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ABSTRACT

We present a revised definition of a Ribaucour transformation for submanifolds of space forms,
with flat normal bundle, motivated by the classical definition and by more recent extensions.
The new definition provides a precise treatment of the geometric aspect of such transformations
preserving lines of curvature and it can be applied to submanifolds whose principal curvatures
have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining
linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples
are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The
examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean
space.

Key words: Ribaucour transformations, linear Weingarten surfaces, minimal surfaces, constant
mean curvature.

1 INTRODUCTION

This is an expository article which presents a new definition of a Ribaucour transformation and
includes some of its applications. The revised definition was introduced in (Corro and Tenenblat
2002), motivated by a discussion of the classical definition of a Ribaucour transformation for
hypersurfaces and some more recent extensions to submanifolds with higher codimension and flat
normal bundle (Corro 1997, Dajczer and Tojeiro 2002). The new definition provides a precise
treatment of the geometric aspect of such transformations preserving lines of curvature and it also
extends Ribaucour transformations to submanifolds whose principal curvatures have multiplicity
bigger than one.
Ribaucour transformations have a wide range of applications. In this paper, we will restrict

ourselves mainly to the results obtained in (Corro et al. 2000, 2001). We will show how Ribaucour
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560 KETI TENENBLAT

transformations can be applied as a method of constructing linear Weingarten surfaces contained in
R3, in particular minimal and constant mean curvature (cmc) surfaces, from a given such surface.
The transformation for minimal surfaces is related to producing embedded planar ends.

The method, when applied to the cylinder, produces comphkagbble cmc and linear Wein-
garten surfaces. Moreover, it provides an unnexpected result. Namely, the existence of complete
hyperbolic linear Weingarten surfaces immersedin It is well known, by Hilbert’s theorem,
that there are no complete surfaces of constant negative curvature immerSedithough such
surfaces and hyperbolic linear Weingarten surfaces correspond to solutions of the sine-Gordon
equation, the examples constructed in (Corro et al. 2001) show that there exist infinitely many
complete hyperbolic linear Weingarten surface®

2 RIBAUCOUR TRANSFORMATION

The classical Ribaucour transformation relates diffeomorphic surfdcasd M of R3 such that

at corresponding points the normal lines intersect at an equidistant point. Moreover, the set of
intersection points is also required to describe a surfad® @ind the diffeomorphism to preserve

the lines of curvature. The classical theory includes the case of hypersurfaces parametrized by lines
of curvature, where the principal curvatures of both hypersurfaces have multiplicity one, although
this is not stated clearly.

The extension to submanifolds of higher codimension is quite recent. One of the difficulties
relies on extending the condition on the intersection of the normal lines. The first attempt was
given in (Tojeiro 1991). In (Corro 1997) and (Dajczer and Tojeiro 2002), two distinct extensions
were given for submanifolds, with flat normal bundle, parametrized by lines of curvature.

DEerINITION 2.1 (Corro 1997). Two manifoldsy” andM", contained inR"*2, with flat normal

bundle and parametrized by lines of curvature, are said to be related by a Ribaucour transformation
if there exist a diffeomorphisni : M — M, which preserves lines of curvature, a differentiable
function : M — R and unit normal vector fieldd, N, parallel in the normal connection f

and M, respectively, such thaty € M, g + h(¢)N(g) = ¥ (q) + h(g)N (¥ (q)) and the subset

q + h(g)N(g) is n-dimensional.

DEFINITION 2.2 (DAJczER AND ToJEIRO 2002). Two holonomic isometric immersioyis: M" —

R™P andf : M" — R"P are said to be related by a Ribaucour transformation when there exist a
curvature-lines-preserving diffeomorfigm: M — M with | f — f o y/| # 0 everywhere, a vector
bundle isometry? : T/ M — TfLM coveringy, and a vector field e T;-M that is nowhere a
principal curvature normal of, such that) P(§) — & =< &,¢ > (f — foy) forall & € TfLM;
andb) P is parallel, i.e.P commutes with the normal connection.

The first definition is quite simple compared to the second one. The definition of (Tojeiro
1991) ommits from Definition 2.2 the requirement of a vector fielghich is nowhere a principal
curvature normal of the immersion. We also mention that Definition 2.2, proposed by Dajczer
and Tojeiro, was used in (Brick et al. 2002). Before we relate these two definitions, we discuss
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APPLICATIONS TO LINEAR WEINGARTEN SURFACES 561

some basic geometric aspects which motivated the new definition. We start by observing that the
definitions above require a Ribaucour transformation to preserve all lines of curvature. This is one
of the basic problems that will treated.

We first mention that, even in the case of surface®inone has to fix a surface and then
consider those associated to the given surface by Ribaucour tranformations (instead of considering
two surfaces associated by the transformation). An easy example illustrates this observation.
Consider inR? the following segmentsi1, 0, ¢), (1 +¢,0,¢) and (1 + ¢, 0, 0), wherer > O.

By rotating the segments arround theaxis one gets a half cylinder, a truncated cone and the
complement of a unit disc in the;, x, plane. Lety be the diffeomorphism that to each point

of the cylinder(cos#, sing, 1) it associates the poiritl + ¢) coss, (1 + ) sing, 0) on the plane.

Then the truncated cone is the set of intersection of the normal lineg gmmdserves the lines of
curvature. However, one cannot say that the cylinder is associated to the planar region, since not
all lines of curvature of the plane correspond to such curves on the cylinder.

PRESERVING LINES OF CURVATURE

Itis generally accepted that Ribaucour transformations preserve lines of curvature. In the classical
theory and in both (Corro 1997) and (Dajczer and Tojeiro 2002), the definition is characterized
essencially by the same integrable system of differential equations, whose solutions provide im-
mersions locally associated by Ribaucour transformations to a given immersion. However, one can
show (see Corollary 2.10 and also Corro et al. 1999) that this procedure does not always preserve
multiplicity of principal curvatures. In such cases, the requiremetit pfeserving all lines of cur-
vature does not hold. This is due to the fact that the system of differential equations is a necessary
condition for the existence of immersions associated to a given one by Ribaucour transformations,
but it is not sufficient. Indeed one can show that given any hypersubfdaef R"*+*, which admits
n orthonormal principal direction vector fields, there exists a solution to the system of differential
equations so that the associated hypersurface is an open subset of a hyperplane or a sphere (se
Corollary 2.10).

In the new definition, the requirement of preserving lines of curvature is replaced by the re-
quirement of preserving the lines of curvature corresponding to a fixed setrtifonormal vector
fields of principal directions. In that case, the system of equations (which appear in [Corro 1997,
Corro et al. 1999, Dajczer and Tojeiro 2002]) is indeed equivalent to the definition. Moreover, for
submanifolds which admit principal curvatures with multiplicity bigger than one, in any dimen-
sion or codimension, the choice of distinct set of orthonormal principal directions may provide,
by solving the system of equations, distinct families of submanifolds associated by Ribaucour
transformations (see Remark 2.11).

HoLoNoMIC SUBMANIFOLDS

The classical theory and Definitions 2.1 and 2.2 require the submanifolds to be holonomic. (i.e.
they admit a global parametrization by lines of curvature). However, by considering distinct such
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parametrizations (for hypersurfaces with admit principal curvatures with multiplicity bigger than
one) one may obtain different associated submanifolds (see Remark 2.11). The nonholonomic
case was considered in (Dajczer and Tojeiro 2001), with the same problem with respect to the
transformation preserving all lines of curvature.

The new definition does not require the manifold to be holonomic. However, it requires
the existence ofi orthomormal vector fields of principal directions globally defined, which will
be preserved by the transformation. If the submanifold is parametrized by orthogonal lines of
curvature, then the vector fields tangent to the coordinate curves are considered to be the principal
directions that will be preserved. We observe thatxfer 3 the choice of a set of orthonormal
vector fields of principal directions does not imply the existence of a local parametrization such
that the coordinate curves are tangent to these vector fields, nor that the submanifold is holonomic.

EXTENDING THE CONDITION ON THE INTERSECTION OF THE NORMAL LINES

Assuming that the submanifolds have flat normal bundle, while Definition 2.1 requires the existence
of a unit vector field normal to each submanifold such that the corresponding lines intersect at an
equidistant point, Definition 2.2 requires the existence of an isometry of the normal bundles such
that the corresponding normal lines are parallel or intersect at an equidistant point.

The new definition requires the existence of a vector field normal to each submanifold such
that at corresponding points the lines in these normal directions intersect at an equidistant point.
It can be shown that this condition implies the existence of a correspondence between the normal
bundles (resp. tangent bundles) such that the lines at corresponding normal (resp. tangent) vectors
are parallel or intersect at an equidistant point. Moreover, the correspondence between the normal
bundles can be chosen so that it is an isometry wich commutes with the normal connection.

THE SET OF EQUIDISTANT POINTS

The classical definitions and Definition 2.1 requires that the set of the intersections of the normal
lines is anm-dimensional submanifold. The existence of a normal vector field, which is nowhere
a principal curvature normal to the immersion in Definition 2.2, is equivalent to requiring the
existence of a normal vector field for which the set of intersections of the corresponding normal
lines is arm dimensional submanifold.

In view of the aspects mentioned above, the revised definition is as follows:

DEFINITION 2.3 (CorrO AND TENENBLAT 2002). LetM” be a submanifold oR"*”? with flat
normal bundle. Assume there exést ..., e, orthonormal principal vector fields defined #fi A
submanifoldd”™ c R"*7, with flat normal bundle, isssociated to M by a Ribaucour transfor-
mation with respect to eu, ..., e, if there exist a diffeomorphisny : M — M, a differentiable
function : M — R and unit normal vector field¥ andN, parallel in the normal connection of
M andM respectively, such that:

a) ¢ +h(@)N(q) = ¥(q) +h(@)Ny(q), Vg € M;
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b) the subsed + h(g)N(g), g € M is n-dimensional,

c) dy (e;) are orthogonal principal directions .

This transformation is invertible in the sense that there exist principal direction vector fields
é1, ..., &, on M such thatV is associated tdf by a Ribaucour transformation with respect to these
vector fields. One may consider the analogue local definition.

DEFINITION 2.4. LetM" be a submanifold oR"*? with flat normal bundle. Assume there exist
e1, ..., e, orthonormal principal vector fields globally defined &h A submanifold M" islocally
associated to M by Ribaucour transformations with respect to e, ..., ¢, if for any § € M there
exists a neighborhood of ¢ in M and an open subsgt C M such thatV is associated t& by a
Ribaucour transformation with respectdg ..., e,.

Similar definitions can be considered for immersion®i” and also for submanifolds and
immersions in the sphet®*? or the hyperbolic spacE”*?. In the latter cases one should replace
the straight lines of conditions a) and b) by geodesics of the ambient space.

The above definition reduces to the classical case of surfack$ im hypersurfaces iR”,
parametrized by lines of curvature, whenever the principal curvatures of the associated submanifolds
have multiplicity one. Moreover, it is equivalent to the system of differential equations which
appeared in the papers mentioned previously.

The requirement ofy being a diffeomorphism implies that both manifolds are topologically
equivalent. In general this is a very strong condition. Many interesting applications of this method
(see section 3) show that in general one has immersions locally associated by Ribaucour transfor-
mations to a given one, even when both manifolds are complete. Moreover, the integrability of the
corresponding system of differential equations imposes one to consider solutions on the universal
covering of the given immmersion.

In what follows we consider a submanifold” of R"*?, with flat normal bundle. Let;,

1 < i < n, be orthonormal principal vector fields @#i and letN,, 1 < « < p be a an orthonormal
frame normal taVf parallel in the normal connection. We denotedyythe one forms dual to the
vector fields; and byw;;, 1 < i, j < n the connection forms determined&y; =, »; Awj;
andw;; + wj; = 0 and the normal connectian, =< de;, N, >. Sincee; are principal directions,
we haved N, (e;) = A¥e¢;, i.e. wi, = —A%w;. Details and proofs for the results in the remaining
of this section can be found in (Corro and Tenenblat 2002).

THEOREM 2.5. Let M" be an immersed submanifold of R"*?, whose normal bundle is flat and
let ¢;, 1 < i < n be orthonormal principal vector fields defined on M. A submanifold M is
locally associated to M by a Ribaucour transformation with respect to the set ¢;, if and only if,
for any § € M there exist parametrizations X : U ¢ R — M and X : U — M such that
G € X(U), a differentiable function 2 : U — R, a p x p matrix function B defined on U and
parallel orthonormal vector fields N,, 1 < @ < p, normal to X (U) such that

X = X + h(Ny — Ny), 1)
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where N isa unit vector field normal to X (U) given by

n P
Ny = (1-B")> Z'e+) BYN,, 2)
i=1 y
. dh(e) N2
7! = ——~ A = YA 3
1+ hadi : (Z) ®)

dNy(e;) = A%e;, h and B satisfy the differential equations

dZ/(e) + Y Z'oj(e) — 222" =0, 1<i#j<n, (4)
k=1

BB'+ ADD' =1, (5)

dB(e;)B' — BdB'(e;) + A[dD(e;)D' — DdD'(e;)]| + 2Z'[BA'D' — D(A)'B'1=0  (6)
where
D'=@—-BY —B? . —BPY  (ADH =Y, AP,

In the theorem above, the associated parametrized marifaldpends on a functioh and
a matrix B satisfying the differential equations (5) and (6). However, the expressions of the
parametrizatiorX given by (1) and its normal vector field, depend only on the first row of matrix
B. The other rows oB are related to fixing the unit vector fiela}:S,, normal toX, for y > 2.

If M is associated td/ as in Definition 2.3, then one can show that for each ppietM and
any unit vector normal (resp. tangent)¥at g, there exists a unit vector, normal (resp. tangent)
to M at a corresponding poingt, such that the lines in these directions are parallel or intersect at
an equidistant point. One can also prove that there exists a niatwhich satisfies (5) and (6),
such that the correspondence between the normal bundles is an isometry which commutes with the
normal connections (hence it satisfies the conditions of the Definition 2.2).

One can linearize the problem of obtaining the funciioby consideringt = Q/W; and;
defined byQ’ = dQ(e;). With this notation, equation (4) is equivalent to a linear system given in
the following result.

ProrosiTION 2.6. A function/ is a solution of (4) defined on a simply connected domain, if and
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only if, h = /W1 whereW; is a nonvanishing function ar@, Q', W, satisfy

dQ(e;) = Y Qoule;), fori# j, (7
k=1
dQ et Zini, (8)
i=1
dwy = =) Q3w 9)
i=1

ProposITION 2.7. Equation (7) istheintegrability condition for (8) and (9). Moreover, (7) implies
that there exist functions W,,, 2 < y < p, defined on a ssmply connected domain such that

dw, = —ZQikyia)[, 2<y <p. (20)

1

ProrosiTION 2.8. Equations (7)-(10) are the integrability conditions, for the system of equations
(5) and (6) for B. Moreover, for a given solution of (7)-(10) the matrix function

W, W
B = 8,5 — 2 Sﬂ, 1<a,B=p. (11)
where
n . p
S =D (@24 (W,)2 (12)
j=1 y=1

isa solution of (6).
As a consequence of Proposition 2.8, Theorem 2.5 can be rewritten as follows.

THEOREM 2.9. Let M" bean immersed submanifold of R"*7, with flat normal bundle parametrized
byX :U C R" - M. Assumee;, 1 <i < n arethe principal directions, N,,1 <y < p,is
a parallel orthonormal basis of the normal bundle of X (U) and A*' the corresponding principal
curvatures. A submanifold M" is locally associated to M by a Ribaucour transformation with
respect to e;, if and only if, for each § € M, there exist differentiable functions W,,Q,Q :VC
U — R, defined on a simply connected domain V, which satisfy (7)-(10), such that, for some
l<ac<p

WoS(Wy +24Q)(S — QT #£0, 1<i<n,.

where, S is defined by (12),

p
TV =2dQ(e) + Zﬂkwki(ei) — Z Wy)‘yi )
k y=1
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and X : V C R" — M, isaparametrization of a neighborhood of § in M given by

n p
)?:X—Z?Q > Qe = > W,N,

i=1 y=1

From now on, whenever we say that a submanifdlds locally associated by a Ribaucour
transformation ta with respect t@;, we are assuming that are orthonormal principal direction
vector fields onM and there are function®’, 2 and W,,, locally defined, satisfying the system
(7)-(10).

The following result states that arrxdimensional sphere or a hyperplane can be locally as-
sociated by a Ribaucour transformation to any given hypersufeice- R", which admitsn
orthonormal principal direction vector fields.

COROLLARY 2.10. Let M" beahypersurfaceof R”*1, that admitsn orthonormal principal direction
vector fields ¢;. The system of equations (7)-(9) with the additional algebraic condition

S = boQ2 + b1 W,

where S isdefined by (12), isintegrable for any real constants by and b, # 0. Moreover, any point
of the locally associated hypersurface M is umbilic, with principal curvatures equal to bg/b;.
Hence M is an open subset of a sphere (resp. hyperplane) if by # 0 (resp. bo = 0).

This corollary shows that the system of equations (7)-(9) does not preserve multiplicity of
principal curvatures. This fact had already been observed in (Corro et al. 1999).

We conclude this section with a remark which shows the effect of choosing distinct sets of
orthonormal principal directions (or distinct parametrizations by lines of curvatures), when one
applies Ribaucour transformations.

REMARK 2.11. Whenever the multiplicity of the principal curvaturesifis bigger than one,
the submanifold$/ associated by a Ribaucour transformatiod4anay differ depending on the
choice of the set of principal directions.

In fact, if we consider the parametrizatiof(u, uz) = (u1, up, 0) of an open subsdl of
the plane inR® ande; = X,,, i = 1, 2, to be the unit tangent vectors, then the family of Dupin
parametrized surface¥, locally associated t& by a Ribaucour transformation with respect to
e; does not contain a parametrization of a torus. However, if we consider the open subset of the
plane parametrized ¥ (u1, us) = (11 C0OSu, ugSinus, 0), 0 < u; < 00, 0 < up < 27. and the
principal directions; = X,, ande; = X,,/u1, then one can show that an open subset of a torus
is locally associated to the plane by a Ribaucour transformation.

3 APPLICATIONSTO LINEAR WEINGARTEN SURFACES

We start mentioning a few facts about linear Weingarten surfaces. These are surfaces whose
mean curvaturé! and Gaussian curvatufé satisfy a linear relatioe + SH + y K = 0, where
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a, B, y are real numbers. A linear Weingarten surface is said thyperbolic ( resp. dliptic)

when A := g% —4ay < 0 (resp. A > 0). The relationA = 0 characterizes the tubular
surfaces. In particular, surfaces of constant negative Gaussian curvature are hyperbolic, while
surfaces of constant mean curvature (including minimal) and constant positive curvature are elliptic.
Hyperbolic (resp. elliptic) linear Weingarten surfaces correspond to solutions of the sine-Gordon
equation (resp. elliptic sinh, cosh-Gordon equation) (see for example Tenenblat 1998).

Ribaucour transformations for constant Gaussian curvature and constant mean curvature (in-
cluding minimal surfaces), were known since the beginning of last century (Bianchi 1927). How-
ever, they were applied for the first time to obtain minimal surfaces in (Corro et al. 2000). More
recently, in (Corro et al. 2001), the method was extended to linear Weingarten surfaces, providing
a unified version of the classical results.

We observe that linear Weingarten surfaces are locally parallel to surfaces of constant Gaussian
curvature or to minimal surfaces. However, the Ribaucour transformations for these surfaces cannot
be applied to produce complete linear Weingarten surfaces, since these parallel constructions in
general produce curves of singularities.

THEOREM 3.1. Let M bearegular surface of R3, which admits orthonormal principal vector fields
e1, e2. Let M bea regular surface associated to M by a Ribaucour transformation with respect to
e;, such that the function % is not constant along the lines of curvature. Assume that the solutions
Q;, Qand W of (7)-(9) satisfy the additional relation

S =2c(aQ® + QW + yW?), (13)

where S is defined by (12), ¢ # 0 and «, 8, y arereal constants. Then M is a linear Weingarten
satisfyinga + BH + yK = 0, ifand only if « + BH + y K = 0 holds for the surface M, where
K, H and K, H are the Gaussian and mean curvatures of M and M respectively. Moreover, M
has no umbilic points, if and only if, M has no umbilic points.

One can show that (7)-(9) with the additional condition (13) is integrable, whenever we start
with a linear Weingarten surface. The solution is uniquely determined on a simply connected
domainU, by any given initial condition satisfying (13). Moreover, whenavet 0, any solution
of the system defined ot is either identically zero and hence anihilatesr else the functiors
does not vanish oty.

If M is alinear Weingarten surface locally parametrize&byU c R? — M C R3,then any
linear Weingarten parametrized surfaelocally associated t& by a Ribaucour transformation
as above, is regular on

U = {(u1,up) € U; T?>+2T QH + Q°K # 0}

whereT = aQ? — yW?andQ = 2y QW + Q2.
Special cases of the above results include the minimal surfaces and the cmc surfaces. The
cmc surfaces are obtained by considerings —H # 0, 8 = 1, y = 0 and hence the algebraic
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condition (13) reduces t8 = 2¢Q2 (— HQ2 + W), wherec satisfies the relation(c — 2H) > 0. For
any nontrivial solution of the system (7)-(9) and (13), defined on a simply connected domain
the functionsS does not vanish. Hence, X : U ¢ R> — R?is a cmc suface, then a cmc surface
X associated t& by Ribaucour transformation is regular on open subsets,afhereX has no
umbilic points.

The case of the minimal surfaces is obtained by consideriag0, 8 = 1, andy = 0 and the
algebraic condition reduces = 2¢QW. One can show that the Ribaucour transfomations for
minimal surfaces are related to producing embedded planar ends for the new associated minimal
surfaces. In fact such ends are produced by the isolated zespswiere2 does not vanish.

The reader is referred to (Corro et al. 2000, 2001) for proofs and details in the case of the
minimal surfaces, linear Weingarten and cmc surfaces. In what follows, we first describe the
families of minimal surfaces associated to Enneper surface and to the catenoid. Then the family of
linear Weingarten surfaces associated by a Ribaucour transformation to the cylinder is discussed.

ProposiTION 3.2. Consider Enneper’s surface parametrized by

ug s
2 2 2 2
X (uq, un) = (ul -3 + uiusy, up — 3 + uou, ui — uz)

Excluding Enneper’s surface, a parametrized surface X (u1, u») isa minimal surface locally asso-
ciated to X by a Ribaucour transformation asin Theorem 3.1, if and only if, up to a rigid motion
of RS,

v 1 l /
X — X + E(_ula usz, 1) - (f XM]_ - g Xuz) (14)

2c(f+¢)

where ¢ is a positive real number,
f =68cosh2/cuyr+A) g =sin(2/cus+ B)

where§ = +1, A, B arereal numbers and the functions f and g are definedin R? \ {p;, k € Z},
where p; = JAE(—A/Z, —8m /4 — B/2+ k).

The family of minimal surfaces associated to Enneper’s surface depends on three parameters.
Each surface of this family has infinite total curvature and corresponds to a complete immersion of a
sphere punctured at an infinite number of points, which are contained on a circle and accumulate at
the pole. All except one of the infinite number of ends are embedded planar ends, whose positions
are determined by the parameters. Figure 1 illustrates a minimal surface from the family described
by (14). In this figure, one can see two views of a region which contains two planar ends of the
surfaceX for the constantst = 0, B = 1 andc = 1.

Our nextresult describes the family of minimal surfaces associated to the catenoid by Ribaucour
transformations. Depending on the value of the parametdéthe Ribaucour transformation, the
associated surface may have infinitely many embedded planar ends (see Callahan et al. 1989 for
minimal surfaces with an infinite number of anular ends) or any finite number of embedded planar
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APPLICATIONS TO LINEAR WEINGARTEN SURFACES 569

Fig. 1 —Minimal surface associated to Enneper’s surfaceavithl, A = 0, B = 1.

ends (see Jorge and Meeks 1983 for minimal surfaces with any finite number of catenoid ends).
Moreover, each surface has one or two nonplanar ends. We point out that the family of minimal
surfaces associated to the catenoid are of genus zero and contain a special class of 1-periodic
surfaces.

ProrosiTioN 3.3. Consider the catenoid parametrized by
X (uq, up) = (COSus coshuy, Ssinus coshuy, ui) .

Excluding the catenoid and up to rigid motions of R3, a parametrized surface X, (u1, u») is a
minimal surface locally associated to X by a Ribaucour transformation asin Theorem 3.1, if and
only if,

coshu ) 1
- L (cosuz, SiNuz, 0) + —————(f'Xuy — &' Xu),

X.=X
c(f+8)

wherec £ 0, f(u1) and g(uy) are given as follows:

2 ~
a) ifc = 1/2, then f = % g = 552 ,wherec; # 0,b1 € R, and the function Xy5 is

defined on R? \ {p1} with py = — (b1, 0);

b) if2c — 1 > O, then f = sin(A + +2¢ — 1u;), g = ftcoshv/2c —1uj), A € R and the
function X, isdefined on R2\ {p, k € Z}, where p; = \/% (F7/2 — A+ 2km, 0).

c) ifl—2c > 0,then f = £coshA + /1 —2cu;), g = sin(v1—2cuy), A € R and the

function X, isdefined on R2\ {px, k € Z}, where p; = \/1—1_726 (—A, Fr/2+ 2km).
One can prove that any minimal surfakeg, locally associated to the catenoid, is complete.
Its geometric properties are quite distinct, depending on the value of the parameter
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In particular, for special values @f namely wheny/1 —2c = n/m is a rational number,
n # m, the associated family of minimal surfaces will be denoted?bym). Any minimal surface
of X(n,m) is 1-periodic in the variable,, has total curvature-4z (n + m) and it is an immersion
of a sphere punctured at+ 2 points: the two poles, correspondingutp — +oo, andn points
contained on a circle. Its Gauss mapextends to the + 2 points. The surface hasembedded
planar ends and two ends®, of geometric indexn, corresponding tai; — oo, that grow
asymptotically as the ends of the catenoid. In particufdr,are embedded catenoid ends, if and
only if m = 1. Figure 2 contains several examples of such surfaces.

a) b)
d) €)

Fig. 2 — Complete 1-periodic minimal surfacks, ,,) associated to the catenoid by
Ribaucour transformations. Each surface/hpknar ends and two ends of geometric
indexm. a)n =2,m =1, A=0;b)n=2,m=1,A=1/2;¢c)n =3,m =1,
A=0;dn=4m=1,A=0;e)n=4,m=3,A=0.

Whenevere is such that2 — 1 > 0 or 22 — 1 < 0 and+/1 — 2¢ is not a rational number,
thenX, is a family of complete minimal surfaces which have infinite total curvature and they are
not periodic in any variable. Any surface of the family. is an immersion of a sphere punctured
at two points if 2 — 1 = 0 and punctured at an infinite number of points contained on a circle,
otherwise. Its normal mapy extends to the points, described in Proposition 3.3. Moreover, the
ends of any such surface are planar except the end correspondlinng-tooc.

We observe that whenever= 1/2 any surface o 12 Is an immersed minimal surface with
two ends. One of them, correspondingitqis planar and the other one, corresponding to the pole,
is not embedded.
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The families of minimal surfaces, associated to the catenoid depend on two parameters. While
the geometric properties of the surfaces are determined bye position of the planar ends is
determined by the other parameter (see Figure 2 a) and b)).

Our next application provides a two-parameter family of linear Weingarten surfaces,

ProrosiTioN 3.4. Consider the cylinder parametrized by
X (u1, up) = (COSup), Sin(uz), u1)  (u1, uz) € R?

asalinear Weingarten surface satisfying —1/2+ H + y K = 0. A parametrized surfaceisalinear
Weingarten surface locally associated to X by a Ribaucour transformation as in Theorem 3.1, if
and only if, it is given by

it Z(f + g) / /

Xy =X — X, Xy, —gN), 15

’ c[(2y+1)g2—f2](f 1+ 8 X =g N) (13)

where N istheinner unit normal vector field of the cylinder, ¢ # 0 and y arereal constants, such
that

E(c,y)=1-c@y+1 (16)
and ¢ are not simultaneously positive, and f (u1), g(u2) are solutions of the equations /" + cf =
0, g”"+ &g =0, withinitial conditions satisfying

(2 + () + 8% +cf?) W, uf) = 0.
Moreover, X, isa regular surface defined on the subset of U ¢ R? where
((f + 8% +2r8%) (f2+22y + D fg + 2y + Dg?) #0.

The linear Weingarten surfacésy associated to the cylinder and parametrized by (15) (ex-
cluding the cylinder), have curves of singularityif > 0. Moreover, ifc ¢ < 0 then, up to rigid
motions of R, the surfaceX,, is determined by the functions

f=eElsinVeur) g =ea/ccoshy/[Eluz) ifc>0,6 <0
f=e SCOSK\/Hul) g = &2¢/|c| Sin(\/guz) ifc<0,6>0

wheres; = +1, ¢ # 0 andy are real numbers aridc, y) is defined by (16).

One can show that the surfaﬁ'@y is complete, if and only if¢& (¢, y) < 0 and the paitc, y)
belongs to a regio® C R? with two connected components described in Figure 3. The functions
which determine the componentsBfare defined by

m(e.y) = 262y +1(Vr@y +1-2y) -1
hoc,y) = 2c (/T;/H 2y) _1

ha(e,y) = —202y +1) (V2r@r + 1 +27) -1
ha(c,y) = 2¢ (\/Tw - 2y) +1

hs(c,y) = —2¢(2y +1) ( 2y 2y + 1) — 2)/) 1
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Fig. 3 — Any pair(c, y), in each of the two connected components, generates a complete
linear Weingarten surface and it is cmc wher= 0. (¢, y) on the dashed curves in the left
region generate 1-periodicbubble surfaces with two ends of geometric index

If ¢ < 0and\/&(c, y) = n/m is an irreducible rational number, then the linear Weingarten
surfacef(cy is periodic in the variabla, and hence it is an immersion of a cylinder imtd. One
proves that the immersed surface has two ends of geometric indmxd» isolated points of
maximum (respectively minimum) for the Gaussian curvature. Moreover, the total curvature of
f(c,, is zero, while its total absolute curvature i8/8 The ends are embedded if and onlyif= 1;
in this case they are cylindrical ends.

If ¢ > 0 orc < 0andy/Z is not a rational number then the linear Weingarten surface,
associated to the cylinder mt periodic in any variable. It is an immersion &? into R® with an
infinite number of isolated critical points of its Gaussian curvature.

One can also show that the complete linear Weingarten surﬂég;,%re asymptotically close
to the cylinder. We observe that the surfaces givelf(gyare tubular surfaces when= —1/2,
since they satishA = B2 — 4oy = 0. Figure 4 illustrates several examples of this family of
surfaces.

We point out that the surfacés.,,, wherec < 0 andy < —1/2, are hyperbolic sinca < 0.
Therefore, they show that there exist complete hyperbolic linear Weingarten surfaces immersed in
R3, although there are no such surfaces with constant negative curvature (Hilbert's theorem).

The class of linear Weingarten surfao@@ contains a family of 12 cmc-surfaces obtained
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» P e

O

S

d) e) f

Fig. 4 — Complete Weingarten surfadég, which satisfy the relatior-1/2+ H+yK =0

and are associated to the cylinder by Ribaucour transformations. a) 1-periodic cmc surface
y = 0andy/1— ¢ = 2; b) 1-periodic cmc-surface for which =0, VI—c2y + 1) =

3/2; c) 1-periodic Weingarten surfage = 0.15,,/1 — c(2y + 1) = 7/5; d) tubular surface,

y = —1/2, ¢ = —0.1; e) cmc surface (not periodic) whare= 1.5 andy = 0; f) part of a
complete hyperbolic surface.

by consideringy = 0. Whenevet < 0, these cmc-surfaces have one spherical family of curvature
lines. Such surfaces are called of Enneper type by Wente (Wente 1992). By ch¢dsing =

n/m, an irreducible number, one getdubble cmc-surfaces. These surfaces were first described
by Sievert (Sievert 1886) for = 2 (see also (Pinkal and Sterling 1989)) and their existence was
proved later in (GroRRe-Brauckmann 1993) and (Sterling and Wente 1993). For other vatues of
the cmc-surfaces are not periodic in any variable.

Similarly, by using Ribaucour transformations one can obtain families of cmc surfaces as-
sociated to the Delaunay surfaces. By restricting the range of the paranadtdre Ribaucour
transformation, one gets families of complete cmc surfaces. For special vales®iets peri-
odic surfaces in one variable otherwise the surfaces are not periodic in any variable. Details and
proofs for the results on linear Weingarten surfaces and cmc-surfaces can be found in (Corro et
al. 2001).

4 ACKNOWLEDGMENTS

The author’s work is partially supported by CNPq.

An Acad Bras Cienc (2002)74 (4)



574 KETI TENENBLAT

RESUMO

Apresentamos uma defini¢cdo de tranformacéo de Ribaucour revisada, para subvariedades de formas espaciais
com fibrado normal plano, motivados pela definicdo classica e pelas extensées mais recentes. A nova
definicao fornece um tratamento preciso do aspecto geométrico de tais transformagdes preservarem linhas
de curvatura e pode ser aplicada a subvariedades cujas curvaturas principais tém multiplicidade maior
que um. Transformagdes de Ribaucour sdo aplicadas como um método para obtengdo de superficies de
Weingarten lineares, contidas no espaco Euclideano, a partir de uma dada superficie deste tipo. Exemplos sao
incluidos para superficies minimas, superficies de curvatura média constante e superficies linear Weingarten.
Os exemplos mostram a existéncia de superficies linear Weingarten, hiperbdlicas, completas no espaco
Euclideano.

Palavras-chave: transformagfes de Ribaucour, superficies de Weingarten lineares, superficies minimas,
curvatura média constante.
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