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ABSTRACT

In the space of cubic forms of surfaces, regarded as a G-space and endowed with a natural invariant

metric, the ratio of umbilic points with a negative index to those with a positive index is evaluated

in terms of the asymmetry of the metric, defined here. This work contains also a section with

references pertinent to umbilic points and one with a discussion of a connection of the above

defined ratio with that reported in 1977 by Berry and Hannay in the domain of Statistical Physics.
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1 UMBILIC POINTS, INVARIANT METRICS AND VOLUME RATIOS

At an umbilic point p of an oriented C3 surface S embedded in an oriented Euclidean 3-space R
3

the principal curvatures coincide. In a neighborhood of such point, S can be written in a Monge

chart as the graph z = h(x, y) of a function of the form

h(x, y) = k

2
(x2 + y2) + 1

6
(ax3 + 3bx2y + 3b′xy2 + a′y3) + o((x2 + y2)3/2). (1)

The frame (x, y; z) is positive and adapted to S at p. This means that the plane orthonormal

frame (x, y) is attached to the tangent plane, positively oriented, and the z-axis is along the unit

positive normal to S at p.

Any other such presentation as the graph Z = H(X, Y ) of a function

H(X, Y ) = K

2
(X2 + Y 2) + 1

6
(AX3 + 3BX2Y + 3B ′XY 2 + A′Y 3) + o((X2 + Y 2)3/2
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differs by a rotation

x = cos θX − sin θY, y = sin θX + cos θY, z = Z,

linking the positively oriented frames (X, Y ; Z) and (x, y; z), adapted to the surface at p.

The functions are related by H(X, Y ) = h(x, y); substitution leads to

K = k

A = a cos3 θ + 3b cos2 θ sin θ + 3b′ sin2 θ cos θ + a′ sin3 θ

B = −a sin θ cos2 θ + b cos θ(3 cos2 θ − 2) + b′ sin θ(2 − 3 sin2 θ) + a′ cos θ sin2 θ

B ′ = a sin2 θ cos θ + b sin θ(3 sin2 θ − 2) + b′ cos θ(3 cos2 θ − 2) + a′ cos2 θ sin θ

A′ = −a sin3 θ + 3b sin2 θ cos θ − 3b′ cos2 θ sin θ + a′ cos3 θ

(2)

Thus the group O(2) of rotations in the plane acts linearly, to the right, on the four dimensional

space of real cubic forms

1

6
(ax3 + 3bx2y + 3b′xy2 + a′y3),

identified with line vectors u = (a, b, b′, a′) in R
4.

Denote by �(θ) the matrix of the linear transformation in R
4, corresponding to the frame

rotation by an angle θ . That is U = u�(θ), with U = (A, B, B ′, A′) and u = (a, b, b′, a′).
From equation 2, we get

�(θ) =




cos3 θ − sin θ cos2 θ sin2 θ cos θ − sin3 θ

3 cos2 θ sin θ cos θ(3 cos2 θ − 2) − sin θ(2 − 3 sin2 θ) 3 cos θ sin2 θ

3 sin2 θ cos θ − sin θ(3 sin2 θ − 2) cos θ(3 cos2 θ − 2) −3 cos2 θ sin θ

sin3 θ sin2 θ cos θ cos2 θ sin θ cos3 θ


 (3)

The space U
4 of umbilic intrinsic cubic forms of surfaces is defined as the G-Space R

4,

endowed with the above action of the group G = O(2).

The quadratic form

T (u) = ab′ + a′b − b2 − (b′)2 (4)

is invariant under G = O(2). That is T (U) = T (u) if U = u�(θ). Thus it is defined on U
4. It

characterizes the transversal umbilic points, as those with T (u) �= 0.

It is well known that the Index I (u) of a transversal umbilic u is I (u) = 1
2sign(T (u)). See

(Bruce and Fidal 1989) and (Gutierrez and Sotomayor 1982, 1983) where the identification of

T �= 0 with the transversality to the manifold of umbilic 2-jets is made.

The index of an isolated umbilic counts the number of turns made by a principal direction at a

point of the surface that makes a small circuit around the umbilic, (Spivak 1980) and (Smyth and

Xavier 1992).

An Acad Bras Cienc (2003) 75 (4)



A METRIC PROPERTY OF UMBILIC POINTS 407

According to (Spivak 1980) and (Struik 1988), the differential equation of principal lines

around p in this chart is defined as a variety in the projective bundle. In the chart (x, y, [dx : dy]),
the variety is given by the equation:

P(x, y; [dx : dy]) = Ldy2 + Mdxdy + Ndx2 = 0, (5)

where the functions L, M and N are:

L = hxhyhyy − (1 + h2
y)hxy = −bx − b′y + h.o.t

M = (1 + h2
x)hyy − (1 + h2

y)hxx = (b′ − a)x + (a′ − b)y + h.o.t

N = (1 + h2
x)hxy − hxhyhxx = bx + b′y + h.o.t

and therefore T (u) = ∂(N,M)

∂(x,y)
|(0,0).

Theorem 1. (Gutierrez and Sotomayor 1982, 1991, Bruce and Fidal 1989). Let p be an umbilic

point and consider the Monge chart as in equation (1). The transversality condition T �= 0 holds

if and only if the surface P = 0 in equation 5 is regular along the projective line x = y = 0 covers

a punctured neighborhood of p. Then it defines a cylinder whose projection, with the projective

line removed, covers twice a punctured neighborhood of p, one for each of the two open cylinders

–one for each direction field– resulting from the removal of the projective line. The covering is

orientation preserving or reversing according to T > 0 or T < 0. See Figure 1 for an illustration

of one of the cylinders and its projection.

Fig. 1 – Index of Transversal Umbilic Points: left positive, right negative.

A metric in U
4 is a positive definite quadratic form such as q(u) = uQu∗, Q being a positive

definite real 4×4 symmetric matrix, invariant under the action of O(2). That is Q = �(θ)Q�(θ)∗,

for all θ .

Proposition 1. Any metric q(u) = uQu∗, invariant under the action of O(2), is given by Q of the
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form:

Q =




2
3α + 1

3β 0 α 0

0 β 0 α

α 0 β 0

0 α 0 2
3α + 1

3β


 (6)

where β > 0, and β( 2
3α + 1

3β) − α2 > 0, which gives the positivity of Q.

Proof. The proof follows by solving the equation Q = �(θ)Q�(θ)∗ first for θ = π/2 and

θ = π/4 and finally checking that it holds for all θ , the proof follows.

A criterion for the positivity of a symmetric matrix, consists of the positivity of all principal

minors (Gantmacher 1960), Chap. X, page 306. Notice that for Q in (6) the positivity of the second

and third principal minors imply that of the other two. �

Remark 1. Another way to obtain the expression of Q in (6) consists in projecting the 10 di-

mensional space M10 of 4 × 4 symmetric matrices M via the averaging A along the orbits of

�(θ):

A(M) = 1

2π

∫ 2π

0
�(θ)M�(θ)∗dθ. (7)

Denoting by mij the entries of the symmetric matrix M , integration in expression (7) gives:

α = (6m24 + 3m11 + 3m44 − m33 − m22 + 6m13)/16

β = (−6m24 + 9m11 + 9m44 + 5m33 + 5m22 − 6m13)/16
(8)

for the invariant symmetric matrix A(M). The other entries of Q in (6) are also corroborated by

integration in (8).

For the identity matrix I , A(I ) has α = 1/4, β = 7/4.

Proposition 2. The planes U1 : a = 3b′, a′ = 3b and U2 : a = −b′, a′ = −b are invariant

under the action of O(2). These spaces are mutually orthogonal, relative to q.

The quadratic forms r1 = r11
2 + r12

2 and r2 = r21
2 + r22

2, where

r11 = (a + b′)/8, r12 = −(a′ + b)/8, r21 = (a − 3b′)/24, r22 = (a′ − 3b)/24,

are invariant under the action of O(2). Also r1 and r2 vanish respectively on U2 and U1.

Furthermore, the symmetric matrices R1 and R2 which define r1 and r2 generate the lines

β = α and α = −β/3, which form the border of the admissible region β( 2
3α + 1

3β) − α2 > 0, in

Proposition 1.

Proof. The invariance of the planes is straightforward.

The plane U1 is spanned by u1,1 = (3, 0, 1, 0) and u1,2 = (0, 1, 0, 3); U2 is spanned by

u2,1 = (−1, 0, 1, 0) and u2,2 = (0, 1, 0, −1). Scalar multiplication relative to Q of these vectors

ends the proof.

The second and third items follow from a straightforward calculation. �
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Although other possibilities exist, in this work the forms r1 and r2 will be used as a reference.

Definition 1. Let q(u) = uQu∗ be as in Proposition 1. Write, q1 = r1/m2
1, q2 = r2/m2

2, for

positive constants m1 and m2, uniquely determined by qi = q|Ui
, i = 1, 2.

The asymmetry of q is defined by the ratio σ(q) = m2/m1.

Clearly σ(q) = m2/m1 ranges over all positive reals. Its expression in terms of α, β is given

in proposition 3.

Theorem 2. Let T be the quadratic form in equation 4, giving the index of transversal umbilic

points.

Relative to unit ball B(1, q) = {q(u) ≤ 1} of any invariant metric q in U
4, the ratio of the

volume V− of the cone C−, where T is negative, to that of the volume V+ of the cone C+, where

T is positive, is given by 9(σ (q))2, where σ(q) is the asymmetry of q, as in Definition 1 and

Proposition 3.

Proof. Direct calculation leads to

T = 72(−r2 + r1/9).

Therefore, in terms of q1, q2,

T = 72

[(
m1

3

)2

q1 − m2
2q2

]
.

The proof consists in computing the volume V− of the solid torus cone

C− : q2 ≥
(

m1

3m2

)2

q1, q ≤ 1

and divide it by the volume V+ of the solid torus cone

C+ : q2 ≤
(

m1

3m2

)2

q1, q ≤ 1.

Let vi1, vi2 be an orthonormal basis of Ui , i = 1, 2, relative to qi , so that they form a positive

orthonormal frame, relative to q, on U
4.

In q-orthonormal coordinates (x, y, z, w) relative to the frame vi1, vi2, i = 1, 2, it follows

that

T = 72

[
(
m1

3
)2(x2 + y2) − m2

2(z
2 + w2)

]
, q = (x2 + y2) + (z2 + w2). (9)

Let x = r cos θ, y = r sin θ and z = R cos γ, w = R sin γ , where 0 ≤ r ≤ 1, 0 ≤ R ≤ 1, 0 ≤
θ ≤ 2π, 0 ≤ γ ≤ 2π .

The element of volume dV in the metric q is given by dxdydzdw

Therefore, dV = rRdrdRdθdγ and

V1 =
∫

q≤1
dV = 4π2

∫
0≤r2+R2≤1

rRdrdR.
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Considering the change of coordinates r = t cos β, R = t sin β, 0 ≤ β ≤ π/2, 0 ≤ t ≤ 1,

we obtain ∫
0≤r2+R2≤1

rRdrdR =
∫

0≤β≤π/2, 0≤t≤1
t3 sin β cos βdtdβ = 1

8
.

Therefore, as it is well known, the volume of the unit ball in a four dimensional Euclidean

space is given by V1 = ∫
q≤1 dV = π2/2. See (Courant and John 1989), pg. 459.

Take tan β0 = m1
3m2

, the volume of the solid torus cone C+ is given by,

V+ = 4π2
∫ 1

0

∫ β0

0
t3 sin β cos βdβdt = π2

2
sin2β0.

Analogously, the volume of the solid torus cone C− is equal to

V− = 4π2
∫ 1

0

∫ π
2

β0

t3 sin β cos βdβdt = π2

2
(1 − sin2β0).

Therefore V−
V+ = (1−sin2 β0)

sin2 β0
= 1

tan2 β0
= 9(m2

m1
)2. �

Proposition 3. In terms of Q, as in equation 6, σ(q) is calculated as follows:

σ(q) = m2/m1 =
√

3α + β

3(β − α)
. (10)

Proof. In fact, by the uniqueness of the simultaneous diagonalization of the quadratic forms q and

T , see (Gantmacher 1960) pg. 314, equation 9 implies that the eigenvalues of matrix MT , of T ,

relative to Q, the matrix of q, are 72(m1
3 )2 and −72m2

2.

Separate direct calculation of these relative eigenvalues, which are those of the matrix MT Q−1,

gives 1
2(3α+β)

and − 3
2(β−α)

.

Equating the ratios of the eigenvalues in both calculations gives 9
(

m2
m1

)2 = 3 3α+β

β−α
, which

amounts to equation (10). �

2 AT THE CROSSROADS OF GEOMETRY AND GLOBAL ANALYSIS

The Geometric local properties of umbilic points, regarded as singularities, have been studied

focusing on the three following main aspects:

i) Topological, related to the Index sign of the principal line fields around the umbilic.

ii) Focal, describing the patterns, Hyperbolic Elliptic, of normal rays envelopes. This aspect is

related to Geometric Optics, Catastrophe Theory and Lagrangian Geometry. See (Thom 1972)

and (Wall 1977).

iii) Darbouxian, which counts the number of principal lines separatrices approaching the umbilic,

and, more generally, describes locally the foliations by principal lines.
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These aspects and their different types are discriminated and analyzed in terms of suitable

algebraic conditions in the G-space U
4.

A coherent differential geometric and topological picture of the set morphology and inclusion

relationships between the different sorts of umbilic types has been established by Porteous, see

(Porteous 1994), and previous reference quoted there. See also (Zeeman 1976), for the focal aspect,

and (Darboux 1896), (Gutierrez and Sotomayor 1982, 1983, 1991) and (Bruce and Fidal 1989), for

the Darbouxian types.

The globalization to the whole surface of the local analysis of Darboux, in the context of Struc-

tural Stability and Genericity of principal foliations, was carried out in (Gutierrez and Sotomayor

1982, 1983, 1991).

An additional extension led Gutierrez, Garcia, Sotomayor and others, to expand the study of

umbilic points and also principal foliations to surfaces and hypersurfaces in R
4. See (Gutierrez et

al. 1997), (Garcia and Sotomayor 2000) and (Garcia 2001).

Other foliations of interest in Classical Differential Geometry, such as asymptotic lines and

lines of mean curvature, defined also by quadratic differential equations similar to (5), have been

studied in (Garcia and Sotomayor 1997) and (Garcia et al. 1999) and (Garcia and Sotomayor 2001,

2002, 2003).

There remain deep open problems related to the structure of principal foliations around isolated

umbilic points on smooth surfaces, in the non-transversal case. See (Mello and Sotomayor 1999),

(Smyth and Xavier 1992) and (Ivanov 2002).

3 UMBILIC POINTS IN RANDOM SURFACES

In the domain of Statistical Physics, but still connected to Geometry and Topology, Berry and

Hannay (Berry and Hannay 1977) carried out a quantitative statistical study of the proportions in

which the different types of umbilic types are distributed in random surfaces, such as those modeling

an ocean or a lake. An issue here is to study how the presence of umbilic points in a random surface

influences the reflection on it of electromagnetic short waves. Although this work is more related

to the focal interpretation of umbilic points, it considers explicitly also their Darbouxian and Index

aspects.

This paper is the outcome of an initial attempt to provide a mathematical formulation and a

proof, in the tradition of Geometry and Classical Analysis, that could correspond to the conclusions

of (Berry and Hannay 1977), reported in the tradition of Statistical Physics.

Theorem 2 suggests a disagreement with the report of the calculations in (Berry and Hannay

1977) which claim that the statistical ratio is always 1, irrespective of the statistic anisotropy present

in the evaluation. The asymmetry of the invariant metric, used to make evaluations in this work,

may be considered as a geometric counterpart for the statistic anisotropy.

Considering only the local aspect of surfaces at umbilic points, this discrepancy may be due

to the fact that in the calculations made in (Berry and Hannay 1977), the cubic forms are regarded
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as vectors in R
4, with a fixed frame, and not as elements of the G-space U

4. The effect of this is

that the same umbilic on a surface is counted multiple times, one for each rotated frame.
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RESUMO

No espaço das formas cúbicas de superfícies, consideradas como um G−espaço e munido de uma métrica

invariante, é avaliado o quociente dos volume das formas cúbicas correspondentes aos umbílicos de índice

negativo pelo volume daquele correspondente aos umbíicos de índice positivo. Esta avaliação é expressa

em termos da assimetria da métrica, definida neste artigo. Este trabalho contém também uma seção com

referências a trabalhos relacionados aos pontos umbílicos e outra com uma comparação do quociente acima

citado com o obtido em 1977 por Berry e Hannay no domínio da Física Estatística.

Palavras-chave: ponto umbílico, linhas de curvaturas principais.
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