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ABSTRACT

We show that the Hopf differentials of a pair of isometric cousin surfaces, a minimal surface

in euclidean 3-space and a constant mean curvature (CMC) one surface in the 3-dimensional

hyperbolic space, with properly embedded annular ends, extend holomorphically to each end.

Using this result, we derive conditions for when the pair must be a plane and a horosphere.
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INTRODUCTION

As there is a way to deform simply-connected CMC 1 surfaces in hyperbolic 3-spaceH
3 to minimal

surfaces in Euclidean 3-spaceR
3 (Umehara and Yamada 1992), one might expect that there exist

cousins in these two spaces that are not simply-connected. However, although there are now many

known examples of minimal surfaces inR3 and also CMC 1 surfaces inH3 (see, for example,

Bryant 1987, Rossman et al. 1997, 2001, Sá Earp and Toubiana 2001, Yu 2001, Umehara and

Yamada 1993), and although non-simply-connected cousins pairs are easily found, such a pair of

surfaces with embedded ends is yet to be found. Our purpose is to investigate whether such a pair

can exist. Toward this goal, we apply recent results in Collin et al. 2001 about the behavior of

embedded CMC 1 ends inH3 to give various conditions under which such a pair cannot exist.

RESULTS

Let D ⊂ C be a simply-connected domain in the complex plane. Fix a pointz0 ∈ D. Let g be a

meromorphic function onD andω a holomorphic 1-form onD such thatω has a zero of order 2k
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if and only if g has a pole of orderk and so thatω has no other zeros. Set

�0(z) := Re
∫ z

z0

(
1 − g2, i(1 + g2), 2g

)
ω .

Then�0 : D → R
3 is a minimal immersion with induced metric

�∗
0(ds2

R3) = (
1 + |g|2)2 |ω|2 .

Furthermore,g is stereographic projection of the Gauss map of�0. This is the Weierstrass repre-

sentation.

On the other hand, for Weierstrass data(g, ω) onD, we can takeF : D → SL(2, C) such that

F−1dF =
(

g −g2

1 −g

)
ω , F(z0) =

(
1 0

0 1

)

and set

�1(z) := F(z)F (z)
t
.

Then�1 : D → {XX
t ∈ Herm(2); X ∈ SL(2, C)} ∼= H

3 is a CMC 1 immersion with induced

metric �∗
1(ds2

H3) = �∗
0(ds2

R3), whereH
3 = H

3(−1) is the hyperbolic 3-space with sectional

curvature−1. This is the Bryant representation (Bryant 1987, Umehara and Yamada 1993).F is

unique up to the formA · F , A a constant inSL(2, C), so�1 is unique up to rigid motions ofH3

(see Umehara and Yamada 1993).

This shows that given data(g, ω) onD, we can locally construct a pair of isometric surfaces,

a minimal surface�0(D) in R
3 and a CMC 1 surface�1(D) in H

3 (see Theorem 8 of Lawson

1970).

For both�0 and�1, the Hopf differentialQ onD is defined byQ = ωdg .

Definition 1. Let M be a Riemann surface and �0 : M → R
3 a conformal minimal immersion.

Then a CMC 1 immersion �1 : M → H
3 is a cousin surfaceof �0 if

�∗
1

(
ds2

H3

) = �∗
0

(
ds2

R3

)
holds. We refer to any such pair of surfaces �0 and �1 as cousins.

The following lemma is immediately obtained from §177 of Nitsche 1989:

Lemma 2. Let (g, ω) be the Weierstrass data of a simply-connected CMC 1 surface �1 : D → H
3.

Then any cousin minimal surface �0 in R
3 can be represented (up to a rigid motion) by the

Weierstrass data (g, eiθω) for some θ ∈ [0, π).

Recall that a surface hasfinite topology if it is homeomorphic to a compact Riemann surface

M with a finite number of points{p1, . . . , pk} removed, which we write asM = M \{p1, . . . , pk}.
We have the following proposition, which follows directly from results in Collin et al. 2001 and

Sá Earp and Toubiana 2001.

An Acad Bras Cienc (2003)75 (3)



COUSIN SURFACES IN EUCLIDEAN AND HYPERBOLIC SPACE 273

Proposition 3. Let M = M \ {p1, . . . , pk} be a Riemann surface of finite topology, and let

�1 : M → H
3 be a conformal CMC 1 immersion with properly embedded annular ends. Let

�0 : M → R
3 be a minimal immersion with embedded ends, and assume that �1 and �0 are

cousins. Then the Hopf differentials of �1 and �0 are holomorphic on M .

Remark 4. By Theorem 10 of Collin et al. 2001, all properly embedded annular CMC 1 ends in

H
3 are conformal to a punctured disk, thus the assumption that�1 is conformal is not actually a

restriction on the possible choices of�1. Because�0 and�1 are cousins,�0 : M → R
3 is also

conformal.

Proof of Proposition 3. Let ϕ1 : �∗
ε → H

3 be an arbitrary end of�1, where�∗
ε = {z ∈

C; 0 < |z| < ε} for someε > 0. As noted in Remark 4, we may assume thatϕ1 is conformal.

Let ϕ0 : �∗
ε → R

3 be the corresponding minimal end. By Theorem 10 of Collin et al. 2001,

ϕ1 has finite total curvature and is regular. Then by Umehara and Yamada 1993, we can take the

Weierstrass data associated withϕ1 in the following form:

g(z) = zµĝ(z) , ĝ(0) �= 0 , ω = zνŵ(z)dz , ŵ(0) �= 0 ,

whereĝ, ŵ are nonzero holomorphic functions on�ε = {z ∈ C; |z| < ε}, andµ, ν ∈ R, µ > 0,

ν ≤ −1, µ + ν ∈ Z, µ + ν ≥ −1.

By Lemma 2, there exists aθ ∈ [0, π) such that(g, eiθω) is the Weierstrass data associated

with ϕ0. Becauseg is stereographic projection of the Gauss map ofϕ0, g is well-defined on�∗
ε , so

µ ∈ N and hence−ν ∈ N.

The first and second coordinates ofϕ0 are

Re
∫ z

z0

(1 − g2)eiθω , −Im
∫ z

z0

(1 + g2)eiθω ,

andϕ0 is asymptotic to a catenoid or planar end, by Schoen 1983. Alsog(0) = 0, and the limiting

normal of the endϕ0 must be vertical. Therefore,ν must be−2 for the end to be embedded, and

ŵ′(0) must be 0 for the endϕ0 to be well-defined on�∗
ε .

Lemma 2.4 of Sá Earp and Toubiana 2001 showed that 0�= ĝ(0)ŵ(0) = (1 − µ2)/4µ. Soµ

cannot be 1 becausêg(0) �= 0 andŵ(0) �= 0. Furthermore, Lemma 2.9 of Sá Earp and Toubiana

2001 showed that

ŵ′(0) =
{

2ŵ(0)2ĝ(0) if µ = 2 ,

0 if µ ≥ 3 .

Soµ cannot be 2. Thereforeµ ≥ 3.

Thus the Hopf differentialsωdg andeiθωdg have orderµ + ν − 1 ≥ 0 atz = 0. Hence they

are holomorphic at each end, as well as onM itself. �

An endϕ0 : �∗
ε → R

3 (resp.ϕ1 : �∗
ε → H

3) is said to be aplanar end (resp.horosphere end)

if µ + ν ≥ 0. So we have the following corollary:
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Corollary 5. Hypotheses being as in Proposition 3, then �0 has only planar ends and �1 has

only horosphere ends.

Corollary 6. Let M = M \ {p1, . . . , pk} be a Riemann surface of finite topology so that M

has genus zero. Let �0 : M → R
3, �1 : M → H

3 be properly immersed cousin surfaces with

embedded ends. Then �0 is a plane and �1 is a horosphere.

Proof. Since there exists no nonzero holomorphic 2-differential on the sphereC ∪ {∞}, the Hopf

differential is identically zero. So both�0(M) and�1(M) are totally umbilic. Therefore�0 is a

plane and�1 is a horosphere. �

Corollary 7. Let M = M \ {p1, . . . , pk} be a Riemann surface of finite topology so that M has

genus γ . Let �0 : M → R
3, �1 : M → H

3 be properly immersed cousin surfaces with embedded

ends, and suppose they have total curvature more than −16π . Then �0 is a plane and �1 is a

horosphere.

Proof. Lopez 1992 showed that any minimal surface with total curvature−4π or −8π has a

non-holomorphic Hopf differentialQ onM. Thus the only possibility (other than a plane) is that

�0 : M → R
3 is a properly immersed minimal surface with embedded planar ends and total

curvature−12π . By Theorem 4 of Jorge and Meeks 1983, each end of�0 is embedded if and only

if ∫
M

KdA = −4π(k + γ − 1) (1)

holds, whereK anddA are the Gaussian curvature and the area element of�0. Sok+γ = 4. Since

any complete minimal surface with finite total curvature and one embedded end is a plane, and

since the only complete minimal surface inR
3 with finite total curvature and two embedded ends

is the catenoid (Schoen 1983),�0(M) is a torus with three embedded planar ends. But Theorem

26 of Kusner and Schmitt 1992 showed that such a surface does not exist, completing the proof.�

Corollary 8. Let M = M \ {p1, . . . , pk} be a Riemann surface of finite topology so that M

has genus one. Let �0 : M → R
3, �1 : M → H

3 be properly immersed cousin surfaces with

embedded ends. Then �0 and �1 each have at least 4 ends.

Proof. By Theorem 4 of Jorge and Meeks 1983 again, the right hand side of (1) is−4kπ . So

k ≥ 4, by Corollary 7. �

Remark 9. Theorem 3 of Miyaoka and Sato 1994 found examples of complete minimal surfaces

of genus one with four embedded ends, but they all contain non-planar ends.

Remark 10. Costa 1993 and Kusner and Schmitt 1992 found examples of complete minimal

surfaces of genus one with four embedded planar ends. But none of them satisfies the condition

that the Hopf differential extends holomorphically to the ends.
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Defining annular ends to be those which are homeomorphic to punctured disks, Theorem 12 of

Collin et al. 2001 showed that each end of a properly embedded non-totally-umbilic CMC 1 surface

�1 : M → H
3 with annular ends is asymptotic to an end of a CMC 1 catenoid. In particular, such

a surface does not have horosphere ends. We saw in the proof of Proposition 3, in conjunction with

Remark 4, that any single embedded annular end asymptotic to a CMC 1 catenoid inH
3 cannot

have a corresponding minimal cousin inR
3 with an embedded end. Hence,�1 does not have a

cousin�0 : M → R
3 with embedded ends. So we have the following corollary, in which we do

not need to assume thatM has finite topology, since finite topology was not assumed in Theorem

12 of Collin et al. 2001:

Corollary 11. Let M be a Riemann surface. Let �1 : M → H
3 be a conformal CMC 1 proper

embedding with annular ends, and let �0 : M → R
3 be a minimal surface with embedded ends.

Assume that �1 and �0 are cousins. Then �0 is a plane and �1 is a horosphere.

Remark 12. Regarding Corollary 11:

(i) If the assumption that�1 is embedded is removed, then the pair of cousin surfaces given by

the Weierstrass data

(g, ω) =
(

z,
n2 − 1

4
z−2dz

)
on M = C \ {0}, n ∈ N \ {1}

is a counterexample. In fact, each end of�1 in this example is ann-fold cover of an embedded

end, and�0 is an embedding.

��
once wrapped ��

twice wrapped

�0, n = 2 �1, n = 2

Fig. 1 – The surfaces�0 and�1 in (i) of Remark 12.
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(ii) If the assumption that�1 is embedded is replaced with the weaker assumption that only

the ends are embedded, then any possible counterexamples can not satisfy the conditions of

Corollaries 6 or 7 or 8.

(iii) If the weaker assumption in (ii) is used, and the assumption that the ends of�0 are embedded

is removed, then the pair of cousin surfaces given by the Weierstrass data

(g, ω) =
(

zn,
1 − n2

4n
z−1−ndz

)
on M = C \ {0}, n ∈ N \ {1}

is a counterexample to the corollary. In fact, in this example, each end of�1 is embedded,

and each end of�0 is ann-fold cover of an embedded end.

(iv) If the assumption that�1 is embedded is kept, but the assumption that each end of�0 is

embedded is removed, then the author does not know of any counterexamples to the corollary.

��
twice wrapped

��
once wrapped

�0, n = 2 �1, n = 2

Fig. 2 – The surfaces�0 and�1 in (iii) of Remark 12.

Remark 13. Theorem 3.3 of Choi et al. 1990 showed that a properly embedded minimal surface

in R
3 which has more than one end is minimally rigid. Corollary 3.4 of Umehara andYamada 1992

showed that if cousin surfaces̃�c : �ε → H
3(−c2) (c > 0) associated with a minimal surface

�0 ◦ ρ : �ε → R
3 are well-defined on�∗

ε for all c, then all of the surfaces in the associate family

of �0 are well-defined on�∗
ε , where

ρ : �ε 
 z �→ εe(z−ε)/(z+ε) ∈ �∗
ε

An Acad Bras Cienc (2003)75 (3)



COUSIN SURFACES IN EUCLIDEAN AND HYPERBOLIC SPACE 277

is the projection. However, this cannot lead us to another proof of Corollary 11, because we only

assume that the�c is well-defined whenc = 0, 1. Furthermore, we allowM to have positive

genus, so we are not considering well-definedness merely on domains which are simply-connected

or homeomorphic to�∗
ε .
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RESUMO

Mostramos que as diferenciais de Hopf de um par de superfícies primas, a saber, uma superfície mínima

em um espaço euclideano de dimensão 3 e uma superfície de curvatura média constante (CMC) um em

um espaço hiperbólico de dimensão 3, se estendem holomorficamente em cada fim. Usando este resultado,

obtemos condições para que o par seja um plano e uma horosfera.

Palavras-chave: superfícies mínimas, prismas de CMC 1, espaços hiperbólicos.
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