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ABSTRACT
We establish a method for giving lower bounds for the fundamental tone of elliptic operators in
divergence form in terms of the divergence of vector fields. We then apply this methodltp the
operator associated to immersed hypersurfaces with locally bounded)-th mean curvature
Hr 41 of the space formBI"t1(c) of constant sectional curvatuce As a corollary we give lower
bounds for the extrinsic radius of closed hypersurfac@$'of-(c) with H, 11 > 0 in terms of the
r-th and(r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues
essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form.
This allows us to show that Cheeger’s constant gives a lower bounds for the first nanzero
eigenvalue of a closed hypersurface@®f1(c).

Key words: fundamental tonel, operator,r-th mean curvature, extrinsic radius, Cheeger’s
constant.

INTRODUCTION

Let 2 be a domain in a smooth Riemannian manifMdand let® : 2 — End(T ) be a smooth
symmetric and positive definite section of the bundle of all endomorphisfoEach sectiod

is associated to a second order self-adjoint elliptic opetatdrf ) = div (® grad f), f € C3(Q).
Observe that wher is the identity section thehq = A, the Laplace operator. Recall that the
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392 GREGORIO P. BESSA et al.

L o-fundamental tone af is given by

fo, |®@Y2grad f |2 '
Jo 12 ’

If © is bounded with smooth boundasf2 # @, thel -fundamental tone a2 coincides with the
first eigenvaluai“’(&?) of the Dirichlet eigenvalue probleing, u+ A u = 0 on2, withu|dQ2 = 0,
ue C32(Q)NCo%Q) \ {0}. If Qis bounded with empty boundaf = @ thenit*(Q) = 0.

A basic problem in Riemannian geometry is what lower and upper bounds-f@£2) can
be obtained in terms of Riemannian invariants. In this paper we show that the method estab-
lished by Bessa and Montenegro (Bessa and Montenegro 2004) that gives lower bounds for the
A-fundamental tone can be extended for self-adjoint elliptic operatgréTheorem 2.1). Then we
consider immersed hypersurfages M — N"*1(c) of the (n + 1)-dimensional simply connected
space formN"*1(c) of constant sectional curvatuees {1, 0, —1} with locally boundedr + 1)-th
mean curvature such that the differential operakgrs € {0, 1, ..., n} are elliptic. We give lower
bounds for the., -fundamental tone of domaigs C <p*1(BNM1(C)(p, R)), in terms of the -th and
(r + 1)-th mean curvatureBl, H 1, (Theorem 3.2), wherByn1,(p, R) is the geodesic ball of
N"*+1(c) centered ap with radiusR. From these estimates we derive three geometric corollaries
3.4, 3.5 and 3.8 that should be viewed as an extension of a result of Jorge and Xavier (Jorge and
Xavier 1981). It should be mentioned that these corollaries are related to results due to Vlachos
(Vlachos 1997) and to Fontenele and Silva (Fontenele and Silva 2001), see Remark 3.7. In The-
orem 3.10 we consider immersed hypersurfadesf N"+1(c) such that the operatots andLs,
0 < r,s < n are elliptic and we compare tHg andLs fundamental tones"r (Q2), A-s(Q2) of
domainsQ ¢ M c N™1(c). In section 4 we observe (Theorem 4.1) that in order to get bounds
for the eigenvalues of a self-adjoint elliptic differential operdigrwe essentially need bounds for
the Laplace operator eigenvalues. This allows us to use Cheeger’s constant to give lower bounds
for the first nonzerd., -eigenvalue of a closed hypersurfacédf-1(c). The results are stated and
discussed in Sections 2, 3 and 4 and the proofs are given in Section 5.

Abe(Q) = inf f e Co()\{0}¢. (1)

L $-FUNDAMENTAL TONE ESTIMATES

Our main estimate is the following method for giving lower boundslfgrfundamental tone of
arbitrary domains of Riemannian manifolds. It extends the version of Barta’s theorem (Barta 1937)
proved by Cheng-Yau in (Cheng and Yau 1977). It is the same proof (with proper modifications)
of a generalization of Barta’s theorem proved in (Bessa and Montenegro 2004).

THEOREM2.1. Let 2 be a domain in a Riemannian manifold and det: Q — End(T) be a
smooth symmetric and positive definite sectioRmd (T 2). Then thel -fundamental tone ak
has the following lower bound

Ate(Q) > supinf [div (®X) — [®¥2X]?]. (2)
x@ ©
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FUNDAMENTAL TONE ESTIMATES FOR ELLIPTIC OPERATORS 393

If © is bounded and with piecewise smooth boundeey ¢ then we have equality i(R).

Abe(©Q) = supin

f [div (®X) — |®Y2X|?]. (3)
x@ ¢

WhereX (Q2) is the set of all smooth vector fields tn

GEOMETRIC APPLICATIONS

Consider the linearized operatby of the (r + 1)-mean curvature

S

arising from normal variations of a hypersurfabk immersed into thgn + 1)-dimensional
simply connected space forN'*(c) of constant sectional curvatucee {1, 0, —1}, whereS ;4

is the (r + 1)-th elementary symmetric function of the principal curvatukgsks, . .., k,, see
(Reilly 1973) and (Rosenberg 1993) for details. Recall that the elementary symmetric function
of the principal curvatures are given by

Hr+1 =

S=1 S= Z ki,---k,, 1<r<n. (4)

i1<--<ir

Letting A = —(Vn) be the shape operator &fl, whereV is the Levi-Civita connection of
N™"1(c) andn a globally defined unit vector field normal ¥, we can recursively define smooth
symmetric section®;, : M — End(TM), forr = 0,1,...,n, called the Newton operators,
settingPy = | andP, = S1d — AR _; so thatR. (x) : TiM — T,M is a self-adjoint linear
operator with the same eigenvectors as the shape opé&afiine operatot_, is the second order
self-adjoint differential operator

Lp (f) =div (P gradf) (5)

associated to the sectidh. However, the sectionB, may be not positive definite and then the
operatord., may not be elliptic. However, there are geometric hypothesis that imply the ellipticity
of L,, see for instance, Reilly 1973, Caffarelli et al. 1985, Korevaar 1988 or Barbosa and Colares
1997. Here we will not impose geometric conditions to guarantee ellipticity oE thexcept in
corollary 3.5. Instead we will ask the ellipticity on the set of hypothesis. It is known the ordered
eigenvaluegu(x) < ... < u;, ()} of P (x) depend continuously ox € M. (Kato 1976 pages
106-109). Infact, this proof can be pushed to prove that they are Lipschitz thus differentiable almost
everywhere. In addition, the respective eigenved@r), . . ., ,(x)} form a smooth orthonormal
frame in a neighborhood of every point. $€B) = sup,y{u,(X)} andu(P) = infyem{n](X)}.
Observe that ijx (P;) > 0 thenP; is positive definite, thug, is elliptic.
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394 GREGORIO P. BESSA et al.

We need the following definition of locally boundéd+ 1)-th mean curvature hypersurface
in order to state our next result.

DerINITION 3.1. An oriented immersed hypersurfage: M — N of a Riemannian manifold
N is said to have locally bounded + 1)-th mean curvatureéH, ,; if forany p € N andR > 0,
the number

Fe1 ) “IHra ()] x € (M) N Bn(p, R)

hri1(p, R) = 5Up{|3+1(x)| = (

is finite. HereBn(p, R) C N is the geodesic ball of radiuR with center atp € N.

Our next result generalizes in some aspects the main application of (Bessa and Montenegro
2003). There the first and fourth authors give lower bounds\fdundamental tone of domains
in submanifolds with locally bounded mean curvature in complete Riemannian manifolds.

THEOREM3.2. Lety : M — N"*1(c) be an oriented hypersurface immersed with locally bound-
ed(r + 1)-th mean curvaturegd, 1 for somer < n — 1 and withu(P) > 0. Let Byni1) (P, R)

be the geodesic ball centered pt e N™(c) with radiusR and @ C ¢~ *(Byni1(p, R))

be a connected component. Then thefundamental tong.'r () of Q has the following lower
bounds.

r+1-h(p. R

i. Forc=1and0 < R < cot™? [ ] we have that

nN—r)-infqg §
1 .
At(Q) =2 B [(n —r)-coR]-inf § —(r +1) - hr1a(p, R)] : (6)
(n—=r)-infg §

we have that

i. Forc<0,h ,R Oand0 < R <
= 0P, B 22 (r +1)-ha(p, R

1 ,
M@ =2 o5 [(-0inf§ -0 +D-R-heap R). (7)

iii. Ifc=<0,h1(p, R) =0andR > 0we have that

2n—r)infqg §

Ly
AT(S2) = Rz

(8)

DEFINITION 3.3. Letg : M < N be an isometric immersion of a closed Riemannian manifold
into a complete Riemannian manifol. For eachx € N, letr(x) = SURjem disty (X, @(Y)).
The extrinsic radiugke(M) of M is defined by

Re(M) = )i(nLr(x).

Moreover, there is a pointy € N called the barycenter af(M) in N such thatRe(M) = r (Xp).
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FUNDAMENTAL TONE ESTIMATES FOR ELLIPTIC OPERATORS 395

COROLLARY 3.4. Letgp : M < Byniy(R) C N"*1(c) be a complete oriented hypersurface
with boundedr + 1)-th mean curvaturéd, ,; for some < n — 1, Rchosen as in Theorem (3.2).
Suppose that(P;) > 0 so that theL, operator is elliptic. TherM is not closed.

COROLLARY 3.5. Letyp : M — N"1(c)!, ¢ € {1,0, —1} be an oriented closed hypersurface
with H, .1 > 0. Then there is an explicit constant, = A, (c, infy §, supy S+1) > 0 such
that the extrinsic radiufRRe(M) > A;.

(r +1) -supy S+1:|
n—=r)-infyus |
n—=r)-infy S
(r+21)-supy S1

i. Forc=1, A, =cot‘1[

i. Force {0, -1}, A; =

REMARK 3.6. The hypothesisi,,; > O implies thatH; > O andL; are ellipticforj =0, 1, ...r,
see Barbosa and Colares 1997, Caffarelli et al. 1985 or Korevaar 1988. Thus in fact have that
Re > max{Ao, - -+, Ar}.

REMARK 3.7. Jorge and Xavier, (Jorge and Xavier 1981) proved the inequalities of Corollary 3.5
whenr = 0 for complete submanifolds with scalar curvature bounded from below contained in a
compact ball of a complete Riemannian manifold. Moreover fer—1 their inequality is slightly

better. It is possible to give sharp estimates for the extrinsic radius of a closed hypersurface of
N"*1(c) in terms of sup, |H, | alone. Vlachos (Vlachos 1997) proved a result that implies that, for
each

1 <r <n, R(M) > (sup/H, )",

Re(M) > cot *(sup|H, "',
Ro(M) > coth Y(sup|H, )"

%

\Y

if c=0,c=1o0rc= —1respectively, and that in any case the equality holds if and ori¥y if
is a geodesic sphere of the ambient space. The result of Vlachos was extended to any ambien:
space by Fontenele and Silva (Fontenele and Silva 2001).

REMARK 3.8. An interesting question is: Is it true that any closed oriented hypersurface with
ui (M) > 0 andH, 41 = O intersect every great circle? Fore= 0 it is true and it was proved by
T. Frankel, (Frankel 1966).

We now consider immersed hypersurfagesM — N"*1(c) with L, andLs elliptic. We can
compare the., andLs fundamental tones of a domahC M. In particular we can compare with
its Lo-fundamental tone.

THEOREM3.9. Letgp : M — N"*1(c) be an orientedh-dimensional hypersurfackl immersed
into the (n + 1)-dimensional simply connected space form of constant sectional cunatume

LIf ¢ =1 suppose thaN"t1(c) is the open hemisphere &f} ™.
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396 GREGORIO P. BESSA et al.

w(P) >0andu(Ps) >0,0<s,r <n-1 LetQ c M be adomain with compact closure
and piecewise smooth nonempty boundary. Therithand Ls fundamental tones satisfies the
following inequalities

L, n(P) o Ls
A7) = Py A72(€2) )
From (9) we have in particular that
v(P) - 2%(Q) = AN Q) = u(P) - A2(Q) (10)

CLOSED EIGENVALUE PROBLEM

Let M be a closed hypersurface of a simply connected space frmh(c). The interesting
problem is what bounds can one obtain for the first noni:«alfeigenvalue\ir (M) in terms of the
geometries oM and of the ambient space. Upper bounds for the first nonzezigenvalue or even
forthefirstnonzerad., -eigenvalue; > 1 have been obtained by many authors in contrast with lower
bounds that are rare. For instance, Reilly (Reilly 1977) extending earlier result of Bleecker and
Weiner (Bleecker and Weiner 1976) obtained upper boundéjdel) of aclosed submanifoltll of
R™interms of the total mean curvaturelf. Reilly’s result applied to compact submanifolds of the
sphereM c S™1(1), this latter viewed as a hypersurface of the Euclidean spatE1) ¢ R™+2
obtains upper bounds fmf(M), see Alencar, Do Carmo and Rosenberg in Alencar et al. 1993.
Heintze (Heintze 1988) extended Reilly’s result to compact manifolds and Hadanaenitblds

M. In particular for the hyperbolic spadé"*'. The best upper bounds for the first nonzero
A-eigenvalue of closed hypersurfadésof H'*! in terms of the total mean curvature bf was
obtained by El Soufi and llias (Soufi and llias 1992). RegardingLtheperators, Alencar, Do
Carmo and Rosenberg (Alencar et al. 1993) obtained sharp (extrinsic) upper bound the first
nonzero eigenvalutkir (M) of the linearized operatdr, of compact hypersurfaced of R™*!

with §,1 > 0. Upper bounds fokif(M) of compact hypersurfaces 8f+1, H"*! under the
hypothesis that_; is elliptic were obtained by Alencar, Do Carmo, Marques in (Alencar et al.
2001) and by Alias and Malacarne in (Alias and Malacarne 2004) see also the work of Veeravalli
(Veeravalli 2001). On the other hand, lower bounds)fbr(M) of closed hypersurfaceldl C
N"*+1(c) are not so well studied as the upper bounds, except fer0 in which case.g = A.

In this paper we make a simple observation (Theorem 4.1) that to obtain lower and upper bounds
for the L 4-eigenvalues (Dirichlet or Closed eigenvalue problem) it is enough to obtain lower and
upper bounds for the eigenvaluesdfand for the eigenvalues for the Laplacian in the respective
problem. When applied to the, operators (supposing them elliptic) we obtain lower bounds
for closed hypersurfaces of the space forms via Cheeger’s lower bounds for the-&igen-

value of closed manifolds. Ldiui(X) < ... < un(X)} be the ordered eigenvalues ®f(x).
Settingv(®) = sup.q{un(X)} andu(P®) = infyea{n1(x)} we have the following theorem.
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FUNDAMENTAL TONE ESTIMATES FOR ELLIPTIC OPERATORS 397

THEOREM4.1. LetAl* () denote the. »-fundamental tone o if Q is unbounded 06Q # ¢
and the first nonzerdlcp-eigenvaluekk“’(sz) if Q is a closed manifold. Thek*(Q) satisfies the
following inequalities,

V(@) - AHQ) = AR(Q) = (@) - AN(Q), (11)
wherer” (Q) is the A-fundamental tone a® or the first nonzera\-eigenvalue of2.

Let M be a closedh-dimensional Riemannian manifold, Cheeger (Cheeger 1970) defined
the following constant given by

h(M) = inf V015 ,
S min{vol,(R21), vol,(225)}

(12)

whereS c M ranges over all connected closed hypersurfaces diviblirig two connected com-
ponents, i.eM = Q1 U 5, Q1 N Q, = @ such thatS = Q1 = 92, and he proved that the first
nonzeroA-eigenvalue.; (M) > h(M)2/4.

COROLLARY 4.2. Lety : M — N™1(¢), ¢c € {1,0, —1}2 be an oriented closed hypersurface

with H;,; > 0. Then the first nonzerb, -eigenvalue oM has the following lower bound

h2(M)
4

ALT(M) > u(P) -

PROOF OF THE RESULTS
PROOF OF THEOREM2.1.

Let ©2 be an arbitrary domairX be a smooth vector field o2 and f € C5°(2). The vector field
f 2d X has compact support supp?®X) C supp(f) C Q. LetS be aregular domain containing
the support off . We have by the divergence theorem that

0 = fdiv(f2<I>X) = /div(f2q>X)
S Q

= /[(gradfz,CDX)Jr f2div (®X)]
Q

(13)

> /[—2-|f|-|<I>1/2gradf|-|<I>1/2X|+div(<I>X)- £2]

Q
> /[—|c1>1/2gradf|2— f2. |0Y2X|? 4 div (®X) - f2].

Q

Therefore
f|cl>1/zgradf|2 > /[div(cDX)—|<I>1/2X|2] f2
>

; ; 1al/2y 2 2
|rS12f[d|v(<I>X) | D X|]f9f

2f ¢ = 1 suppose thdt™*(c) is the open hemisphere 8f .
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398 GREGORIO P. BESSA et al.

By the variational formulatioril) of A-* () this inequality above implies that

A (@) = inf [div(@X) — [@Y2XP?] . (15)

When Q is a bounded domain with smooth bounda@ # ¢ thenit*(Q) = A?(Q). This
proof above shows that
A(Q) > inf [div (®X) — |0V2X]?] .

Letv € C2(Q)NCY(Q) be a positive first -eigenfunction of Q and if we seiXq = —grad logv)
we have that
div (®Xg) — |®Y2X|? = —div ((1/v) ® gradv) — (1/v?) |®Y2 gradv|?
= (1/v?)(gradv, ® gradv) — (1/v) div (® gradv) — (1/v?) |®Y? gradv|? (16)
= —(1/v)div(d gradv) = —Lo(v)/v = A*(R2).
This proves (3).

PROOF OFTHEOREM 3.2 AND COROLLARIES3.4, 35 AND 3.8

We start this section stating few lemmas necessary to construct the proof of Theorem 3.2. The
first lemma was proved in (Jorge and Koutrofiotis 1980) for the Laplace operator and fior the
operator in (Lima 2000). We reproduce its proof to make the exposition complete.

LEMMA 5.1. Lety : M — N™1(c) be a hypersurface immersed (n 4 1)-dimensional simply
connected space forh'*1(c) of constant sectional curvatuee Letg : N™*1(c) — R be a smooth
function and sef = go ¢. Identify X € T,M with de(p)X € T, ¢(M) then we have that

L f(p) = > ul Hessg(e(p)) (8. &) + Trace(AR)(gradg. ) (17)
i=1

PROOF EachP; is also associated to a second order self-adjoint differential operator defined by
Of = Trace(P, Hesy f)) see (Cheng and Yau 1977, Hartmann 1978). We have that

Of = Trace(P, Hesy(f)) = div (P, gradf) — (Trace(VPR,), gradf). (18)

Rosenberg (Rosenberg 1993) proved that when the ambient manifold is the simply connected
space formN"*1(c) then Trace(VP,) grad = 0, see also (Reilly 1973). Thus one has that
L, f = Trace(P; Hesg f)). Using Gauss equation to compute HeEswe obtain

Hessf (p)(X,Y) = Hessg(p(p) (X, Y) + (gradg, a (X, Y))e(p). (19)

where(x (X, Y), n) = (A(X), Y). Let{e } be an orthonormal frame aroumpdthat diagonalize the
sectionP; so thatP; (x)(g) = u{ (X)&. Thus

n n

L f =) (R Hessf(a), &) =) (Hessf(e),uja) =) ufHessf(a.@) (20)
i=1 i=1 i=1

3 v e C2(@) N HY(®) if 9 is not smooth.
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FUNDAMENTAL TONE ESTIMATES FOR ELLIPTIC OPERATORS 399

Substituting (19) into (20) we have that

Lf = Y ,u Hesgy(e,e) + (gradg, Y7, ula(e, e))
= Y, ufHesy (e, e) + (gradg, o (Y], P(e), &)) 21)
= Y, ul Hesy(e.&) + Trace(AR)(gradg, n)

Here Hesd (X) = Vxgradf and Hesd (X, Y) = (Vxgradf, Y). The next two lemmas we are
gong to present are well known and their proofs are easily found in the literature thus we will omit
them here.

LEMMA 5.2 [Hessian Comparison Theoremlet M be a complete Riemannian manifold and
X0, X1 € M. Lety : [0, p(X1)] — M be a minimizing geodesic joining andx; wherep(x) is the
distance functiomlist \; (Xg, X). Let K be the sectional curvatures & andv(p), defined below.

ky - cothtky - p(x)), if sup K =—k?

v(p) = i if sup K=0 (22)
P (X)

ki - cot(ky - p(x)), if sup, K =kandp < m/2k.

LetX = Xt + XT e TuM, XT = (X, ¢}y’ and (X*, y’) = 0. Then
Hessp(x)(X, X) = Hessp(X)(X*, X) > v(p(X)) - [| X*]2 (23)

See (Schoen and Yau 1994) for a proof.

LEMMA 53. Letp e M andl <r < n—1, let{e} be an orthonormal basis df,M such that
P(e) = ufe andA(g) = ke. Then

i. Trace(P) =", ul =(M-r)S
i. Trace(AR) =Y kul =@ +1S 1

In particular, if the Newton operatoP; is positive definite thef > 0.

To prove Theorem (3.2) set: B(p, R) ¢ N"*1(c) — R given byg = R? — p?, wherep is
the distance functionp(x) = dist(x, p)) of N"*1(c). Settingf = g o ¢ we obtain by (17) that

n
Lof =) uj Hesgg(g.e)+ ( +1)- S (gradg, n). (24)
i=1

since Trac€ AR) = (r +1) - S 1. Letting X = —grad logf we have that

div P X — [PY2X|2 = —L,(f)/f
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then by Theorem (2.1) we have that

AtQ) > irswzf(—Lr f/f)

n (25)

. 1 ;

= inf {—5 [Z“i -Hessg (e, &)+ (r +1) - §1- (gradg, n)“ :
i=1

Computing the Hessian gf we have that

Hessg(e,8) = (Veqgradg,e)
—2(Vgpgradp, &)

5 (26)
= —2(gradp, §)° —2p (Vqgradp, &)
—2(gradp, §)* — 2p Hesso (. ).
Therefore we have that
L, f 2 A 5
TF TR 2 Y ul lgradp, @)? + pHesso(g, @)1+ (" +1) - S41-p- (gradp, m) | (27)
i=1

Settinge"” = (gradp, & )gradp ande' = g — €', by the Hessian Comparison Theorem we have
that

n

uil(gradp, &)® + pHessp(a. )] = > ui [I€ 17+ o - v(p)lg"1I?] (28)
i=1 i=1

and
r+1)-Sq1-p-(gradp,n) < r +1 R -h41(p, R) (29)

From (28) and (29) we have that

Ab(Q) > igf(—er/f)
1 n (30)
> 2-inf {Rz—_pz [; i [ 16712+ 0 v ] = (T +D) - R hrya(p, R)“
If ¢ < 0thenp - v(p) > 1 thus from (30) we have that
1 B n
MW@ = 2- o5 |inf {;u [||qT||2+||¢||2]} — (4D R-ha(p, R)}
1 . !
= 2-@ igfi;u{ —(r+1)-R-h(p, R)} (31)
= 2-% _(n—r)infS—(r+1)-R-hr+1(p, R)].
R4 L Q
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If c > 0thenp - v(p) = p - /C-cotf/Cp] < 1thus from (30) we have that

1
R2

\
N

n
@) = inf 2#4 (16712 + 1612] - ﬁ-cot[ﬁp]} —(+1)-R-hrpa(p, R)}
1=

l ) n
= [inf 3> uf pﬁcot[ﬁp];—(r+1)~R~hr+1(p, R)} (32)

i=1

(n—r)-R-ﬁ-cot[ﬁR]Jng —(r+1-R-h1(p, R)].

To prove the Corollaries (3.4) and (3.5) observe that the hypothed@s(M) > 0 (in Corol-

lary 3.4) andH,,; > 0 (in Corollary 3.5) imply that thé is elliptic. If the immersion is bounded
(contained in a ball of radiuR, for those choices oR) andM is closed we would have by one
hand that thed., -fundamental tone would be zero and by Theorem (3.2) that it would be positive.
ThenM can not be closed if the immersion is bounded. On the other hadisf closed a ball

of radius R centered at the barycenter bf could not contairM because the fundamental tone
estimates for any connected compon@nt ¢ ~*(¢(M) N Byni1) (P, R) is positive. Showing that

M # Q.

PROOF OFTHEOREM 3.9.

Let ¢ : W — N"*1(c) be an isometric immersion of an orientaedimensional Riemannian
manifoldW into a(n 4+ 1)-dimensional simply connected space form of sectional curvaturet

M C W be a domain with compact closure and piecewise smooth nonempty boundary and suppose
that the Newton operatorig andPs, 0 < s, r < n — 1 are positive definite when restricted to

M. Given a vector fieldk on M we can find a vector field on M such thatP, X = « - FsY, «
constant. Now

div (P, X) — |[PY2X? = «k-div(PsY) — (P X, X)
= «-div(PsY) — k?(PsY, PTIRSY) (33)
= k- [div(PsY) — [PY2Y [P + [PI2Y |2 — k- |PTHY2RY 7]

Consider{e } be an orthonormal basis such tae = uie andPsg = pjg. LettingY =
>, vie then

12y 2 12pvi2 S L (ud)?
IPY2Y 12—k |PTY2RY)2 = Zuiyi o
K
= ZM.Y.[ } (34)
i

. wu(Pr)
0, if v < (P

(A%
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Combining (33) with (34) and by Theorem (2.1) we have that
Atr(my = s>l<1pir'\}|f div (P, X) — |PY2X?
> K -s\l(inr'\)If div (PsY) — |PY2Y|? (35)
=« - At (M),

P
for every O< « < r(R)
v (P

S

This proves (9).

PROOF OFTHEOREMA4.1.

Recall that for any smooth symmetric sectibn Q — End(T2) there is an open and dense sub-
setU c Q@ where the ordered eigenvalugs; (X) < ... < un(x)} of ®(x) depend continuously
in all Q. In addition, the respective eigenvectdes(X), ..., e,(X)} form a smooth orthonormal
frame in a neighborhood of every point@f see (Kato 1976). Let € C2(Q) \ {0} (f € C%(Q)
with [ f = 0) be an admissible function for (the closkg-eigenvalue problem if2 is a closed
manifold) the DirichletL ¢-eigenvalue problem. It is clear thdtis an admissible function for
the respective\-eigenvalue problem. Writing grafix) = >, & (f)e (x) we have that

|®Y2gradf|?(x) = (dgradf, gradf)(x)

= <Zui(X)a(f)a, Za(f)a> (36)

i=1 i=1

= Y e ).

i=1

From (36) we have that

v(®) - [grad f [2(x) > |[®Y?grad f|2(x) > (®) - |grad f [3(x) (37)
and df|? 1/2 df|? df|?
b
ooy JulORATE Ju (@ ZORATE | (o) Ju 19201 (38)
Ju f Ju f Ju f

Taking the infimum over all admissible functions in (38) we obtain (11).

RESUMO

Estabelecemos um método para obter limites inferiores para o tom fundamental de operadores elipticos en
forma divergente em termos do divergente de campos de vetores. Aplicamos esse método para 0os operadore
L, associados a hipersuperficies imersas nas formas esgéltiajgle curvatura seccional constanteom

(r + 1)-curvatura médidd; 1 localmente limitada. Obtemos como corolario limites inferiores para o raio
extrinseco de hipersuperficies compactas das formas espéitiaicomH; 11 > 0 em termos das-ésima
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er + 1l-ésima curvatura médias. Finalmente, observamos que limites para os autovalores do Laplaciano
essencialmente limitam os autovalores dos operadores elipticos em forma divergente. Isso permite mostra
gue a constante de Cheeger limita inferiormente o primeiro autovalor ndo-nulo dos opetaderes
hypersuperficies compactas Ne(c).

Palavras-chave:tom fundamental, operaddy, r -curvatura média, raio extrinseco, constante de Cheeger.
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