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On holomorphic one-forms transverse to closed hypersurfaces
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ABSTRACT

In this note we announce some achievements in the study of holomorphic distributions admitting

transverse closed real hypersurfaces. We consider a domain with smooth boundary in the complex

affine space of dimension two or greater. Assume that the domain satisfies some cohomology

triviality hypothesis (for instance, if the domain is a ball). We prove thatif a holomorphic one

form in a neighborhood of the domain is such that the corresponding holomorphic distribution

is transverse to the boundary of the domain then the Euler-Poincaré-Hopf characteristic of the

domain is equal to the sum of indexes of the one-form at its singular points inside the domain.

This result has several consequences and applies, for instance, to the study of codimension one

holomorphic foliations transverse to spheres.

Key words: Holomorphic one-form, vector field, Euler-Poincaré characteristic, foliation, distri-

bution.

1 INTRODUCTION

The classical theorem of Poincaré-Hopf (Milnor 1965) implies that for a smooth (real) vector field

X defined in a neighborhood of the closed ballB2n(0; R) ⊂ R
2n and transverse to the boundary

∂B2n(0, R) = S2n−1(0; R) there is at least one singular pointp ∈ sing(X)∩B2n(0; R). Moreover,

if the singularities ofX in B2n(0; R) are isolated then
∑

Ind(X; p) = 1 wherep runs through all

the singular pointsp ∈ sing(X) ∩ B2n(0; R) and Ind(X; p) is the index ofX at the singular point

p. In (Ito 1994) one can find a version of this theorem for holomorphic vector fields onC
n. This

motivated the study of codimension one holomorphic foliations on open subsets ofC
n with the

Mathematics Subject Classification: 32S65; 57R30.
Correspondence to: Bruno Scárdua
E-mail: scardua@im.ufrj.br

An Acad Bras Cienc (2003)75 (3)



266 TOSHIKAZU ITO and BRUNO SCÁRDUA

transversality property with real submanifolds and, particularly, the case of foliations transverse to

spheresS2n−1(0; R) ⊂ C
n (see [Ito and Scardua 2002a] for more information). Let us recall the

notion of transversality we shall use:

Given a holomorphic one form� in U ⊂ C
n for eachp ∈ U with �(p) �= 0 we define a

(n − 1)-dimensional linear subspaceP�(p) := {v ∈ Tp(Cn); �(p) · v = 0}. If �(p) = 0 we

setP�(p) := {Op} < Tp(Cn) and we shall say thatthe distribution P� defined by � is singular

at p. As usual we assume that cod sing(�) ≥ 2 so that if� is integrable i.e.,� ∧ d� ≡ 0 in U

(equivalently ifP� is integrable) thenP� = T F� for a unique singular holomorphic foliationF�

of codimension one inU having as singular set sing(F�) = sing(P�) = sing(�). Including the

non-integrable case we have the following definition of transversality.

Definition 1. (Ito and Scárdua 2002a). Given a smooth (real) submanifoldM ⊂ U we shall say

thatP� is transverse to M if for every p ∈ M we haveTpM + P�(p) = Tp(R2n) as real linear

spaces.

In particular, sinceP�(p) = {0} for any singular pointp, we conclude that sing(P�)∩M = ∅
if dimR M < dimR U . We also point out that if� is a holomorphic integrable one-form inU then

given a submanifoldM ⊂ U the distributionP� is transverse toM if, and only if, for eachp ∈ M

we havep /∈ sing(F�) and alsoTp(Lp) + Tp(M) = Tp(R2n) (as real linear spaces); whereLp

is the leaf ofF� that contains the pointp ∈ M. ThusP� is transverse toM if, and only if, the

foliation F� defined by� is transverse toM in the sense of (Ito and Scárdua 2002a) which is the

ordinary sense.

Let now� =
n∑

j=1
fj (z)dzj in holomorphic coordinates in a neighborhood of the closed domain

D in C
n, then sing(�) = {p; fj (p) = 0, ∀j} and we define thegradient of � as the complexC∞

vector field

grad(�) =
n∑

j=1

fj (z)
∂

∂zj

· (1)

Given any isolated singularityp ∈ sing(�) we define theindex of � atp by

Ind(�; p) = Ind(

n∑
j=1

fj (z)
∂

∂zj

; p) = Ind(grad(�); p). (2)

Our main result is the following:

Theorem 1. (Ito and Scárdua 2002a,b).Let D ⊂⊂ C
n be a relatively compact domain with smooth

boundary ∂D ⊂ C
n. Assume that the (canonical)exact sequence H 1(D, Z) → H 1(∂D, Z) → 0

is exact. Then given any holomorphic one-form � in a neighborhood U of D in C
n such that the

corresponding holomorphic distribution P� is transverse to the boundary ∂D we have∑
p∈sing(�)∩D

Ind(�; p) = (−1)nχ(D) (3)
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where χ(D) is the Euler-Poincaré-Hopf characteristic of D.

Write � =
n∑

j=1
fj (z)dzj in holomorphic coordinates in a neighborhood ofo in C

n. We shall

say thato is asimple singularity of � if:


fj (o) = 0, j = 1, . . . , n

Det

(
∂fj (o)

∂zk

)n

j,k=1

�= 0.

As an immediate consequence of Theorem 1 we obtain:

Theorem 2. (Ito and Scárdua 2002a).Let � be a holomorphic one-form in a neighborhood U of

the closed ball B2n(0; R) in C
n, n ≥ 2. Assume that P� is transverse to the sphere S2n−1(0; R) =

∂B2n(0; R). Then n is even and � has exactly one singular point o ∈ B2n(0; R). Moreover this

singular point is simple.

In (Ito and Scárdua 2002b) one finds a natural extension of the above result for holomorphically

embedded closed balls in Stein spaces. In caseD ⊂⊂ C
n is Stein andn ≥ 3 we also obtain:

Corollary 1. (Ito and Scárdua 2002b).Let D ⊂ C
n be a relatively compact Stein domain

with smooth boundary ∂D ⊂ C
n and suppose n ≥ 3. Given any holomorphic one-form � in a

neighborhood of D with P� transverse to ∂D we have∑
p∈sing(�)∩D

Ind(�; p) = (−1)nχ(D).

Since Ind(�; p) ≥ 1 for all (isolated) singular point we obtain:

Corollary 2. Let D ⊂⊂ C
n and � be as in Theorem 1. If χ(D) = 0 then sing(�) ∩ D = ∅. If

χ(D) ≥ 1 then sing(�) ∩ D �= ∅ and necessarily n is even.

We also refer to (Ito and Scárdua 2002c) for further results.

2 SKETCH OF THE PROOF OF THEOREM 1

We have the canonical exact sequenceH 1(D) → H 1(∂D) → H 2(D, ∂D) and by hypothesis

H 1(D) → H 1(∂D) → 0 is exact. Take a holomorphic vector field�n in a neighborhood ofD

such that for eachq ∈ ∂D the vector�n(q) is non-zero and ortogonal to the complex tangent space

T C
q (∂D) < Tq(C

n). Given� as in Theorem 1 we introduce the analytic set

�� :=
{
q; �(q) · �n(q) = 0

}
.

Then for eachq ∈ ∂D we haveq ∈ �� if and only if grad(�)(q) ∈ T C
q (∂D). Since the

vector field grad(�) is orthogonal toP� we conclude that there exists a smoothbump-function

ϕ : C
n C∞−→ R such that

Z := grad(�) + ϕ · �n. (4)
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is transverse to∂D.

Using the hypothesis thatH 1(D) → H 1(∂D) → 0 is exact we obtain a real smooth section

(ie. aC∞ real vector field)̃ξ ∈ T Z over a neighborhood ofD which is transverse to∂D; indeed

ξ̃ is obtained as extension of a suitable vector fieldξ(z) = a(z)X(z) + b(z)Y (z) defined in a

neighborhood of∂D and which is transverse to∂D, whereX andY are given by

Z = 1

2
(X − √−1Y ).

Theorem 1 now follows from Poincaré-Hopf Index theorem (Milnor 1965) applied to the vector

field ξ̃ once we have the following lemma:

Lemma 1. (Ito and Scárdua 2002a).In the above situation we have:

(i) sing(�) ∩ D is finite, sing(�) ∩ D = sing(̃ξ );

(ii) Given any p ∈ sing(�) ∩ D we have Ind(�; p) = (−1)n Ind(̃ξ ; p).

Theorem 2 is a straightforward consequence of Theorem 1. Corollary 1 is proved recalling that

by Poincaré-Lefschetz duality (Griffiphs and Harris 1978) we have thatH 2(D, ∂D) � H2n−2(D) =
0 in the case of a Stein domain andn ≥ 3. �
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RESUMO

Nesta nota anunciamos alguns resultados obtidos no estudo de distribuições holomorfas admitindo hipersu-

perfícies reais fechadas transversais. Consideramos um domínio com bordo suave no espaço afim complexo

de dimensão dois ou maior. Suponha que o domínio satisfaz uma certa hipótese de trivialidade cohomológica

(por exemplo, se o domínio é uma bola). Provamos quese uma um-forma holomorfa em uma vizinhança

do domínio é tal que a distribuição holomorfa correspondente é transversal ao bordo do domínio então a

característica de Euler-Poincaré-Hopf do domínio é igual à soma dos índices da um-forma nos seus pontos

singulares dentro do domínio. Este resultado tem várias conseqüências e se aplica, por exemplo, ao estudo

de folheações holomorfas de codimensão um transversais a esferas.

Palavras-chave: Um-forma holomorfa, campo de vetores, característica de Euler-Poincaré, folheação, dis-

tribuição.
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