xe calculated by us with

the GCHF method (Mohallem et al. 1986), by CR

(1974) and Koga et al. (1993) using a fully-

optimized basis sets of STFs, and by a numerical HF

(NHF) (Bunge et al. 1992) method.

From Table II we can see that our total

energies for Li, Be, and Na-Kr are worse than the

CR (1974) results, while for the fourth-row atoms

the opposite occurs. For B, C and Ne the two ap-

proaches give the same energy values. These results

are surprising since the CR wave functions have been

regarded for a long time as having near NHF qual-

ity. It is known that STFs have the correct functional

forms to describe the nonrelativistic wave functions

of atomic species at the origin, but they are not par-

ticularly suitable for self-consistent field molecular

calculations. On the other hand, GTFs are useful in

the evaluation of multicenter integrals in molecules,

but they do not possess the correct functional be-

havior at the origin. Thus, for an atomic system, to

obtain equivalent results for any physical or chem-

ical property it is necessary to use GTFs basis set

greater in size than STFs basis set. The CR (1974)

result for Rh is wrong, because it is below the HF

limit.

Koga et al. (1993) improved the widely used

wave functions of CR (1974) by reoptimization of

the STF exponents. They used exactly the same

number and type of STFs (see the discussion about

STFs and GTFs presented in the last paragraph) as

CR. However, for Sr and Zr-Cd our energy results
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TABLE I

Discretization parameters of the adapted Gaussian basis sets (AGBSs).

Z Atom N �min(s) ��(s) �min(p) ��(p) �min(d) ��(d)

3 Li 18s –0.6330 0.1380

4 Be 18s –0.5490 0.1380

5 B 20s11p –0.4790 0.1320 –0.5290 0.1380

6 C 20s11p –0.4150 0.1320 –0.4630 0.1380

7 N 20s11p –0.3640 0.1320 –0.4110 0.1390

8 O 20s11p –0.3190 0.1320 –0.384 0.1400

9 F 20s11p –0.2810 0.1320 –0.3530 0.1410

10 Ne 20s11p –0.2460 0.1320 –0.3200 0.1410

11 Na 18s11p –0.6000 0.1521 –0.2507 0.1390

12 Mg 18s11p –0.5475 0.1506 –0.2021 0.1370

13 Al 18s11p –0.4858 0.1485 –0.5459 0.1420

14 Si 18s11p –0.4338 0.1470 –0.4917 0.1400

15 P 18s11p –0.3915 0.1460 –0.4459 0.1390

16 S 18s11p –0.3545 0.1415 –0.4247 0.1380

17 Cl 18s11p –0.3228 0.1446 –0.4004 0.1380

18 Ar 18s11p –0.2929 0.1440 –0.3719 0.1370

19 K 20s13p –0.6523 0.1479 –0.3108 0.1350

20 Ca 21s13p –0.5902 0.1422 –0.2678 0.1340

21 Sc 20s13p10d –0.5696 0.1456 –0.2430 0.1334 –0.4499 0.1390

22 Ti 20s13p10d –0.5546 0.1456 –0.2209 0.1331 –0.4072 0.1370

23 V 20s13p10d –0.5416 0.1456 –0.2017 0.1326 –0.3788 0.1370

24 Cr 20s13p10d –0.5250 0.1455 –0.1958 0.1330 –0.4119 0.1400

25 Mn 20s13p10d –0.5194 0.1455 –0.1639 0.1322 –0.3354 0.1360

26 Fe 20s13p10d –0.5075 0.1454 –0.1501 0.1320 –0.3232 0.1360

27 Co 20s13p10d –0.4996 0.1452 –0.1357 0.1316 –0.3128 0.1370

28 Ni 20s13p10d –0.4916 0.1450 –0.1202 0.1315 –0.2998 0.1370

29 Cu 20s13p10d –0.5162 0.1456 –0.1198 0.1316 –0.3340 0.1400

30 Zn 20s13p10d –0.4900 0.1449 –0.0930 0.1312 –0.2720 0.1370

31 Ga 22s14p10d –0.4594 0.1366 –0.4757 0.1430 –0.2241 0.1340

32 Ge 22s14p9d –0.4244 0.1357 –0.4410 0.1417 –0.1630 0.1400

33 As 22s14p9d –0.3843 0.1350 –0.4078 0.1404 –0.1297 0.1380

34 Se 22s14p9d –0.3493 0.1344 –0.3927 0.1401 –0.1025 0.1370

35 Br 22s14p9d –0.3250 0.1345 –0.3724 0.1396 –0.0784 0.1360

36 Kr 22s14p9d –0.3016 0.1341 –0.3513 0.1390 –0.0571 0.1350

37 Rb 22s16p11d –0.6080 0.1431 –0.3316 0.1282 –0.0728 0.1220

38 Sr 23s16p11d –0.5827 0.1390 –0.3009 0.1270 –0.0454 0.1212

39 Y 24s16p12d –0.5839 0.1341 –0.2788 0.1262 –0.4176 0.1350

40 Zr 24s16p13d –0.5694 0.1336 –0.2608 0.1256 –0.4090 0.1280

41 Nb 23s16p13d –0.5266 0.1375 –0.2483 0.1253 –0.4290 0.1290

42 Mo 23s16p13d –0.5141 0.1373 –0.2338 0.1250 –0.4037 0.1280

43 Tc 23s16p13d –0.5578 0.1281 –0.2111 0.1242 –0.3463 0.1262

44 Ru 25s16p13d –0.5429 0.1300 –0.2034 0.1242 –0.3733 0.1274

45 Rh 25s17p14d –0.5280 0.1300 –0.2140 0.1270 –0.4200 0.1270

46 Pd 24s17p13d –0.1484 0.1240 –0.1961 0.1200 –0.3873 0.1280

47 Ag 25s17p13d –0.5440 0.1307 –0.1713 0.1195 –0.3268 0.1250

AABC 73 4 2

An. Acad. Bras. Cienc., (2001)73 (4)



514 EUSTÁQUIO V. R. DE CASTRO AND FRANCISCO E. JORGE

TABLE I (continuation)

Z Atom N �min(s) ��(s) �min(p) ��(p) �min(d) ��(d)

48 Cd 25s16p14d –0.5229 0.1301 –0.1458 0.1226 –0.3289 0.1200

49 In 25s17p14d –0.4687 0.1287 –0.4859 0.1307 –0.2702 0.1170

50 Sn 25s18p13d –0.4284 0.1281 –0.4785 0.1260 –0.2255 0.1210

51 Sb 25s18p13d –0.4040 0.1280 –0.4521 0.1251 –0.2074 0.1206

52 Te 24s18p13d –0.3825 0.1302 –0.4431 0.1248 –0.1873 0.1200

53 I 25s18p13d –0.3668 0.1270 –0.4238 0.1241 –0.1733 0.1192

54 Xe 26s18p13d –0.3479 0.1237 –0.4103 0.1236 –0.1554 0.1190

are better than those obtained by them (see Table II).

Clearly, greater number of STFs are needed to im-

prove the wave function (Koga et al. 1993) accuracy

for Sr and Zr-Cd.

In summary, the AGBSs generated in this work

are appropriate to be used in nonrelativistic atomic

and molecular calculations of physical and chem-

ical properties. An application of these basis sets

in HF calculations of some properties of third- and

fourth-row diatomic molecules is in progress. We

recall thatAGBSs generated with the GCHF method

(Mohallem et al. 1986) were used with success to

calculate various properties of first- and second-row

diatomic molecules (Pinheiro et al. 1997a, b).

For the atoms from Li toAr, the error in our total

energies is not more than 1 mhartree. For the third-

and fourth-row atoms the error is always larger than

1 mhartree (see Table II). The largest error (7.426

mhartree) occurs for In.

4 CONCLUSIONS

The present work shows that a specific and careful

numerical evaluation of the GHWHF equations for

each of those atoms studied here, is capable of gen-

erating accurateAGBSs to be used in HF atomic and

molecular calculations.

When we compare our ground state total en-

ergies with the benchmark results obtained by CR

(1974), who used fully-optimized basis sets of STFs,

we find that the results for first-, second- ant third-

row atoms are in general worse, while those for

fourth-row atoms are better than theirs. Besides

this, the largest difference between our energy re-

sults and the corresponding values computed with a

NHF method (Bunge et al. 1992) is equal to 7.426

mhartree for In.
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RESUMO

Utiliza-se o método coordenada geradora Hartree-Fock

para gerar bases Gaussianas adaptadas para os átomos

de Li (Z=3) até Xe (Z=54). Neste método, integram-se

as equações de Griffin-Hill-Wheeler-Hartree-Fock através

da técnica de discretização integral. Comparam-se as

funções de ondas geradas neste trabalho com as funções

de ondas Roothaan-Hartree-Fock de Clementi e Roetti

(1974) e com outros conjuntos de bases relatados na lite-

ratura. Para os átomos estudados aqui, os erros em nossas

energias totais relativos aos limites numéricos Hartree-

Fock são sempre menores que 7,426 milihartree.

Palavras-chave: método coordenada geradora Hartree-

Fock, conjuntos de bases de Gaussianas, energias totais

atômicas.
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TABLE II

Ground state HF total energies in hartree (sign reversed) for the atoms from Li (Z=3) through
Xe (Z=54).

Z Atom State AGBS AGBSa STFs Clementi- Koga et al.e NHFd

Size number Roettib

3 Li 2S 18s 7.432723753 6s 7.4327257 7.4327258 7.432726927

4 Be 1S 18s 14.57301688 6s 14.573021 14.573021 14.57302316

5 B 2P 20s11p 24.52905706 6s4p 24.529057 24.529058 24.52906072

6 C 3P 20s11p 37.68861213 6s4p 37.688612 37.688616 37.68861895

7 N 4S 20s11p 54.40092241 6s4p 54.400924 54.400931 54.40093419

8 O 3P 20s11p 74.80937867 6s4p 74.809370 74.809395 74.80939845

9 F 2P 20s11p 99.40931821 6s4p 99.409300 99.409344 99.40934933

10 Ne 1S 20s11p 128.5470516 6s4p 128.54705 128.54709 128.5470980

11 Na 2S 18s11p 161.8585712 8s5p 161.85890 161.85891 161.8589116

12 Mg 1S 18s11p 199.6142530 8s5p 199.61461 199.61463 199.6146363

13 Al 2P 18s13p 241.8762264 8s8p 241.87668 241.87670 241.8767072

14 Si 3P 18s13p 288.8538207 8s8p 288.85431 288.85436 288.8543624

15 P 4S 18s13p 340.7181628 8s8p 340.71869 340.71877 340.7187808

16 S 3P 18s13p 397.5041636 8s8p 397.50485 397.50489 397.5048958

17 Cl 2P 18s13p 459.4812242 8s8p 459.48187 459.48207 459.4820721

18 Ar 1S 18s13p 526.8165421 8s8p 526.81739 526.81751 526.8175126

19 K 2S 20s13p 599.1634498 11s6p 599.16453 599.16470 599.1647865

20 Ca 1S 21s13p 676.7572344 11s6p 676.75803 676.75810 676.7581857

21 Sc 2D 20s13p10d 759.7341836 11s6p5d 759.73552 759.73563 759.7357178

22 Ti 3F 20s13p10d 848.4042367 11s6p5d 848.40575 848.40592 848.4059967

23 V 4F 20s13p10d 942.8823196 11s6p5d 942.88420 942.88426 942.8843374

24 Cr 7S 20s13p10d 1043.353979 11s6p5d 1043.3552 1043.3563 1043.356376

25 Mn 6S 20s13p10d 1149.863619 11s6p5d 1149.8657 1149.8662 1149.866251

26 Fe 5D 20s13p10d 1262.440683 11s6p5d 1262.4432 1262.4436 1262.443665

27 Co 4F 20s13p10d 1381.411190 11s6p5d 1381.4142 1381.4145 1381.414553

28 Ni 3F 20s13p10d 1506.867139 11s6p5d 1506.8705 1506.8709 1506.870908

29 Cu 2S 20s13p10d 1638.959169 11s6p5d 1638.9628 1638.9637 1638.963742

30 Zn 1S 20s13p10d 1777.843481 11s6p5d 1777.8477 1777.8481 1777.848116

31 Ga 2P 22s14p10d 1923.255079 10s9p5d 1923.2604 1923.2609 1923.261009

32 Ge 3P 22s14p9d 2075.353405 10s9p5d 2075.3591 2075.3597 2075.359733

33 As 4S 22s14p9d 2234.232429 10s9p5d 2234.2382 2234.2386 2234.238654

34 Se 3P 22s14p9d 2399.861092 10s9p5d 2399.8658 2399.8676 2399.867611

35 Br 2P 22s14p9d 2572.434622 10s9p5d 2572.4408 2572.4413 2572.441332

36 Kr 1S 22s14p9d 2752.048102 10s9p5d 2752.0546 2752.0549 2752.054977

37 Rb 2S 22s16p11d 2938.352546 11s7p3d 2938.3470 2938.3531 2938.357453

38 Sr 1S 23s16p11d 3131.542302 11s7p3d 3131.5379 3131.5417 3131.545686

39 Y 2D 24s16p12d 3331.680503 11s7p5d 3331.6712 3331.6807 3331.684169

40 Zr 3F 24s16p13d 3538.992004 11s7p5d 3538.9821 3538.9914 3538.995064

41 Nb 6D 23s16p13d 3753.593465 11s7p5d 3753.5845 3753.5917 3753.597727

42 Mo 7S 23s16p13d 3975.545002 11s7p5d 3975.5338 3975.5430 3975.549499

43 Tc 6S 26s16p13d 4204.786484 11s7p5d 4204.7753 4204.7839 4204.788736

44 Ru 5F 25s16p13d 4441.536271 11s7p5d 4441.5264 4441.5310 4441.539487
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TABLE II (continuation)

Z Atom State AGBS AGBSa STFs Clementi- Koga et al.e NHFd

Size number Roettib

45 Rh 4F 25s17p14d 4685.878637 11s7p5d (4685.8833) 4685.8726 4685.881703

46 Pd 1S 24s17p13d 4937.918470 9s7p5d 4937.9071 4937.9091 4937.921023

47 Ag 2S 25s17p13d 5197.695075 11s7p5d 5197.6852 5197.6890 5197.698472

48 Cd 1S 25s16p14d 5465.129785 11s7p5d 5465.0722 5465.1253 5465.133141

49 In 2P 25s17p14d 5740.161728 11s9p5d 5740.1570 5740.1638 5740.169154

50 Sn 3P 25s18p13d 6022.926898 11s9p5d 6022.9220 6022.9271 6022.931694

51 Sb 4S 25s18p13d 6313.480742 11s9p5d 6313.4755 6313.4813 6313.485319

52 Te 3P 24s18p13d 6611.778554 11s9p5d 6611.7748 6611.7803 6611.784058

53 I 2P 25s18p13d 6917.976264 11s9p5d 6917.9727 6917.9773 6917.980895

54 Xe 1S 26s18p13d 7232.134224 11s9p5d 7232.1302 7232.1350 7232.138363

aHF total energies obtained by using our adapted Gaussian basis sets (AGBSs).bHF total energies

obtained by using fully-optimized STFs basis sets (Clementi and Roetti 1974).cHF total energies

obtained by using fully-optimized STFs basis sets (Koga et al. 1993).dNumerical HF (NHF) total

energies for Li to Xe obtained by Bunge et al. (1992).
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