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ABSTRACT
In this paper, we prove that if a Nemytskii operator map<Lf) into Lq(R2, F), for p, q greater
than 1, E, F separable Banach spaces and F reflexive, then a sequence that converge weakly and
a.e. is sent to a weakly convergent sequence. We give a counterexample provihgthhaand p
is greater than 1 we may not have weak sequential continuity of such operator. However, we prove
that if p = g = 1,then a weakly convergent sequence that converges a.e. is mapped into a weakly
convergent sequence by a Nemytskii operator. We show an application of the weak continuity of
the Nemytskii operators by solving a nonlinear functional equation on \&2}, groviding the
weak continuity of some kind of resolvent operator associated to it and getting a regularity result
for such solution.

Key words: weak continuity, nonlinearities, Nemytskii operator.

1 INTRODUCTION

A very important question in Functional Analysis is how to decide if an operator in a Banach space
is weakly continuous. Frequently, we meet this issue in variational problems when we have to
check the main assumptions of the classical theorems, especially if we are searching for some kind
of compactness results. This question becomes more difficult when we deal with nonlinearities.
Among the nonlinear operators, there is an outstanding group called Nemytskii operators. We are
interested in the weak sequential continuity of these operators. In order to develop these ideas,
we consider the notion of a.e. and weak convergence (a.e.w.) and formulate the peghlem
wherep, g > 1to be: Letf be a Caratheodory function and suppose that the Nemytskii operator
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associated tgf mapsL” (2, E) into L9(2, F). DoesN; map a.e.w. convergent sequences into
a.e.w. convergent sequences? Our goal in this paper is to study under what conditions the problem
a, 4 Is affirmatively answered.

Our paper is organized as follows. In the section 2, we treat the heart of the matter. We start
providing a uniqueness result of convergence in the a.e.w sensé fQr, E) spaces (Lemma 1).
Afterwards, we construct an example which shows the affirmative answer for the prepleiails
to p > 1 (Example 2) and we establish the solvability of the probtgjy under the following
assumptionsy > 1 and reflexivity offF (Theorem 2). At the end of this section, we prove the
counterpart of the example 2 which says that the prollgmis solvable on bounded domains
(Theorem 4). In the section 3, the last section, we are concerned about studying the solvability on
Wir(Q) of the equation

S, ux) — Aux) = (x)

for » e Randy € WL7(Q) given. We also provide conditions to the weak sequential continuity

of the resolvent operata®;, = (N, — A)~1 on WP (Q) and we observe a regularity result for
such solutions. In the study of the problems,, surprisingly, the caseg = 1 andg > 1 have

been shown very different. Some of these facts turned out to be known, mainly in particular cases;
however not in such a generality. We think it is worthwhile to formulate them in a more general
form and make them more available. We believe the ideas developed in this paper may be applied
in quite different problems.

2 WEAK CONTINUITY OF THE NEMYTSKII OPERATOR

DerFINITION 1. Let Q beadomaininRY. Let E and IF be separable Banach spaces. A function
f:Q x E— Fissaidto be a Caratheodory function if:

(a) for eachfixed v € E thefunction x — f(x, v) isLebesgue measurablein Q;
(b) for almost everywhere fixed x €  the function f(x, -) : E — F iscontinuous.

In this case we denot¢g € (C). Let M(2, E) be all measurable functions: Q@ — E.
It is easy to prove that iff € (C) then f defines a mapping/; : M(Q,E) — M(Q,F) by
Ny(u)(x) := f(x,u(x)). This mapping is called the Nemytskii operator associatefl tdhe first
result we would like to state is an extention to separable Banach spaces of the remarkable theorem
due to Vainberg concerning about the Nemytskii operator theory.

THEOREM 1 (Lucchetti and Patrone 198)et [E, [F be separable Banach spaces. The Nemytskii
operator Ny maps L” (2, E) into L1(22, F), 1 < p, g < +o0, if and only if there exist a constant
a > 0and b(x) € L% () such that

1f (v < a- 5+ b(x) (1)
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WEAK CONVERGENCE UNDER NONLINEARITIES 11

In this case, the operatdi, is continuous and bounded, in the sense that maps bounded sets
in bounded sets

DErFINITION 2. Let (X, A, 1) beameasure space, F(X, [E) atopological vector space of E-valued
functions defined on X and (f,),>1 C F(X,E) . Wesaid f, — (f, g) a.ew.(almost everywhere
andweakly) inF(X,E)if f, > fae inXand f, = ginF(X,E). If f = gwejustsay f, —> f
aew. inF (X, E).

The next Lemma gives a kind of uniqueness of the limit in the above convergence in
LP(X, u,E) spaces.

LEmmA 1 (Moreira 2001, Teixeira 2001).et (X, A, n) beao-finite measure spaceand (u,,),>1 C
L?(X,u,E),1 < p < +oo. Quppose that u, — (u,v) aew. in L?(X, u, E). Thenu = v, and
thereforeu,, — u a.ew. in L? (X, u, E).

Proor. There exists a sequent¥;}32, of measurable subsets &fsuch that:

* u(X;) < 4ooforeachj > 1

* X = Ujil Xj
Let j > 1 be fixed. Givere; = 1, by Egorov’s theorem, there is a subdetof X ;, u(A1) <1
such thait, — u in L*(X; \ A1, E), in particular,

u, = u in L?(X;\ A1, E)

Thus we have: = v a.e. inX; \ A;. Taking nows; = % and applying Egorov’s theorem again,
we obtain a subset, of A1, u(4) < % such thaty, — u in L*(A1\ Az, E) henceu,, — u

in L?(X; \ Az, E) and therefore, we have= v a.e. inX; \ A,. Carry on this process we get a
decreasing sequen¢a,}™° ,, u(A,) < % andu =va.e. inX;\ A,. SetAx, = Mooy An. This
way u(Ay;) = 0andu = v a.e. inX; \ Ax,. To finish, we define

B ={x € X u() # v(x))

{x € X;ulx) #v(x)} C UB/' - UAX./

j=1 j=1
thus
ulfx € X;ulx) #vx)})) =0

This concludes the Lemma. O

ExampLE 1 (Teixeira 2001). Let 1< p < +oo, m € N and letQ be a domain irRY. Every
bounded sequence ™7 (2) contains a subsequence that converges a.e.w. to some function in
W™ P(Q). Indeed, supposer,),=1 C WP (), |lu,||wnrq < C.SinceW™?(Q) is reflexive,
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we can suppose thaf, — u € W™7(Q). Let{€2;}32, be a nested sequence of relatively compact
open sets exhaustin@. Forall j > 1letv; € C*(R"; R) be a function holding the following
properties: 0< v; < 1,v; = 1inQ;, v; = 0inRY \ Q;,;. By Sard’s theorem, there exists
aregular value O< a < 1 ofv;. Let QJ» = vj_l(a, +00). So{ﬁj}j‘;l is a nested sequence of
C™ relatively compact open sets ©f. Since the embedding™?(Q2;) — L”(L2;) is compact,
U, — uin L"(ﬁj); therefore, for each > 1, (u,),>1 has a subsequence converging a.e i
ﬁj. Using the Cantor Diagonal Argument, we build a subsequence,df-; that converges a.e.
in Qtou.

We are interested in the following problem: When does the Nemytskii operator map a.e.w.
convergent sequences into a.e.w. convergent sequences? This question is a way of asking about

the weak sequential continuity of the Nemytskii operator. More precisely, our problem is

f e
(apq)  NypmapsL? (2, E)into L1(2, F)
DoesN; map a.e.w. convergent sequences into a.e.w. convergent sequences?

Of course, a.e. convergent sequences are mapped into a.e. convergent sequences by a Nemyt-
skii operator. Actually, what we want to know is when this class of operator maps a.e.w. convergent
sequences into weakly convergent sequences.

It is reasonable to suspect that the problem, 1 < p < 400, cannot be affirmatively
answered because if it were solvable, we would automatically get, without domain dependence,
that the embeddingy/ 17 (Q) — L?(Q) would be compact. However, there exist many domains
where we have lack of compactness of such an embedding. The next example shows this directly.

ExaMPLE 2. Let1l < p < 400 andQ be a domain ifRY. Then answer of the problem, 1

is negative. Indeed, without lost generality we may assume Q. Setf : Q@ x R — T,
f(x, 1) = |t|” - vo, wherevg € F \ {0}. The Nemytskii operatoN ; appliesL? () into L*(2, F).
Set(uy)u=1 C LP(RQ), u, = |B,|"YPyp,, whereB, = {x € R"; |x| < 1/n}. Sinceu, — 0 a.e.
in Q, |lu,ll, = 1 andL?(R) is reflexive, we may assumg — 0 a.e.w. Itis easy to check that
Ny(uy) # 0in LY(2,F). In fact, from Hahn-Banach theorem, there exisig & F* such that
¥ (vg) = 1. Definew e [LY(Q2, F)]*, setting

w(E) =/w 0 £(r)dx.
Q

we obtain

1= B, / i, (¥)dx = / N @) (X)dx = W(N () 7 O
Q

Q

But if we have the presence of the reflexivity, the situation changes and we get the following very
useful result. The next theorem is an improvement of the result found in (Moreira 2001, Teixeira
2001).
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WEAK CONVERGENCE UNDER NONLINEARITIES 13

THEOREM 2 (Moreira 2001, Teixeira 2001)et 1 < p,g < +oo withg # 1 and 2 be a domain
inRY. If F isreflexive, then answer of the problem e, , is affirmative.

Proor. By theorem 1, the Nemytskii operatdi; : L7 (2, E) — L7(2, F) is a bounded map.
Supposer,, — u a.e.w. inL? (2, E). Since(u,,) is bounded inL?(2, E), (N¢(u,,)) is bounded
in L4(2, IF). By reflexivity, we can extract a subsequen¢g(u,,, ) — v € L1(Q,F). Clearly,
Nyf(um) — Ny(u)a.e. inQ. Therefore, by Lemma W, (u,,,) — Ny¢(u) a.e.w. inL?(2, F). So
far, we have proven that if,, — u a.e.w. inL?(2, E) there exists a subsequengs,,) of (u,,)
such thatV,(u,, ) — Ny(u) a.e.w. inL4(2, F). We claim that

Nf(uy) — Ne(u) aew. in L9(Q,F)

In fact, as we have already observed, we only need to showMph@t,,) — N (u) in L9(22, F).
Suppose, by a contradiction, this is not the case. Thus there is a weak neighbdrh@og(u))
of Ny(u) and a subsequend@,,;), Ny(u.,) ¢ N"(Ny(w)) VYj > 1. Naturally,u,;, — u
a.e.w., then applying the first step of this proof, we obtain a subsubsequapjg)e of (um,),
Ny(um, ) — Ny(u) a.e.w. inL49(2, F), a contradiction, since\/f(umjk) # Ny(u) because
Ny(um;,) & N"(Nyu)) Vk > 1. O

CoroLLARY 1. If Q isadomaininRY and u,, — u aew. in L?(Q), 1 < p < +oo. Then
wh —ut, u, - u", |u,| — |u|all these convergences being inthea.ew. sensein L?(2).

CorOLLARY 2. If QisadomaininRY, m € Nand Ny mapsthe L”(Q) into LY(R2), 1 < p,gq <
+oo, theoperator N : W™P(Q) — L7(SQ) isweakly sequentially continuous.

COROLLARY 3. Let © be a bounded domaininRY. If u, — u aewin L?(Q2) with p > 1, then
forall1<gq < p,u, — uinL9(R). Consequently, W17 (Q) is compactly embedded in L7(),
for all 1 < ¢ < p, without any regularity condition on 9<2.

ProoF. Letus fixO0< ¢ < p — 1. SinceL?(RQ) «— L’~¢(QQ) we have that;, — u in L?7¢(Q).
Setf : R — R given by f(¢) = [t[’~°. Ny mapsL?(Q) into LP/P=¢(Q). From theorem 2,
fu,) — f)in LP/P=#(Q). In particular

/lun|p_8dx — /|u|p_€dx
Q

Q

So we have that, — u in LP=5(Q) and |lu,||Lr-e@) — lullLr-e@. OnceL?=¢ is uniformly
convex, itimpliesthat, — u in L?~¢(£2). Moreover, using again the fact that(2) is continuosly
embedded intd.* () forr > s, we are able to conclude that — uin L4(Q2) forallg € [1, p—¢].
Lettinge — 0, we get the result. The second part of the corollary follows from the first part added
with example 1. O

It is worthwhile to stand out that the corollary 3 is sharp. In genévdl? () #> L4 () for
g > p. This fact can be found in (Adams 1975).
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We remark that weak convergencelif(€2) is not suffice to conclude the thesis of theorem 2.
In fact, letQ = (0, %), u,(x) = sin(nx) — 0in L(0, %), and letf : (0, %) x R — R be given
by: f(x,s) = s*. Now we note that{ 1, f (x, u,(x)) )2 = X [('Z (sin(y))*dy, so:

N

1 (2k+1)m 1
lim sup( 1, , Uy, > lim ——— sinydy = = O
SR f(xu(x>>>Lz_s4s+2kX_;f2kn ydy =3

It remains to study the problem ;. In order to start analyzing this problem, we shall state the
general version of Dunford-Pettis theorem, obtained by Talagrand in 1984.

TueoreM 3 (Talagrand 1984)Let 2 beabounded domaininRY and IF be aweak complete Banach
space. Let 7 ¢ LY(2, F) be a bounded convex subset. Then F isweakly relatively compact, if and
only if it satisfies the following two conditions:

1 {llellr: Q = R: ¢ € F} C LY(Q) isweakly precompact;

2. for each sequence (¢,) in F, the set of x € Q such that thereis a k for which the sequence
(@n)n=k isequivalent to the vector basis of /* has measure zero.

Let us point out that from Dunford-Pettis’s theorem, the condition 1 above is equivalent to the
equiintegrability of{||¢|lr: ¢ € F}. The next theorem is the counterpart of example 2.

THEOREM 4. Let © be a bounded domainin RV. If F isreflexive, then the answer of the problem
o1 isaffirmative.

PrOOF. Letu,, — u a.e.w. inLY(Q, E). Defininguo = u, by the Eberlein-Smulian theorem (Brito
1998) the seK = {u,,; m > 0} is weakly compact, since it is weakly sequentially compact. Let
us denoteX = co(K). From Krein’s theorem (Brito 1998) we get th#tis weakly compact, thus,

in particular theorem 3 says th#tis equiintegrable. The equiintegrability means that i 0 is
given; there exist8; > 0 such that

/ lu(x)|lgdx <e VA C Qwith |A| <§,andVu € X
A

By theorem 1, the Caratheodory functigrsatisfies the following growth condition:

I fCx, v)lr < allvlle + b(x)
wherea > 0 andb(x) € Li(sz). LetY = co(Ns(K)). If v € co(N¢(K)), there exist functions
uy, ..., u, € K and positive numbers, ..., A, fufilling > A, = 1 suchthav = > ;- u;. In
r =

j=1
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WEAK CONVERGENCE UNDER NONLINEARITIES 15

this way

[ vetsax = 134 Nywp@ledr < [ Yo m Nl dx
A

A j:l A j:]-

A

a./nz)\,--uj(x)umdx + /b(x)dx
j=1

A A

< a-8+/b(x)dx.

A

Since‘AI‘imOf b(x)dx = 0 there exists, > 0, such thatA| < §, = [ b(x)dx < &; therefore
~PaA A

|A| < & = min{éy, 62} = / lvllr dx < (a + De.
A

Thus, we obtain

|A| < 8 = min{8y, 82} = / lvllgpdx < (a+De Vv eY.
A

We have just verified the condition 1 of theorem 3, YorHowever, by hypothesis, the condition 2
we get for free, sincE being reflexive, it does not contain a copyi &iftherefore by theorem 3, the
setY is weakly compact, and thus soA& (K) = {N,(u,) : m > 0}. Using again the Eberlein-
Smulian theorem, we can extract a subsequapgesuch thatN ¢ (u,,,) — v in LY(Q,TF). Since
Nf(um) — Ny(u) a.e. inQ, by the Lemma 1p = Ny(u) and thenNs(u,,) — Ny(u) in
LY, F). So far, we have proven thatif, — u a.e.w inL(2, E) there exists a subsequence
() Of () such thatV ¢ (u,,, ) — Ny(u) in LY(22, F). We can repeat the same argument used in
the proof of theorem 2 and obtay (u,,) — Ny (u) in L*(Q2, F). O

Itis interesting to notice that follows immediately from theoremig,if> u a.e.w. inL(2, F)
thenu,, — u in the LY(Q2, F)-norm topology.

3 ANAPPLICATION

We shall provide an application of theorem 2 by solving a general nonlinear equation on the Sobolev
spaces¥V17(Q). The problem studied here is a very natural question for the Nemytskii operator
on Sobolev spaces. Indeed, the problem we shall work on is:

Letl < p < oo, letQ be a bounded domain iR and letf : @ x R — R be a Lipschitzian
function (In this paper, the Lipschtz norm is defined using the sum norm in euclidean space, i.e,
|(x, )Igy xr = |x|ry + |s|r), such that

|f(x,9)| < als|+ b(x)
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16 DIEGO R. MOREIRA and EDUARDO V. O. TEIXEIRA

for somez > 0 and somé € LY (). Given ayy € WP (Q), and given a € R we are interested
in findingu € W7() such that

flx,ux)) —rulx)=v¢v(x) aexe (P)

DerINITION 3. Let f: Q x E — F be a Caratheodory function such that the Nemytskii
operator N, maps L”(Q, E) into LY(22,F). We define T(f) = inf{a > 0: 3b € LL(Q) such
that || £ (x, $)llr < allslf” + b(x)}.

Let us remark that the infimum on this definition actually is a minimum. Indeed,, lbe a
minimizing sequence fdaf( f), and leth, € L?(2) be functions such that the following inequality
| f(x,s)|r < a,,||s||j’E/” + b,(x) holds for alln € N, s € R anda.e. x € Q. Taking the liminf,,
we find|| f(x, $)|lr < T(f)llsll%/p + b(x) whereb(x) = liminf, b,(x).

THeOREM 5. The problem above is answered affirmatively for all A > || f|.i;,. Moreover the
solution is unique and the operator (N; — Ald)~1 : Wir(Q) — WLr(Q) is sequentially weakly
continuous.

Proor. Initially, we remark that'(f) < | fll.ip. In fact, since

|fCx,8) = fFO,0] < I fllip - [(x, $)Irnwgrfor all(x, s) € @ x R

we get
Lf G < M fllzip - Is] + {11 fllzip - 1xlry + £ (0, 0} .

Let us start by estimatinglf (x, £(x)) [l wr(q):

N
I1f e, ECDMwrre) = ||f(x,§(x))||LP(SZ)+Z”Djf(xa§(x))”u’(sz)

j=1

A

N
< T - EllLr + bl + Z ID; f(x,EC) e

j=1

N
T - 1€ Lr@ + 121 + 1 F lLipNIQUYP 4+ 1 £ 1l i Z ID;&llLr)
j=1

IA

A

= Ifllzip - IEwrr@) + C(fi N, p, )

This estimative above tell us; : W7 (Q) — W7(Q) is a bounded operator. Therefore, from
the same argument found on the final step of theorem 2, we congluds sequentially weak
continuous.

Let us defineA : W7(Q) — WiP(Q) by

1
AG) =~ [f(x, () — ¥]
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WEAK CONVERGENCE UNDER NONLINEARITIES 17

We observe that onc¥ s is sequentially weak continuous, soAs Moreover, to solvgP) is
equivalent to find a fixed point of.
Forallé € WP (Q)

1 1
X“f(X, §(x)) — K/f”wl‘P(Q) = X (||f(X, S(X))”wl‘v(sz) + ||11f||wlvp(sz))

< M ey +C N, D209
C(f, Nap’ Q’ w)

Letus fixM >
1 _ ”f”Lip
A

. For such af we see that ifi& || y1,q) < M

IAE Iwrr) < ”ﬂ% "M+C(f,N,p,Q2,¥) <M

In other words A maps the ball of radiud in W7 (Q) into itself, i.e.,A : By1,[M] — By1,[M].

Let X denoteBy1,[M] endowed with the weak topology. Sbis a compact convex subset of a

locally convex space. In additional, as we pointed out befareX — X is a continuous map.
Finally, we can use the Leray-Schauder-Tychonoff fixed point theorem (Dunford and Schwartz

1964), and conclude that has a fixed point which is precisely a solution(@f). Now, let us

suppose that there exigt, u, € WH?(Q) such that

fur(x)) —Aur(x) =¥ (x) and  f(x,uz2(x)) — Auz(x) = ¥ (x)
Subtracting these equations we fifidy, u1(x)) — f(x, u2(x)) = A(u1(x) — uz(x)). Therefore
|f O, ua(x) — f(x, ua(x)| = AMua(x) —uz(x)| < || fllLip - lua(x) — uz(x)|.

If u1(x) — ua(x) # 0, we would be able to cancel this expression at the inequality above and we
would find,» < || f|l.i,. Hence the solution ofP) is unique.

In order to study the weak continuity 6f = (N, —Ald)™1: WiP(Q) — W1r(Q), we shall
use the same idea found in the final step of theorem 2. Since all weakly convergent sequence in
Wir(Q) has a subsequence converging a.e., to pf\s sequentially weakly continuous, it is
enough to show thad is bounded. Suppose(y) = u,

fx,u(x)) — Au(x) = ¥(x)
Then

\%

1V llwirey = Alullwirg — INf@llwir )
> (A= fllzip ullwrrq) — C(f, N, p, )
Writing in a better way,

1 llwire + C(f, N, p, 2)
A= Nfllzip

This estimative shows the operatéris bounded. O

1O llwirg) <
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18 DIEGO R. MOREIRA and EDUARDO V. O. TEIXEIRA

The main information given by theorem 5 is the regularization of the solution. We observe
that if we see the map, defined on the proof of this theorem, As L?(2) — L?(L2), itis easy
to verify that it is a contraction; therefore from the Banach Fixed Point theorem, the proBlem
has, for allyy € L?(Q), always a unique solutiom € L?(2), providedx > || f|li,. The main
point of theorem 5 is that ¢ W17 (Q2) whenevery ¢ Wi7(Q).

Let us point out that in a special case whg¢x, s) = Als| + b(x), b € Lip(2), we can
improve theorem 5, saying thaP) is solvable for all. > T(f). However we cannot expect to
solve(P) if » < T(f) as the following simple situation show us: LEt Q2 x R — R be defined
by f(x,s) = |s|. Inthis caseJ(f) = || fllLip = 1. Suppose. < 1, thenf (x, u(x)) — u(x) =
lu(x)| — Au(x) > 0. Hence ifyy € WP(Q), with ¥ (x) < 0, it is impossible to solve the equation
(P).

From these comments, a interesting question arises in this problem: What can we say when
T <2 =W Sflleip?
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RESUMO

Neste artigo, provamos que se um operador de Nemytskii aplic, [E)(no Lg§2, F), para p, g maiores do

gue 1, E, F espacos de Banach separaveis e F reflexivo, entdo uma seqiiéncia que converge fracamente e g.t.p.
é transformada em uma sequéncia fracamente convergente. Fornecemos um contra-exemplo mostrando
gue se q = 1 e p éaior do que 1, podemos néo ter continuidade seqiiéncial de tal operador. Contudo
provamos queesp = g = 1,entdo seqléncias fracamente convergentes que convergem ¢.t.p. sdo aplicadas
em seqléncias fracamente convergentes por um operador de Nemytskii. Mostramos uma aplicacdo da
continuidade fraca dos operadores de Nemytskii resolvendo uma equacéo funcional ndo linear @, W1,p(
provando a continuidade fraca de um tipo de operador resolvente associado ao operador de Nemytskii e
obtendo um resultado de regularidade de tal solucéo.

Palavras-chave: continuidade fraca, ndo linearidades, operador de Nemytskii.
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