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ABSTRACT
Let M be a simply connected compact 6-manifold of positive sectional curvature. If the identity
component of the isometry group contains a simple Lie subgroup, we prow fkaiffeomorphic
to one of the five manifolds listed in Theorem A.
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0. INTRODUCTION

An interesting problem in Riemannian geometry is to classify positively curved manifolds whose
isometry groups are large. A typical example is the classification of homogeneous manifolds of
positive curvature (cf. Aloff and Wallach 1975, Berger 1961, Bergery 1976, Grove and Searle
1997).

Recently, there has been considerable progress on classification of positively curved manifolds
with largeabelian symmetry group actions (cf. Hsiang and Kleiner 1989, Fang and Rong 2001,
2002, Grove and Searle 1994, Rong 2002, Wilking 2002). The maximal rank theorem of Grove-
Searle asserts that if a compact positively curved manifslcdmits an isometrid@*-action,
thenk < [”—51 and “="if and only if M is diffeomorphic to a sphere, a lens space or a complex
projective space (Grove and Searle 1994). The homeomorphism classification for positively curved
n-manifolds with almost maximal rank have been carried outsfes 4 by Hsiang and Kleiner
(1989), forn = 5 by Rong (2002) and fot > 8 completely solved by Fang and Rong (2001).
Very recently Wilking (2002) announced the following2tmaximal rank theorem: Far> 10, if
a closed simply connected positively curvednanifold M with symmetry rank (i.e. the rank of
its isometry group) at leagt+ 1, thenM is homeomorphic to a sphere or a quaternionic projective
space or homotopic to a complex projective space (Wilking 2002).
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In the geometry of positive sectional curvature, 6-dimensional manifolds play very interesting
roles. This is because, there are so called “flag” manifolds, the homogeneousSp&e T2
and the biquotient spac®lU (3)//T? on which there exist infinitely many circle bundles whose
total spaces (dimension 7) admit positive sectional curvature, the Aloff-Wallach spaces and the
Eschenberg spaces (cf. Aloff and Wallach 1975, Eschenberg 1982, 1992). Except the two flag
manifolds, so far onlys® andCP? are known to admit positive curvature metrics. All of the four
examples admit a symmetry of a simple Lie group.

The purpose of this paper is to study the isomettiactions on positively curved manifolds
of dimension 6 wheré& is a simple Lie group. We will prove almost a converse holds, except that
one more topology type§? x S*, maybe occur.

In the below= will indicate manifolds of the same diffeomorphism type.

THEOREM A. Let M be a simply connected compact 6-manifold of positive sectional curvature.
If the identity component of the isometry group of M contains a simple Lie subgroup. Then
M = S8, 5% x §* CP3, SU(3)/T?or SU(3)//T?.

Note that any simple Lie group contains eitls&f (2) or SO (3) as a subgroup. Therefore one
really needs only to study manifolds with symmetry graip= SU(2) or G = SO(3). Thus
Theorem A follows immediately from the following two results.

THEOREM B. Let M be a simply connected compact 6-manifold of positive sectional curvature.
If M admits an effective isometric SU (2)-action, then M = S®, §2 x $4 CP3, SU(3)/T? or
SU(@3)//T?.

THeoreM C. Let M be a simply connected compact 6-manifold of positive sectional curvature. If
M admits an isometric SO (3)-action (not necessarily effective) then M = S8, 52 x §4, CP3.

The rest of the paper is organized as follows: In Section 1, we collect some necessary prelim-
inaries in the proof of Theorems B and C. In Section 2, we prove Theorems B and C.

1. PRELIMINARIES
A. PosITIVE CURVATURE

For positively curved simply connected manifolds, few general results are known. In our proof of
Theorem A, the following results in this subsection are required.

THEOREM 1.1 (SYNGE 1936). Let M be an n-manifold of secy, > 0.

(1.2.2)If n isevenand M isorientable, then any orientation preservingisometry ¢ hasa non-empty
fixed point set.

(1.1.2) If n isodd, then M isorientable and any orientation reversing isometry ¢ has a non-empty
fixed point set.
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THEOREM 1.2 (FRANKEL 1961). Let M be a compact manifold of positive sectional curvature. If
two totally geodesic submanifolds N; and N, satisfies

dim(N) + dim(Ny) > dim(M),

then N1 and N, have a non-empty intersection.

The asymptotic index of an immersigh: N — M is defined by, = min,cyvs(x), where
vr(x) is the maximal dimension of a subspaceZeiV on which the second fundamental form
vanishes. Clearlyf is a totally geodesic immersion if and onlyif = dim(N).

THEOREM 1.3 (FANG ET AL. 2002). Let M™ be a closed manifold of positive sectional curvature,
and let N; — M™ bea closed embedded submanifold of asymptotic index v; (j = 1, 2). If either
N; (j = 1,2)isminimal or N1 = N>, then the following natural homeomor phisms,

(N1, N1 N Np) = m;(M™, Ny), i (N2, Ny N N2) — m;(M™, N1),

areisomorphismfor i < vy + v, — m and are surjectionsfor i = vy + v, —m + 1.

Applying to totally geodesic submanifold, where the asymptotic index is exactly the dimension,
Theorem 1.3 implies immediately that

THEOREM 1.4 (WILKING 2002). If M" has positive sectional curvatureandif N"* isan embedded
totally geodesic submanifold then the inclusion map i : N"~% — M" isn-2k+ 1 connected, that is
i induces an isomor phism of the homotopy groups up to dimension n — 2k and it maps,,_ 2 11(N)
surjectively onto 7, o 1(M).

B. ALEXANDROV SPACES WITH POSITIVE CURVATURE

Recall that an Alexandrov spack, is a finite Hausdorff dimensional complete inner metric space
with a lower curvature bound in distance comparison sense (cf. Burago etal. 1992). In particular, a
Riemannian manifold of sectional curvature bounded from below is an Alexandrov space. Typical
examples of non-manifold type Alexandrov spaces are given by the following

LeEMMA 1.5 (BUrRAGO ET AL. 1992). Let X be an Alexandrov space with curvature > —A. Let
G be a compact group of isometries. Then, the quotient space, X/ G, is also an Alexandrov space
with curvature > —A.

2. PROOFSOF THEOREMSBAND C

In this section we consider simply connected positively curved 6-manifolds @#ymmetry
whereG = SO (3) or SU (2). Note that the connected symmetry groug df(3)/72is PSU (3) =
SU(3)/Z3, whereZsis the center of U (3) (cf. Shankar 2001a). It was pointed out to the author by
Shankar (2001b) that the identity component of the symmetry group of the biqusti€By// T2
isU(2). In both cases§U (2) is a proper subgroup of the isometry groups.
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LemMA 2.1. Let M be a simply connected compact 6-manifold of positive sectional curvature. If
M admitsanisometric SU (2)-action such that the fixed point set Fix(M, SU (2)) isnhot empty, then
M iseither diffeomorphic to S or CP3.

Proor. Let X = Fix(M, SU(2)). Since an irreducible representationif (2) has dimension
4, the fixed point set must be of dimension 2. Therefore the orb#ld U (2) is an Alexandrov
space with boundary. Thus

M =E@m) U (SU2) xug D)

whereE () is a 4-disk bundle oveX, andH C SU (2) is the isotropy group for some single orbit,
m + 3 = dimH + 6 (cf. Grove and Searle 1997). In particulrjs connected, and s& = S?
(sinceX is totally geodesic with positive curvature). Note that the bounda®(gf is 5% x S°.

(i) If H is of dimension O;

Then the neighborhooSlU (2) x z D3 must beSU (2) x D3. This implies thatM is diffeo-
morphic tos®.

(ii) If H is of dimension 1;

Then the neighborhoo8U (2) x D* must beSU (2) x g D*, which is equivariant diffeo-
morphic toS? x D* with the product action o§U (2), i.e. on the second factor is given by the
irreducible representation 61/ (2) on D* C C?, on the first factor the action is given by the natural
action of SU(2) on CP* = §2. To match the two actions on the boundary, it is easy to see that the
gluing map

f:8?2x 8-> 852xs8°

may be written asf (x, y) = (y - x, y), wherey e §° = SU(2) acts onx factoring through the
naturalS O (3)-action. It is an easy exercise to show that= CP3. O

LeEmMA 2.2. Let M be a simply connected compact 6-manifold of positive sectional curvature. If
M admitsanisometric S O (3)-action such that the fixed point set Fix(M, SO(3)) isnot empty, then
M is diffeomorphic to S°.

Proor. First we claim that the fixed point s&t = Fix(M, SO (3)) must have positive dimension.
In fact, if x € X is an isolated fixed point, the local isotropy representatiofi@®@({3) gives a
linear action ors®. But a linear action of O (3) must have all principal orbit dimension 2, and so
the action must have a 2-sphere as the fixed point set (cf. Bredon 1972 exercise in Chap. 5).
By the local isotropy representation we also know tkidtas dimension 3 and so the principal
orbits are of dimension 2. Thus the orbit space is 4-dimensional with bouxdarence

M = E®w) U, SOQR) xy D*
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whereE (v) is a disk bundle of dimension 3 over the fixed point¥etandH is a circle subgroup

of SO(3) (cf. Grove and Searle 1994). Clearly, is a spherical form (cf. Hamilton 1982),
since it is totally geodesic. In order that the boundary of the disk bundle matches the boundary of
SO(3) xy D*the coreX must be simply connected. By a straightforward argument one knows
that M is a homotopy sphere and therefare= S°. O

Theg-extentxz,(X), ¢ > 2, of a compact metric spac¥, d) is, by definition, given by the
following formula:

-1
xt,(X) = (Z) max! Z d(xi,xj) : {xi)_; C X}

lsi<j=q
Recall that the 3-extents(5%(3)) = Z (Grove and Markvosen 1995).

Lemma 2.3. Inthe orbit space M* there are at most three isolated singular orbits.

Proor. We prove by contradiction.

Assume that there are at least 4 isolated singular orbitsALet,, - - - , A4 be the 4 isolated
singular orbits inM*.

For anyi # j, let

Cij = {y :[0,1;;] = M|y is a minimizing normal geodesic from; to A;}.

Let a;jr = min{£(y;(0), % (0)|y; € Cji, vk € Cji}. Since the curvature af/* is positive (cf.
Lemma 1.5), by the Toponogov’s comparison theorem it follows that, for each tripiek) of
distinct integers i1, 4],

Uijr + Qjix + Qigj > T
Summing over all possible choices of the trigle;j, k) we know that

4
E Qjjk > 4

i=1  1<j<k<d,jks#i

On the other hand, for each the isotropy grougH; = S, note that the space of directions/t
a4 (X) = Sjl_/H,', WhereSji is the unit sphere in the normal slice of the isolated circle otbin
M, which is $3(1). Therefore =, (X) is the quotient of§?(3). Therefore

4
Z Z o < 4

i=1  1<j<k<d,jk#i

A contradiction. O

Proor oF THEOREM B. By Lemma 2.1 we may assume that &%, SU (2)) is empty.
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By the Synge theorem the cent&s C SU(2) must act onM with non empty fixed point
(since it preserves the orientation). Consider the fixed poin#getc M. ClearlySU (2) acts on
M?%2, Ifit has dimension 4, it must b8P? or $* (cf. Hsiang and Kleiner 1989). But any action of
SU(2) on §* or CP? must have fixed point. A contradiction. Therefdw2 has dimension 2 and
consists of the union of some isolated singular orbits of dimension 2. Around every singular orbit,
there is a regular neighborhood of the fof#/ (2) x; D* whereH is the isotropy group of the
singular orbit (a 1-dimensional subgroupsif (2)). In the Alexandrov spack®* = M/SU (2), it
gives a neighborhood of the singular orbit and homeomorphi2*tH, a cone oves®/H. Note
that the diameter of3/H is at mostZ. By Lemma 2.3 above we know that there are at most three
such isolated singular orbits.

Observe that the orbit spadé* must be a simply connected 3-manifold (therefofé is
a homotopy 3-sphere) with at most three marked singular points. This showa/thady be
re-constructed by gluing at most three handiés(2) x . D* (with H; the isotropy groups of
the singular orbits) t&U (2) x (S® — U;int D?), whereD?, i = 1,2, 3 are disjoint small disks
neighborhood around the singular orbitspfi. It is easy to check that the third Betti number
b3(M) = 0 and, the Euler characteristig M) = 2, 4 or 6, according to 1, 2 or 3 singular orbits.

If x(M) = 2thenM is homotopy equivalent t§° and soM = S° (cf. Wall 1966).

If x(M) = 4thenM = SU(2) xy, D* Uy SU(2) xpu, D* whereH;, i = 1,2 are circle
subgroups ofU (2). SinceSU (2) xy, dD* = 2 x $3we getM = §? x S*.

If x(M) =6, we now prove tha¥ = SU(3)/T?orM = SU(3)//T>.

Let X = $% — UY,int D}. By the aboveM = SU(2) x X U, U,SU(2) xp, D* where
f = fiufoU fzisthe gluing diffeomorphism af?_, SU (2) x 5, d D*. Sincef is SU (2)-equivariant,
each componenf; may be identified with the diffeomorphism

fi: 87 x 83— $2x 8% (x,y) > 6:(y) - x,)

whered; € m3(SO(3)) = Z is a generator andindicates the standard action §6(3) on S2.
Observe that the topology af depends only on the isotopy class of the diffeomorphfsm

Fix a generator € n3(SO(3)). Clearlyd; = +t. For simplicity we let(+, +, +) denote
the manifoldM (as well as the mag) with f = (z, 7, ). Similarly, (—, —, —) denotesV with
f=(-1,—1,—1), etc.

Leth : §% x S° — S2 x §° be a diffeomorphism given by (x, y) = (x, y1), where
§% = SU(2) is considered as a Lie group. Note that the compositiort efz will reverse the
signs,e.g.foh = (—, —, —)if f = (4, 4+, +) and so the manifold&t, +, +) and(—, —, —) are
the same up to diffeomorphism. Therefore there are at most two different diffeomorphism types
(+, +, +) and(+, —, —).

On the other hand, as we noted in the beginning of the se&d(8)/ T2 andSU (3)// T? both
have effective isometric actions 8§/ (2). The induced actions U (2) on the manifolds must
have only isolated singular orbits (if not, the manifold mussber C P2 by the above argument).
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Recall thatSU (3)/T? andSU (3)// T? have different homotopy types (cf. Eschenberg 1992).
Therefore(+, +, +) and(+, —, —) cannot be diffeomorphic. This proves the desired resulil

Proor or THEOREM C. By Lemma 2.2 we may assume that the fixed point set is empty.

If the principal orbit has dimension 2, since principal orbits are open dedgdithe principal
orbit theorem (cf. Bredon 1972), for the principal isotropy gréthpor O (2), the fixed point set
of this isotropy group must be of dimension 4. Thereftfe= S® or CP2 (cf. Grove and Searle
1994). If SO(3)/H is a principal orbit type, wher® C SO (3) is a non-trivial finite group. Then
the fixed point sess” is of dimension at least 3 for the same reason as above. Note that the fixed
point set must have even codimension sidtereserves the orientation (cf. Kobayashi 1972).
ThereforeM has dimension 4. By Theorem 1.5 we may conclude Mhat S° or CPP® (cf. Fang
and Rong 2001).

Now we assume that the principal orbit typesi® (3).

If there is a circle subgroug® c SO (3) with fixed point setMS" of positive dimension, (of
course it is not empty by the Synge theorem), then MM = 2. OtherwiseM = S8 or CP3 (cf.
Grove and Searle 1994). This is impossible, since any effe§tv8) action ons® or CP2 cannot
have circle (01O (2)) isotropy group with 4-dimensional fixed point set.

Consider the minima$ O (3)-invariant submanifold containinglsl. It must have dimension
4 since the orbits starting from points M5" are all of dimension 2. In the orbit spadé* =
M/S0(3), the quotients O(3) - M5" /SO (3) = MS" is a boundary component. Let: M — M*
be the quotient map. By Grove and Searle (1994) ag#is homeomorphic t&2 and it contains
at most one additional singular (or exceptional) orbit outsifie (cf. Grove and Searle 1997).
Moreover,

M = D(v) Uy SO(3) x y D3H4mH

whereD(v) is a disk bundle of dimension 2 over the minimal submanifzoid(MSl), andH is
the isotropy group of the unique orbit (it may be principal orbit).

Note thatr ~1(M5") = 52 x S2. TheSO(3) action on thiss2 x 2 is equivalent to the product
action of a trivialS O (3) action onS? and the standar§lO (3) on S? (with just one orbit).

If H is a finite group, therd = {1} and soM = CPS. Indeed, in this case the action is
equivalent to the one defined byt - [zo, z1, 22, 23] = [A(z0, 21), A(22, 23)], Where|zo, z1, 22, 23]
is the homogeneous coordinate ahd SU(2)/Z, = SO (3).

We now prove that din = 0. In fact, sincev is aS 0 (3)-equivariant oriented 2-bundle over
$2 x §2. Using standard algebraic topology we know that the Euler elagshas to be even. I
has positive dimension, it must 52 or O(2). Since all other orbits are principal] must bes?*
and saS 0 (3) x y D* = §? x D*. Thisis impossible sinc&(v) = 0(mod 2 implies that boundary
SO(3) xy dD* has fundamental group at le&t.

Finally we consider the case 815" is zero dimensional for all circle subgroup S (3). In
other words, singular orbits are isolated. By Lemma 2.3 once again we know that there are at most 3
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isolated singular orbits. As in the proof of Theorem B, the possible value&) = 2, 4, 6. Inthe
casey (M) = 4one hasl = SO(3) x y, D*U; SO(3) x i, D* = 52 x §4, up to diffeomorphism.
We claim thaty (M) = 2 and 6 are impossible. This will complete the proof.

LetX = M*—U!_,int D?with / the number of singular orbits (hefre= 1 or 3), whereD?is as
in Theorem A. Note that/* is again a homotopy 3-sphere. Since all orbitXiis of typeS O (3),
the principalS 0 (3)-action ont ~1(X) corresponds to a unique classifying map X — BSO(3)
for the action. Note thaf restricts on each piece of the boundary (a 2-spherey gives the
classifying map of the fre60 (3) action onSO (3) x , $* = 52 x §3, which is not null homotopic
in m2(BSO(3)) = Z,. Clearly, the sum of theboundary pieces must be zero homologous (since
the mapf is a cycle with boundary the sum). Therefémust be even. This proves that there are
only 2 singular orbits. This proves the desired result. O
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RESUMO

SejaM uma 6-variedade compacta, simplesmente conexa de curvatura sectional positiva. Se a identidade
componente do grupo de isometria contém um subgrupo de Lie simples, provamdsédiéeomaorfico
de uma das 5-variedades listadas no Teorema A.

Palavras-chave: 6-variedades, curvatura positiva, grupos de simetria.
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