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ABSTRACT

Let M be a simply connected compact 6-manifold of positive sectional curvature. If the identity

component of the isometry group contains a simple Lie subgroup, we prove thatM is diffeomorphic

to one of the five manifolds listed in Theorem A.
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0. INTRODUCTION

An interesting problem in Riemannian geometry is to classify positively curved manifolds whose

isometry groups are large. A typical example is the classification of homogeneous manifolds of

positive curvature (cf. Aloff and Wallach 1975, Berger 1961, Bergery 1976, Grove and Searle

1997).

Recently, there has been considerable progress on classification of positively curved manifolds

with largeabelian symmetry group actions (cf. Hsiang and Kleiner 1989, Fang and Rong 2001,

2002, Grove and Searle 1994, Rong 2002, Wilking 2002). The maximal rank theorem of Grove-

Searle asserts that if a compact positively curved manifoldM admits an isometricT k-action,

thenk ≤
[

n+1
2

]
and ‘‘=’’ if and only if M is diffeomorphic to a sphere, a lens space or a complex

projective space (Grove and Searle 1994). The homeomorphism classification for positively curved

n-manifolds with almost maximal rank have been carried out forn = 4 by Hsiang and Kleiner

(1989), forn = 5 by Rong (2002) and forn ≥ 8 completely solved by Fang and Rong (2001).

Very recently Wilking (2002) announced the following 1/2-maximal rank theorem: Forn ≥ 10, if

a closed simply connected positively curvedn-manifoldM with symmetry rank (i.e. the rank of

its isometry group) at leastn4 +1, thenM is homeomorphic to a sphere or a quaternionic projective

space or homotopic to a complex projective space (Wilking 2002).
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In the geometry of positive sectional curvature, 6-dimensional manifolds play very interesting

roles. This is because, there are so called ‘‘flag’’ manifolds, the homogeneous spaceSU(2)/T 2

and the biquotient spaceSU(3)//T 2 on which there exist infinitely many circle bundles whose

total spaces (dimension 7) admit positive sectional curvature, the Aloff-Wallach spaces and the

Eschenberg spaces (cf. Aloff and Wallach 1975, Eschenberg 1982, 1992). Except the two flag

manifolds, so far onlyS6 andCP
3 are known to admit positive curvature metrics. All of the four

examples admit a symmetry of a simple Lie group.

The purpose of this paper is to study the isometricG-actions on positively curved manifolds

of dimension 6 whereG is a simple Lie group. We will prove almost a converse holds, except that

one more topology type,S2 × S4, maybe occur.

In the below= will indicate manifolds of the same diffeomorphism type.

Theorem A. Let M be a simply connected compact 6-manifold of positive sectional curvature.

If the identity component of the isometry group of M contains a simple Lie subgroup. Then

M = S6, S2 × S4, CP
3, SU(3)/T 2 or SU(3)//T 2.

Note that any simple Lie group contains eitherSU(2) or SO(3) as a subgroup. Therefore one

really needs only to study manifolds with symmetry groupG = SU(2) or G = SO(3). Thus

Theorem A follows immediately from the following two results.

Theorem B. Let M be a simply connected compact 6-manifold of positive sectional curvature.

If M admits an effective isometric SU(2)-action, then M = S6, S2 × S4, CP
3, SU(3)/T 2 or

SU(3)//T 2.

Theorem C. Let M be a simply connected compact 6-manifold of positive sectional curvature. If

M admits an isometric SO(3)-action (not necessarily effective) then M = S6, S2 × S4, CP
3.

The rest of the paper is organized as follows: In Section 1, we collect some necessary prelim-

inaries in the proof of Theorems B and C. In Section 2, we prove Theorems B and C.

1. PRELIMINARIES

A. Positive Curvature

For positively curved simply connected manifolds, few general results are known. In our proof of

Theorem A, the following results in this subsection are required.

Theorem 1.1 (Synge 1936). Let M be an n-manifold of secM > 0.

(1.1.1) If n is even and M is orientable, then any orientation preserving isometry φ has a non-empty

fixed point set.

(1.1.2) If n is odd, then M is orientable and any orientation reversing isometry φ has a non-empty

fixed point set.
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Theorem 1.2 (Frankel 1961). Let M be a compact manifold of positive sectional curvature. If

two totally geodesic submanifolds N1 and N2 satisfies

dim(N1) + dim(N2) ≥ dim(M),

then N1 and N2 have a non-empty intersection.

The asymptotic index of an immersionf : N → M is defined byνf = minx∈Nνf (x), where

νf (x) is the maximal dimension of a subspace ofTxN on which the second fundamental form

vanishes. Clearly,f is a totally geodesic immersion if and only ifνf = dim(N).

Theorem 1.3 (Fang et al. 2002). Let Mm be a closed manifold of positive sectional curvature,

and let Nj ↪→ Mm be a closed embedded submanifold of asymptotic index νj (j = 1, 2). If either

Nj (j = 1, 2) is minimal or N1 = N2, then the following natural homeomorphisms,

πi(N1, N1 ∩ N2) → πi(M
m, N2), πi(N2, N1 ∩ N2) → πi(M

m, N1),

are isomorphism for i ≤ ν1 + ν2 − m and are surjections for i = ν1 + ν2 − m + 1.

Applying to totally geodesic submanifold, where the asymptotic index is exactly the dimension,

Theorem 1.3 implies immediately that

Theorem 1.4 (Wilking 2002). If Mn has positive sectional curvature and if Nn−k is an embedded

totally geodesic submanifold then the inclusion map i : Nn−k → Mn is n-2k+1 connected, that is

i induces an isomorphism of the homotopy groups up to dimension n− 2k and it maps πn−2k+1(N)

surjectively onto πn−2k+1(M).

B. Alexandrov Spaces with Positive Curvature

Recall that an Alexandrov space,X, is a finite Hausdorff dimensional complete inner metric space

with a lower curvature bound in distance comparison sense (cf. Burago et al. 1992). In particular, a

Riemannian manifold of sectional curvature bounded from below is an Alexandrov space. Typical

examples of non-manifold type Alexandrov spaces are given by the following

Lemma 1.5 (Burago et al. 1992). Let X be an Alexandrov space with curvature ≥ −�. Let

G be a compact group of isometries. Then, the quotient space, X/G, is also an Alexandrov space

with curvature ≥ −�.

2. PROOFS OF THEOREMS B AND C

In this section we consider simply connected positively curved 6-manifolds withG-symmetry

whereG = SO(3) orSU(2). Note that the connected symmetry group ofSU(3)/T 2 isPSU(3) =
SU(3)/Z3, whereZ3 is the center ofSU(3) (cf. Shankar 2001a). It was pointed out to the author by

Shankar (2001b) that the identity component of the symmetry group of the biquotientSU(3)//T 2

is U(2). In both cases,SU(2) is a proper subgroup of the isometry groups.
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Lemma 2.1. Let M be a simply connected compact 6-manifold of positive sectional curvature. If

M admits an isometric SU(2)-action such that the fixed point set Fix(M, SU(2)) is not empty, then

M is either diffeomorphic to S6 or CP
3.

Proof. Let X = Fix(M, SU(2)). Since an irreducible representation ofSU(2) has dimension

4, the fixed point set must be of dimension 2. Therefore the orbifoldM/SU(2) is an Alexandrov

space with boundaryX. Thus

M = E(η) ∪ (SU(2) ×H Dm)

whereE(η) is a 4-disk bundle overX, andH ⊂ SU(2) is the isotropy group for some single orbit,

m + 3 = dimH + 6 (cf. Grove and Searle 1997). In particular,X is connected, and soX = S2

(sinceX is totally geodesic with positive curvature). Note that the boundary ofE(η) is S2 × S3.

(i) If H is of dimension 0;

Then the neighborhoodSU(2) ×H D3 must beSU(2) × D3. This implies thatM is diffeo-

morphic toS6.

(ii) If H is of dimension 1;

Then the neighborhoodSU(2) ×H D4 must beSU(2) ×S1 D4, which is equivariant diffeo-

morphic toS2 × D4 with the product action ofSU(2), i.e. on the second factor is given by the

irreducible representation ofSU(2) onD4 ⊂ C
2, on the first factor the action is given by the natural

action ofSU(2) onCP
1 = S2. To match the two actions on the boundary, it is easy to see that the

gluing map

f : S2 × S3 → S2 × S3

may be written asf (x, y) = (y · x, y), wherey ∈ S3 = SU(2) acts onx factoring through the

naturalSO(3)-action. It is an easy exercise to show thatM = CP
3. �

Lemma 2.2. Let M be a simply connected compact 6-manifold of positive sectional curvature. If

M admits an isometric SO(3)-action such that the fixed point set Fix(M, SO(3)) is not empty, then

M is diffeomorphic to S6.

Proof. First we claim that the fixed point setX = Fix(M, SO(3)) must have positive dimension.

In fact, if x ∈ X is an isolated fixed point, the local isotropy representation ofSO(3) gives a

linear action onS5. But a linear action ofSO(3) must have all principal orbit dimension 2, and so

the action must have a 2-sphere as the fixed point set (cf. Bredon 1972 exercise in Chap. 5).

By the local isotropy representation we also know thatX has dimension 3 and so the principal

orbits are of dimension 2. Thus the orbit space is 4-dimensional with boundaryX. Hence

M = E(ν) ∪∂ SO(3) ×H D4
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whereE(ν) is a disk bundle of dimension 3 over the fixed point setX, andH is a circle subgroup

of SO(3) (cf. Grove and Searle 1994). Clearly,X is a spherical form (cf. Hamilton 1982),

since it is totally geodesic. In order that the boundary of the disk bundle matches the boundary of

SO(3) ×H D4 the coreX must be simply connected. By a straightforward argument one knows

thatM is a homotopy sphere and thereforeM = S6. �

Theq-extentxtq(X), q ≥ 2, of a compact metric space(X, d) is, by definition, given by the

following formula:

xtq(X) =
(

q

2

)−1

max

{ ∑
1≤i<j≤q

d(xi, xj ) : {xi}qi=1 ⊂ X

}

Recall that the 3-extentxt3
(
S2

(
1
2

)) = π
3 (Grove and Markvosen 1995).

Lemma 2.3. In the orbit space M∗ there are at most three isolated singular orbits.

Proof. We prove by contradiction.

Assume that there are at least 4 isolated singular orbits. LetA1, A2, · · · , A4 be the 4 isolated

singular orbits inM∗.

For anyi 	= j , let

Cij = {γ : [0, lij ] → M|γ is a minimizing normal geodesic fromAi to Aj }.

Let αijk = min{�(γ̇j (0), γ̇k(0))|γj ∈ Cji, γk ∈ Cjk}. Since the curvature ofM∗ is positive (cf.

Lemma 1.5), by the Toponogov’s comparison theorem it follows that, for each triple(i, j, k) of

distinct integers in[1, 4],
αijk + αjik + αikj > π

Summing over all possible choices of the triple(i, j, k) we know that

4∑
i=1

∑
1≤j<k≤4,j,k 	=i

αijk > 4π

On the other hand, for eachAi the isotropy groupHi
∼= S1, note that the space of directions atAi ,


Ai
(X) = S⊥

Ai
/Hi , whereS⊥

Ai
is the unit sphere in the normal slice of the isolated circle orbitAi in

M, which isS3(1). Therefore,
Ai
(X) is the quotient ofS2

(
1
2

)
. Therefore

4∑
i=1

∑
1≤j<k≤4,j,k 	=i

αijk ≤ 4π

A contradiction. �

Proof of Theorem B. By Lemma 2.1 we may assume that Fix(M, SU(2)) is empty.
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By the Synge theorem the centerZ2 ⊂ SU(2) must act onM with non empty fixed point

(since it preserves the orientation). Consider the fixed point setMZ2 ⊂ M. ClearlySU(2) acts on

MZ2. If it has dimension 4, it must beCP
2 or S4 (cf. Hsiang and Kleiner 1989). But any action of

SU(2) onS4 or CP
2 must have fixed point. A contradiction. ThereforeMZ2 has dimension 2 and

consists of the union of some isolated singular orbits of dimension 2. Around every singular orbit,

there is a regular neighborhood of the formSU(2) ×H D4 whereH is the isotropy group of the

singular orbit (a 1-dimensional subgroup ofSU(2)). In the Alexandrov spaceM∗ = M/SU(2), it

gives a neighborhood of the singular orbit and homeomorphic toD4/H , a cone overS3/H . Note

that the diameter ofS3/H is at mostπ2 . By Lemma 2.3 above we know that there are at most three

such isolated singular orbits.

Observe that the orbit spaceM∗ must be a simply connected 3-manifold (thereforeM∗ is

a homotopy 3-sphere) with at most three marked singular points. This shows thatM may be

re-constructed by gluing at most three handlesSU(2) ×Hi
D4 (with Hi the isotropy groups of

the singular orbits) toSU(2) × (S3 − ∪i int D3
i ), whereD3

i , i = 1, 2, 3 are disjoint small disks

neighborhood around the singular orbits inM∗. It is easy to check that the third Betti number

b3(M) = 0 and, the Euler characteristicχ(M) = 2, 4 or 6, according to 1, 2 or 3 singular orbits.

If χ(M) = 2 thenM is homotopy equivalent toS6 and soM = S6 (cf. Wall 1966).

If χ(M) = 4 thenM = SU(2) ×H1 D4 ∪∂ SU(2) ×H2 D4, whereHi , i = 1, 2 are circle

subgroups ofSU(2). SinceSU(2) ×Hi
∂D4 = S2 × S3 we getM = S2 × S4.

If χ(M) = 6, we now prove thatM = SU(3)/T 2 or M = SU(3)//T 2.

Let X = S3 − ∪3
i=1int D3

i . By the aboveM = SU(2) × X
⋃

f ∪3
i=1SU(2) ×Hi

D4, where

f = f1∪f2∪f3 is the gluing diffeomorphism of∪3
i=1SU(2)×Hi

∂D4. Sincef isSU(2)-equivariant,

each componentfi may be identified with the diffeomorphism

fi : S2 × S3 → S2 × S3, (x, y) → (θi(y) · x, y)

whereθi ∈ π3(SO(3)) ∼= Z is a generator and· indicates the standard action ofSO(3) on S2.

Observe that the topology ofM depends only on the isotopy class of the diffeomorphismf .

Fix a generatorτ ∈ π3(SO(3)). Clearlyθi = ±τ . For simplicity we let(+, +, +) denote

the manifoldM (as well as the mapf ) with f = (τ, τ, τ ). Similarly, (−, −, −) denotesM with

f = (−τ, −τ, −τ), etc.

Let h : S2 × S3 → S2 × S3 be a diffeomorphism given byh(x, y) = (x, y−1), where

S3 = SU(2) is considered as a Lie group. Note that the composition off ◦ h will reverse the

signs, e.g.f ◦h = (−, −, −) if f = (+, +, +) and so the manifolds(+, +, +) and(−, −, −) are

the same up to diffeomorphism. Therefore there are at most two different diffeomorphism types

(+, +, +) and(+, −, −).

On the other hand, as we noted in the beginning of the section,SU(3)/T 2 andSU(3)//T 2 both

have effective isometric actions bySU(2). The induced actions ofSU(2) on the manifolds must

have only isolated singular orbits (if not, the manifold must beS6 or CP 3 by the above argument).
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Recall thatSU(3)/T 2 andSU(3)//T 2 have different homotopy types (cf. Eschenberg 1992).

Therefore(+, +, +) and(+, −, −) cannot be diffeomorphic. This proves the desired result.�

Proof of Theorem C. By Lemma 2.2 we may assume that the fixed point set is empty.

If the principal orbit has dimension 2, since principal orbits are open dense inM by the principal

orbit theorem (cf. Bredon 1972), for the principal isotropy groupS1 or O(2), the fixed point set

of this isotropy group must be of dimension 4. ThereforeM = S6 or CP
3 (cf. Grove and Searle

1994). IfSO(3)/H is a principal orbit type, whereH ⊂ SO(3) is a non-trivial finite group. Then

the fixed point setMH is of dimension at least 3 for the same reason as above. Note that the fixed

point set must have even codimension sinceH preserves the orientation (cf. Kobayashi 1972).

ThereforeMH has dimension 4. By Theorem 1.5 we may conclude thatM = S6 or CP
3 (cf. Fang

and Rong 2001).

Now we assume that the principal orbit type isSO(3).

If there is a circle subgroupS1 ⊂ SO(3) with fixed point setMS1
of positive dimension, (of

course it is not empty by the Synge theorem), then dimMS1 = 2. Otherwise,M = S6 or CP
3 (cf.

Grove and Searle 1994). This is impossible, since any effectiveSO(3) action onS6 or CP
3 cannot

have circle (orO(2)) isotropy group with 4-dimensional fixed point set.

Consider the minimalSO(3)-invariant submanifold containingMS1
. It must have dimension

4 since the orbits starting from points inMS1
are all of dimension 2. In the orbit spaceM∗ =

M/SO(3), the quotientSO(3) · MS1
/SO(3) = MS1

is a boundary component. Letπ : M → M∗

be the quotient map. By Grove and Searle (1994) againM∗ is homeomorphic toD3 and it contains

at most one additional singular (or exceptional) orbit outsideMS1
(cf. Grove and Searle 1997).

Moreover,

M = D(ν) ∪∂ SO(3) ×H D3+dim H

whereD(ν) is a disk bundle of dimension 2 over the minimal submanifoldπ−1(MS1
), andH is

the isotropy group of the unique orbit (it may be principal orbit).

Note thatπ−1(MS1
) = S2 ×S2. TheSO(3) action on thisS2 ×S2 is equivalent to the product

action of a trivialSO(3) action onS2 and the standardSO(3) onS2 (with just one orbit).

If H is a finite group, thenH = {1} and soM = CP
3. Indeed, in this case the action is

equivalent to the one defined by:A · [z0, z1, z2, z3] = [A(z0, z1), A(z2, z3)], where[z0, z1, z2, z3]
is the homogeneous coordinate andA ∈ SU(2)/Z2 = SO(3).

We now prove that dimH = 0. In fact, sinceν is aSO(3)-equivariant oriented 2-bundle over

S2 ×S2. Using standard algebraic topology we know that the Euler classe(ν) has to be even. IfH

has positive dimension, it must beS1 or O(2). Since all other orbits are principal,H must beS1

and soSO(3)×H D4 = S2 ×D4. This is impossible sincee(ν) = 0(mod 2) implies that boundary

SO(3) ×H ∂D4 has fundamental group at leastZ2.

Finally we consider the case ofMS1
is zero dimensional for all circle subgroup inSO(3). In

other words, singular orbits are isolated. By Lemma 2.3 once again we know that there are at most 3
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isolated singular orbits. As in the proof of Theorem B, the possible values ofχ(M) = 2, 4, 6. In the

caseχ(M) = 4 one hasM = SO(3)×H1 D4 ∪∂ SO(3)×H2 D4 = S2 ×S4, up to diffeomorphism.

We claim thatχ(M) = 2 and 6 are impossible. This will complete the proof.

LetX = M∗−∪l
i=1int D3

i with l the number of singular orbits (herel = 1 or 3), whereD3
i is as

in Theorem A. Note thatM∗ is again a homotopy 3-sphere. Since all orbits inX is of typeSO(3),

the principalSO(3)-action onπ−1(X) corresponds to a unique classifying mapf : X → BSO(3)

for the action. Note thatf restricts on each piece of the boundary (a 2-sphere) ofX gives the

classifying map of the freeSO(3) action onSO(3)×Hi
S3 = S2 ×S3, which is not null homotopic

in π2(BSO(3)) = Z2. Clearly, the sum of thel boundary pieces must be zero homologous (since

the mapf is a cycle with boundary the sum). Thereforel must be even. This proves that there are

only 2 singular orbits. This proves the desired result. �
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RESUMO

SejaM uma 6-variedade compacta, simplesmente conexa de curvatura sectional positiva. Se a identidade

componente do grupo de isometria contém um subgrupo de Lie simples, provamos queM é difeomórfico

de uma das 5-variedades listadas no Teorema A.

Palavras-chave: 6-variedades, curvatura positiva, grupos de simetria.
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