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ABSTRACT

In this note we will show that the inverse image under the stereographic projection of a circular

torus of revolution in the 3-dimensional euclidean space has constant mean curvature in the unit

3-sphere if and only if their radii are the catet and the hypotenuse of an appropriate right triangle.
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1 INTRODUCTION

We will denote by T (r, a) the standard circular torus of revolution in R
3 obtained from the circle

� in the xz− plane centered at (r, 0, 0) with radius a < r , i.e.

T (r, a) = {
(x, y, z) ∈ R

3 : (
√
x2 + y2 − r)2 + z2 = a2

}
.

Now let ρ : S
3 \ {n} → R

3 be the stereographic projection of the Euclidean sphere S
3 = {x ∈

R
4 :| x |2= 1}, where n = (0, 0, 0, 1) is its north pole. The inverse image of a circular torus

in R
3 under the stereographic projection will be called a circular torus in S

3. We would like to

know when circular tori in R
3 comes from constant mean curvature circular tori in S

3 under the

stereographic projection. A circular torus in S
3 meant that it is obtained from a revolution of a

circle in S
3 under a rigid motion. A general T (r, a) will not satisfy the above requirement. For

instance, it was proved by Montiel and Ros (Montiel and Ros 1981) that a compact embedded

surface S with constant mean curvature contained in an open hemisphere of S
3 must be a round

sphere. Hence for T (r, a) contained inside or outside of the unit ball B(1) ⊂ R
3, ρ−1(T (r, a))will

be contained in an open hemisphere of S
3 and can not have constant mean curvature. Then among
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all tori T (r, a) which intercept the inside and the outside of the unit ball B(1) we will describe

those which have the desired property. We will show that to construct such a torus we take an

arbitrary point P(α) = (cosα, 0, sin α) on the unit circle of the xz− plane, 0 < α < π/2, draw

its tangent until it meets the x axis at the pointQ(α) = (secα, 0, 0) which will be the center of the

circle � whereas its radius will be a = tan α, i.e. the torus T (secα, tan α) will satisfy the previous

requirement. We note ifO denotes the origin of R
3 then the triangleOPQ is a right triangle. This

description will yield that the Clifford torus is associated to a right triangle with two equal sides.

More precisely, our aim in this note is to present a proof of the following fact:

Theorem 1. Let T 2 ⊂ S
3 be a circular torus of constant mean curvature. Then

T 2 = ρ−1(T (secα, tan α)) = S1(cosα)× S1(sin α).

Moreover, the mean curvature of T 2 is given by H = (tan2 α − 1)

2 tan α
.

2 PRELIMINARIES

For an immersion f : M → M between Riemannian manifolds we will denote by ds2
f the induced

metric on M by f . Now let Mn, Mm
1 and Mm

2 be Riemannian manifolds, where the superscript

denote the dimension of the manifold. Consider ψ : Mn → Mm
1 be an immersion, ρ : Mm

1 → Mm
2

a conformal mapping and set ϕ = ρ ◦ ψ . Let φ : M → R be a function verifying ds2
ϕ = e2φds2

ψ .

If k̄i and ki denote the principal curvatures of ψ and ϕ = ρ ◦ ψ , respectively, then we get

ki = e−φ
(
k̄i − ∂φ

∂ξ

)
, (1)

where ξ is a unit normal vector field to ψ(M), see for instance (Abe 1982) or (Willmore 1982). At

first we will recall the following known lemma of which we sketch the proof.

Lemma 1. Let ψ = (ψ1, ψ2, ψ3, ψ4) : M2 → S
3 \ {n} be an immersion of a surface M2, set

ϕ = ρ ◦ ψ and suppose ds2
ϕ = e2φds2

ψ . Then we get

ki = e−φ(k̄i − g), (2)

where g = 〈ν, ϕ〉 denotes the support function on M2 ⊂ R
3.

Proof. If we put ψ = ψ(u1, u2) then a direct computation gives

〈 ∂ϕ
∂ui

,
∂ϕ

∂uj
〉 = λ2〈 ∂ψ

∂ui
,
∂ψ

∂uj
〉, (3)

where λ = (1 − ψ4)
−1 = 1+|ϕ|2

2 . So we can write ds2
ϕ = e2φds2

ψ with eφ = 1+|ϕ|2
2 . Thus if ν

denotes a unit normal vector field to ϕ(M2) then ν = e−φξ , where ξ stands for a unit normal vector

field to ψ(M2). Hence we have from (1)

ki = e−φk̄i − ∂φ

∂ν
= e−φ(k̄i − 〈ν, ϕ〉) = e−φ(k̄i − g),

as we wished to prove. �
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3 PROOF OF THE THEOREM

Proof. First we note that the circle� = {
(x, 0, z) ∈ R

3 : (x − r)2 + z2 = a2
}

can be parametrized

by the map γ : [0, 2π ] → R
3 defined by

γ (t) =
(
r2 − a2

r − a sin t
, 0,

a
√
r2 − a2 cos t

r − a sin t

)
.

In fact, it is enough to check that

(
r2 − a2

r − a sin t
− r

)2

+
(
a
√
r2 − a2 cos t

r − a sin t

)2

= a2.

Representing by Rθ a rotation on R
3 around the z − axis, we see that Rθ(γ (t)) is a circular

torus T (r, a) if γ is a parametrization of the circle � given above. We put now σ = √
r2 − a2,

θ = ru1/σ
2 and t = ru2/aσ . We note that such a choice implies 0 ≤ u1 ≤ (2πσ 2)/r and

0 ≤ u2 ≤ (2πaσ)/r . Let us call Rθ(γ (t)) of ϕ(u1, u2), i.e.

ϕ(u1, u2) = σ(r − a sin t)−1(σ cos θ, σ sin θ, a cos t). (4)

Hence we have

eφ = 1+ | ϕ |2
2

= q(t)

2(r − a sin t)
, (5)

where q(t) = a(σ 2 − 1) sin t + r(σ 2 + 1). Now a straightforward computation yields

⎧⎪⎪⎨
⎪⎪⎩

∂ϕ

∂u1
= r

(r − a sin t)
(− sin θ, cos θ, 0) ,

∂ϕ

∂u2
= r

(r − a sin t)2
(σ cos t cos θ, σ cos t sin θ, a − r sin t) .

From that we derive that ϕ is a conformal parametrization of T (r, a) satisfying

〈 ∂ϕ
∂ui

,
∂ϕ

∂uj

〉 = r2δij

(r − a sin t)2
. (6)

Moreover, a unit vector field normal to ϕ is given as follows:

ν (u1, u2) = − 1

(r − a sin t)
((a − r sin t) cos θ, (a − r sin t) sin θ,−σ cos t) .

Therefore we conclude that

g = σ 2 sin t

(r − a sin t)
. (7)
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On the other hand a new computation gives us

⎧⎪⎪⎨
⎪⎪⎩

∂ν

∂u1
= −(a − r sin t)

σ 2

∂ϕ

∂u1
,

∂ν

∂u2
= 1

a

∂ϕ

∂u2
.

(8)

From this we have k1 = (a−r sin t)
(r2−a2)

and k2 = − 1
a
. Taking into account (5), (7) and (8) we conclude

from Lemma 1 that

H = 1

4aσ 2

(
ra

(
σ 2 − 1

)
sin t + (

σ 2 + 1
) (

2a2 − r2
))
.

Now we have thatH is constant if and only if σ 2 = 1. Moreover, σ 2 = 1 yieldsH = 1
2a

(
a2 − 1

)
.

Since a < r we put a = r sin α, r = secα and this completes the proof of the theorem. �

We point out that H = 0 if and only if a = 1 and r = √
2 which corresponds to the right

triangle with two equal sides.

4 THE WILLMORE MEASURE ON T (r, a)

In this section we will present a simple way to compute
∫
T (r,a)

H 2dA by using the parametrization

of T (a, r) given by (4). We observe that if dA denotes the element of area of T (r, a) then its

Willmore measure is given by

(
H 2 −K

)
dA = r4

4a2σ 4
du1du2.

Hence, using Gauss-Bonnet theorem, we easily conclude that

∫
T (r,a)

H 2dA = r4

4a2σ 4

∫ 2πaσ
r

0

∫ 2πσ2
r

0
du1du2 = r2

a
√
r2 − a2

π2. (9)

Therefore the family of tori T
(√

2a, a
)

, which corresponds to the family of right triangles with

two equal sides, yields the minimum for
∫
T (r,a)

H 2dA among all circular tori. Moreover, from (9)

its value is (see also Willmore 1982)

∫
T (

√
2a,a)

H 2dA = 2π2.

Since a < r , if we choose α such that sin α = a
r
, we conclude from (9) the following corollary.

Corollary 1. Given a circular torus T (r, a) ⊂ R
3 we have a circular torus T (secα, tan α) ⊂ R

3

such that
∫
T (r,a)

H 2dA = ∫
T (secα,tan α) H

2
αdAα. In other words, the family of circular tori with

constant mean curvature in S
3 cover all values of

∫
T (r,a)

H 2dA.
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5 CONCLUDING REMARKS

We point out that Theorem 2 of K. Nomizu and B. Smyth (Nomizu and Smyth 1969) guarantees that

a flat torus of constant mean curvature in S
3 is isometric to a product of circles. Then ρ−1T (a, r)

is flat if and only if it has constant mean curvature. We notice if we set ψ = ρ−1ϕ where ϕ was

given by (4) then we have

ψ(u1, u2) = 1

q(t)

(
2σ 2 cos θ, 2σ 2 sin θ, 2aσ cos t, r(σ 2 − 1)+ a(σ 2 + 1) sin t

)
,

where q(t) = a(σ 2 − 1) sin t + r(σ 2 + 1), (see(5)). Hence by using (3), (5), (6) and putting

z = u1 + iu2 we conclude that

ds2
ψ = e−2φds2

ϕ = 4r2

q2(t)
| dz |2 .

According to our theorem the metric ds2
ψ is flat if and only if ρ−1T (r, a) has constant mean

curvature in S
3. In this case we have

ψ (u1, u2) = 1√
a2 + 1

(cos θ, sin θ, a cos t, a sin t) ,

i.e. ρ−1T (r, a) is isometric to the product of circles S1( 1√
a2+1

) × S1( a√
a2+1

). We note that this

yields cosα = 1√
a2+1

and sin α = a√
a2+1

, i.e. ρ(S1(cosα)× S1(sin α)) = T (secα, tan α).
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RESUMO

Neste artigo mostraremos que a imagem inversa pela projeção estereográfica de um toro circular de revolu-

ção no espaço euclidiano de dimensão 3 tem curvatura média constante se e somente se os seus raios são o

cateto e a hipotenusa de um triângulo retângulo apropriado.

Palavras-chave: Toro plano, Curvatura média constante, Toro circular, Projeção estereográfica.
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