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ABSTRACT

In Kupka et al. 2006 appears the Focal Stability Conjecture: the focal decomposition of the generic Riemann

structure on a manifold M is stable under perturbations of the Riemann structure. In this paper, we prove

the conjecture when M has dimension two, and there are no conjugate points.

Key words: geodesics, focal decomposition, focal stability, genericity, Teichmuller space.

1 INTRODUCTION

Let M be a compact, smooth manifold of dimension m, and let R = Rr be the space of Cr Riemann

structures on M , equipped with the natural Cr topology, 2 ≤ r ≤ ∞. Fix p ∈ M . The kth focal

component with respect to g ∈ R at p is

σk = {v ∈ Tp M : ∃ exactly k vectors v = v1, . . . , vk ∈ Tp M with

|v1| = · · · = |vk | and exp(v1) = · · · = exp(vk)},

where 1 ≤ k ≤ ∞, and | |, exp refer to the Riemann structure g.

The focal decomposition Tp M = ⊔
k σk is said to be focally stable if a small perturbation of g has

only a distant topological effect on
⊔

σk . Precisely, we require that given ε > 0 and given a compact set

S ⊂ Tp M , there is a neighborhood U of g inR and there are balls B, B ′ ⊂ Tp M such that for each g′ ∈ U ,

(a) S ⊂ B ∩ B ′.

(b) There is a homeomorphism h : B → B ′ that sends each σk(g) ∩ B onto σk(g′) ∩ B ′.
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Thus, the focal decomposition
⊔

σk enjoys a kind of structural stability.

In Kupka et al. 2006 we investigated the concept of focal stability with an eye to proving the following

Focal Stability Conjecture: the generic Riemann structure is focally stable. (SinceR is an open subset of a

complete metric space, genericity makes sense.) The main result of this paper concerns Riemann structures

that have no conjugate points. It is most easily stated for the open set N ⊂ R of Riemann structures on

T M whose Gauss curvature is everywhere negative. See Section 7 for a discussion of the more general

case that g has no conjugate points.

THEOREM A. For a compact manifold of dimension two, the generic Riemann structure g ∈ N is focally

stable.

A different sort of result is also given. It concens surfaces of constant negative curvature. Fix a compact

smooth surface of genus s ≥ 2, such as the bitorus, and letH denote the nonempty set of Riemann structures

on M with curvature everywhere equal to −1. Since H is a clsoed subset of R, genericity in H makes

sense. Modulo isometric deformationsH is the Teichmuller space τs .

THEOREM B.

(a) Fix g ∈ H. For the generic p ∈ M, the focal decomposition of Tp M is stable with respect to

perturbations of p in M.

(b) Fix p ∈ M. For the generic g ∈ H, the focal decomposition of Tp M is stable with respect to

perturbations of g withinH.

2 MEDIATRICES

When the Riemann structure on M has non-positive curvature, there are no conjugate points and so expp :
Tp M → M is the universal covering space. Let ḡ be the lift of g to Tp M , and let d̄ be the corresponding

metric on Tp M . The focal decomposition of Tp M can be described in terms of equidistance loci, called

mediatrices by Bernhard and Veerman in Bernhard and Veerman 2006, as follows. A vector v1 ∈ σk has k

“ friends” – vectors v1, . . . , vk ∈ Tp M of equal length and equal exponential image. (A vector is always a

friend of itself.) This implies that there are exactly k points in exp−1
p (p), one of which is the origin Op of

Tp M , and from which v1 is equidistant with respect to the metric d̄. See Figure 1.

3 A MULTITRANSVERSALITY RESULT

In Kupka et al. 2006, following Mather, we considered the multi-exponential map

Ek : V k
p ×R→ (M × R)k

(v1, . . . , vk, g) 
→ (exp(v1), |v1|, . . . exp(vk), |vk |),

where V k
p is the set of k-tuples of distinct nonzero vectors in Tp M , and exp, | | refer to the Riemann

structure g. The diagonal of (M × R)k is

� = {(q, �, . . . , q, �) : q ∈ M and � ∈ R}.
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Fig. 1 – Mediatrices µ corresponding to the focal decomposition. The d̄-distance

from v1 to Op, p̄2, p̄3 is �. The vectors v1, v2, v3 have common exponential image

q, while Op, p̄2, p̄3 have exponential image p.

Theorem 6.1 of Kupka et al. 2006 states that if k ≥ 3 then Ek is transverse to �. Here we need also the

case k = 2. Although the proof becomes easier if we use a negative curvature hypothesis, we give the proof

in general, since we hope to use the theorem as tool when M has conjugate points.

Theorem 3.1. E2 : V 2
p ×R→ (M × R)2 is transverse to �.

PROOF. We give the proof in the case that M has dimension two, the main difference from the higher

dimensional case being notational.

Lemma 6.3 of Kupka et al. 2006 states that, given L > 0, there is an open-dense set G(p, L) ⊂ R
such that for g ∈ G(p, L), there are at most a finite number of geodesic loops γ at p having length ≤ L ,

and that

(a) γ is not a closed geodesic. (That is, the vectors tangent to γ at its beginning and end are distinct.)

(b) γ is “ single” in the sense that it meets p only at its beginning and end, although other self-intersections

are permitted.

(c) Under perturbation of g, γ evolves continuously: it does not disappear or bifurcate.

Although some of the geodesic loops γ may be self-conjugate in the sense that there is a transverse

Jacobi field J along γ that vanishes at both ends of γ , a perturbation of g eliminates this feature. No such

self-conjugacy can be created by a small perturbation of g, so we can restrict attention to Riemann structures

in an open-dense subset G∗(p, L) ⊂ G(p, L) that have no self-conjugate geodesic loops of length ≤ L .

Let P = (v1, v2, g) ∈ V 2
p × G∗(p, L) have E2-image Q = (q, �, q, �) ∈ �. Let S be the sum

S = Image(TP E2) + TQ�. We must show

S = TQ(M × R)2.
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To do so we choose a basis of TQ(M × R)2 as follows.

The natural inclusions

M ↪→ (M × R)2 M ↪→ (M × R)2

z 
→ (z, �, q, �) z 
→ (q, �, z, �)

induce isomorphisms

i1 : Tq M → Tq M × � × q × � i2 : Tq M → q × � × Tq M × �

into the tangent space TQ(M × R)2.

We refer to the geodesics t 
→ exp(tv j ) as γ j , j = 1, 2, and to their terminal tangent vectors as

w1 = γ ′
1(1), w2 = γ ′

2(1). The time parameter t is always restricted to [0, 1]. Choose vectors u1, u2 ∈ Tq M ,

normal to w1, w2. This gives bases {u1, w1}, {u2, w2} of Tq M , which the inclusions convert to a basis

{e1, f1, h1, e2, f2, h2} of TQ(M × R)2; namely

e1 = i1(u1) f1 = i1(w1) e2 = i2(u2) f2 = i2(w2)

where h1, h2 are tangent to the appropriate factor R in (M × R)2.

CASE 1. The geodesics γ1, γ2 are unequal pointsets. We will show that E2 is submersive at P , i.e., that

Image TP E2 = TQ(M × R)2.

Because γ1, γ2 have the same length, neither contains the other, so there are “ free spots” – points z1 ∈ γ1 \γ2

and z2 ∈ γ2 \ γ1. (Note that even for the generic g, q may be conjugate to p along these geodesics.) See

Figure 2.

z

p

γ(1)

Fig. 2 – Varying g at a free spot z controls the endpoint q = γ (1) of the geodesic γ .

Lemma 6.2 in Kupka et al. 2006 states that perturbation of g in the neighborhood of the free spots

causes free and independent motion of the endpoints of γ1, γ2. Furthermore, perturbation of v1 along itself

makes �1 = |v1| vary linearly; and yoked to this variation of �1, the endpoint q1 = γ1(1) varies dependently

along f1. The corresponding facts hold for v2, so we see that the image of TP E2 contains the vectors

e1, f1, f1 + h1, e2, f2, f2 + h2,
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which is a basis for TQ(M × R)2. This demonstrates that E2 is submersive at P . Submersivity implies

transversality.

CASE 2. γ1, γ2 are equal as point sets – they are merely the same geodesic loop γ at p, traversed in opposite

directions. See Figure 3. This implies that there are no free spots, so perturbation of the Riemann structure

is futile.

p

u2

w2 =- v1

w1

v1

b

γ

Fig. 3 – A geodesic loop.

Because γ is a geodesic loop, but not a closed geodesic, the terminal vectors w1, w2 are linearly

independent. Since they have equal length and are perpendicular to u1, u2, the coefficients b, d in the

expression

w1 = au2 + bw2 w2 = cu1 + dw1.

satisfy

|b|, |d| < 1. (1)

Because the loop γ is not self-conjugate, variation of v1 perpendicular to itself produces free and

independent variation of the endpoint q1 = γ1(1) perpendicular to w1. The same is true for v2. Thus, the

image of TP E2 contains the vectors e1, e2. As in Case 1, variation of v1, v2 along themselves gives vectors

f1 + h1, f2 + h2 in the image of TP E2. Altogether, then, we have four vectors

e1, f1 + h1, e2, f2 + h2 ∈ TP E2.

The curves

δ1(t) = (γ1(t), �, γ1(t), �) δ2(t) = (γ2(t), �, γ2(t), �)
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are contained in �, and hence TQ� contains their tangents at t = 1, namely,

δ′
1(1) = f1 + i2(au2 + bw2) = f1 + ae2 + b f2

δ′
2(1) = i1(cu1 + dw1) + f2 = f2 + ce1 + d f1.

The linear combination

δ = δ′
1(1) − bδ′

2(1) = (1 − bd) f1 + ae2 − bce1

of these vectors is tangent to �. By (1), this gives an explicit expression for f1 ∈ S = TP E2 + TQ� as

f1 = 1

(1 − bd)

(
bce1 − ae2 + δ

)
.

In the same way, f2 belongs to S, and so do

h1 = ( f1 + h1) − f1 h2 = ( f2 + h2) − f2.

Since S contains the whole basis {e1, . . . , h2}, it equals TQ(M × R)2, which completes the proof in

Case 2. �

COROLLARY 3.2. For the generic g ∈ R, and for all k ≥ 1, the multiexponential Ek
g : V k

p → (M × R)k

is transverse to the diagonal �. When M has dimension two, the pre-image of � is empty for k ≥ 4, is a

discrete set of points for k = 3, and is a smooth 1-manifold for k = 2.

PROOF. The Abraham Transversality Theorem asserts that if a smooth map

F : X ×A→ Y ⊃ W

is transverse to W where A is a Banach manifold and X, Y, W are finite dimensional, then for all a in a

resdual subset of A, the map

F(a, ) : X → Y ⊃ W

is transverse to W . In our case,R is an open set of a Banach space, and we know that

E2 : R× V 2 → (M × R)2 ⊃ �

is transverse to �. Thus, for the generic g ∈ R, E2
g is transverse to �.

When k = 1, transversality is trivial because the diagonal coincides with M × R, while for k ≥ 3,

transversality is proved in Kupka et al. 2006, Theorem 6.1.

Now assume that M has dimension two. The codimension of � in (M × R)k is 3k − 3, and the

dimension of V k
p is 2k. Thus, if k ≥ 4 then the codimension in the target exceeds the domain dimension,

so transverse intersection implies empty intersection: Ek
g(V k

p ) ∩ � = ∅. Similarly, because transversality

preserves codimension, the pre-image of � under E3
g is a discrete set of points in V 3

p , and the pre-image of

� under E2
g is a 1-manifold in V 2

p . �
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4 FOCAL BRANCHES

Fix a g ∈ R and let

νk = (Ek
g)

−1(�) = {(v, . . . , vk) ∈ V k
p : Ek

g(v1, . . . , vk) ∈ �}.

Clearly νk is invariant under permutation of the factors Tp M in V k
p . Thus, if π j : V k

p → Tp M projects V k
p

onto the j th factor,

βk = π j (ν
k)

is independent of j . Furthermore, β2 ⊃ β3 ⊃ β4 ⊃ . . . and,

σ1 = Tp M \ β2 σ2 = β2 \ β3 . . . σk = βk \ βk+1.

PROPOSITION 4.1. When M has no conjugate points, the projection π j : νk → Tp M is a proper immersion

onto a closed subset of Tp M.

PROOF. Properness means that the pre-image of a compact set is compact. Thus, from any given a

sequence (v1n, . . . , vkn) in νk such that for some fixed j , v jn converges in Tp M as n → ∞, we must extract

a subsequence, convergent in νk .

When k = 1 the assertion is trivial since the projection is the identity map. Thus we assume k ≥ 2.

Convergence of v jn , say to v j ∈ Tp M , implies that |v jn| → |v j | = �. Since all the other vin have the

same length, there is a subsequence (unrelabeled) such that (v1n, . . . , vkn) → (v1, . . . , vk). Each vi has

length �. Fix i �= j . Then vin �= v jn . Since expp(vin) = expp(v jn), the facts that k ≥ 2 and that exp is a

local diffeomorphism from a neighborhood of the origin in Tp M to a neighborhood of p in M implies that

� �= 0. Also, since there are no conjugate points, exp is a local diffeomorphism at v j , which implies that

vi �= v j . Thus (v1, . . . , vk) ∈ νk , which completes the proof of properness.

A continuous proper map into a metric space necessarily has a closed range. Hence π j (ν
k) is closed

in Tp M .

To check that π j is an immersion, we must show that the projection v j (t) of each nonsingular curve

(v1(t), . . . , vk(t)) in νk is nonsingular in Tp M . Fix a t0 ∈ (a, b) where (a, b) is the curve’s domain of

definition. For at least one i , v̇i (t0) �= 0. Thus, vi (t) is nonsingular at t0. Since there are no conjugate

points, exp(vi (t)) is also nonsingular at t0. Since (v1(t), . . . , vk(t)) ∈ νk , exp(v j (t)) = exp(vi (t)) is also

nonsingular at t0. Therefore, v j (t) is nonsingular at t0. �

5 PROOF OF THEOREM A

We assume that M is a compact surface of genus ≥ 2, that p ∈ M is fixed, and we denote by N the

nonempty set of Riemann structures on T M having negative curvature. Clearly, N is an open subset ofR
and so it makes sense to speak of the generic g ∈ N .

A Riemann structure with negative curvature has no conjugate points. Thus, according to Corollary 3.2

and Proposition 4.1, the focal decomposition of Tp M is quite simple for the generic g ∈ N . Namely:

(a) For all k ≥ 4, σk is empty.
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(b) σ3 = β3 is a discrete subset of Tp M .

(c) σ2 = β2 \ β3 and β2 consists of a closed set of immersed curves in Tp M .

Furthermore, in any fixed compact subset of Tp M , properties (a), (b), (c) remain valid for all small pertur-

bations of g.

Consider a vector v1 ∈ β3. It has two friends v2, v3 ∈ β3 with equal length and equal exponential

image. Thus (v1, v2) ∈ ν2, and there are nonsingular curves v1(t), v2(t) with

v1(0) = v1 v2(0) = v2 (v1(t), v2(t)) ∈ ν2.

Likewise there are nonsingular curves v∗
1 (t), v3(t) with

v∗
1 (0) = v1 v3(0) = v3 (v∗

1 (t), v3(t)) ∈ ν2.

We claim that v̇1(0) and v̇∗
1 (0) are linearly independent. Suppose not. Nonsingularity implies that there is

a c �= 0 such that

v̇1(0) = cv̇∗
1 (0).

At time t = 0 the curve exp(v3(ct)) has tangent

d

dt

∣∣∣
t=0

exp(v3(ct)) = Tv3 expp(cv̇3(0)) = c Tv3 expp(v̇3(0))

= c Tv1 expp(v̇
∗
1 (0)) = Tv1 expp(v̇1(0))

= d

dt

∣∣∣
t=0

exp(v1(t))

Similarly,
d

dt

∣∣∣
t=0

|v3(ct)| = d

dt

∣∣∣
t=0

|v1(t)|.
Thus, at t = 0

t 
→ E3
g(v1(t), v2(t), v3(ct))

is tangent to the diagonal � ⊂ (M × R)3. The upshot is that the range of T(v1,v2,v3)E3
g contains a nonzero

vector tangent to the diagonal in (M ×R)3. This contradicts the fact that E3
g : V 3

p → (M ×R)3 is transverse

to �, since � has codimension 6, which is the same as the dimension of V 3
p .

Now we know that v̇1(0) and v̇∗
1 (0) are linearly independent. This means that in addition to properties

(a) - (c), above, we have

(d) Branches of σ2 meet transversally in pairs, they do so only at points of σ3, and every point of σ3 is such

a crossing point,

where by a branch of σ2 we mean the projection of an arc in ν2. Since transversality is an open property,

(d) also remains valid under perturbation of the Riemannn structure.

The remainder of the proof of focal stability follows the pattern of Theorem 5.1 in Kupka et al.

2006. Fix a compact set S ⊂ Tp M . Then choose a disc B in Tp M that contains S. We know that
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the focal decomposition amounts to a smooth one-dimensional graph, namely � = σ2 ∪ σ3, which has

transverse crossings of multiplicity two. We adjust B so that its boundary is transverse to �. Let g′ be

a small perturbation of g and let �′ be the corresponding graph. Since all aspects of the graph depend

continuously on the Riemann structure, and all are transverse, if g′ is sufficiently close to g, then there

exists a homeomorphism from B to itself that sends � ∩ B to �′ ∩ B.

6 PROOF OF THEOREM B

We assume that M is a compact surface of genus ≥ 2 and we denote by H ⊂ R the nonempty set of

Riemann structures whose curvature is identically equal to −1.

Fix g ∈ H and p ∈ M . As described in section 2, we can lift g to a Riemann structure ḡ on Tp M

and view the focal decomposition in terms of mediatrices for the corresponding metric d̄ . Since g has

constant negative curvature, d̄ is isometric to the Poincaré metric ρ on the unit disc D, and mediatrices are

ρ-geodesics. As such, mediatrices are circular arcs meeting ∂D perpendicularly. Thus, any two mediatrices

meet one another transversally, and they do so at most once.

Let P be the lattice of pre-images of p in Tp M , and denote the corresponding mediatrix set as

µ = {v ∈ Tp M : for some p̄ ∈ P \ {0} and |v| = ρ(v, p̄)}.

Fix a compact set S ⊂ Tp M . At most finitely many µ-mediatrices meet S. Choose a constant R and let B

denote the compact disc

Tp M(R) = {v ∈ Tp M : |v| ≤ R}.
When R is large, B contains S in its interior and we can adjust R so that ∂ B is transverse to the µ-mediatrices.

Let τ be the finite set of points in B at which the µ-mediatrices intersect one another. Thus

τ = (σ3 ∪ σ4 ∪ · · · ∪ σ�) ∩ B

for some finite �. If v ∈ σk , there are k −1 µ-mediatrices that pass through it. They are pairwise transverse.

A small change of p preserves all transversalities in the disc of radius R; such a perturbation of the base

point can not increase the multiplicity of a vector in τ , although it may lower it. (Here is where the argument

uses the fact that the curvature is constant – mediatrices in the constant curvature case are always transverse

to one another.) Thus, there is an open-dense set U ⊂ M such that if p ∈ U and p′ is sufficiently near p

then all multiplicities of the µ′-mediatrices in B ′ = Tp′ M(R) are the same as those in B. (By µ′ we denote

the mediatrices between the origin of Tp′ M and the other lifts of p′ in Tp′ M .) In other words, the graph of

µ′-mediatrices in B ′ is homeomorphic to the graph of µ-mediatrices in B. Taking a sequence of compact

sets Sn that exhausts Tp M leads to a sequence of such open dense sets Un in M , and if p ∈ ⋂
Un then the

focal decomposition in Tp M is stable with respect to perturbation of the base point p. This completes the

proof of the first assertion in Theorem B.

The second assertion in Theorem B is proved in the same way. Again, mediatrix transversality implies

that perturbation of g can only decrease intersection multiplicity, it cannot increase it. Thus, there is an

open dense set in U ⊂ H such that if g ∈ U and g′ ∈ H is near enough to g then the µ′-mediatrix graph

in B is homeomorphic to the µ-mediatrix graph in B. Again, choosing a sequence of compact sets Sn that
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exhausts Tp M leads to a sequence of open dense sets Un inH, and if g ∈ ⋂Un then the focal decomposition

of Tp M is stable with respect to perturbation of g withinH.

REMARK. Theorem B does not assert the multiplicity of the focal decomposition of the generic g ∈ H is

at most three. We believe, however, that such an assertion is correct, and we can phrase our expectation

as follows. If M has genus s ≥ 2 then the Teichmuller space τs of hyperbolic structures on M amounts

to H/D where D denotes isometric deformations. It is a space smoothly parameterized by 6(s − 1) real

variables, and we expect that for a residual subset of these parameter values the corresponding hyperbolic

structure has σk = ∅ for all k ≥ 4. From this it would follow at once that the generic g ∈ H is focally

stable with respect to variation of g inR, not just with respect variation of g withinH, as in Theorem B.

7 CONJUGATE POINTS

A Riemann structure with non-negative curvature has no conjugate points, but the set S of such Riemann

structures does not form an open subset of R. For example, a flat Riemann structure on the torus has no

conjugate points although it can be perturbed so that conjugate points appear. See Kupka et al. 2006,

Proposition 4.8, where a bump is glued to a cylinder. Thus, the assertion of Theorem A′, below, should be

viewed with caution, for a generic subset of S need not be dense in S.

THEOREM A′. Focal stability (for a fixed p ∈ M) holds for the generic g ∈ S.

PROOF. In the proof of Theorem A, we only used the assumption that expp is a local diffeomorphism,

i.e., that there are no conjugate points, and the fact that the generic g ∈ R stably possess the transversality

properties (a)-(d). �
The next result shows that Theorem A′ has wider scope than Theorem A.

PROPOSITION 7.1. The interior of S is strictly larger than N .

PROOF. Let M be the bitorus, or any surface with genus ≥ 2. Equip it with a Riemann structure of constant

curvature −1. Cut out a small disc in M and replace it with a small polar cap having unit positive curvature.

A smoothing collar is used to attach the cap. This gives a new Riemann structure g on M , g /∈ N . Any

g-geodesic spends relatively little time in the polar cap or collar. Most of the time the geodesic travels

through the part of the surface with curvature −1. Thus, there are no conjugate points, so g belongs to S,

and the same holds for all nearby Riemann structures. �

REMARK. The question remains as to whether the generic Riemann structure on a surface has the focal

stability property – i.e., whether we can do without the no conjugate point assumption. Much of what we

proved above does hold when there are conjugate points, and also some generic properties of conjugate

points are known. For example, in Weinstein 1970, Alan Weinstein announces that in dimension two, the

singularities of the generic exponential map are either folds or cusps. These are the Whitney singularities

for maps of the plane to itself. If, in addition to this, we knew how the fold and cusp singularities relate

to the foliation of Tp M by circles of constant radius, then we could probably resolve the Focal Stability

Conjecture for surfaces. In higher dimensions the singularities of the generic exponential map are much

more complicated than in dimension two, cf. Weinstein 1970, which leads us to think that the Focal Stability

Conjecture will be quite hard to resolve in full generality.
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RESUMO

Em Kupka et al. 2006, consideramos a Conjectura da Estabilidade Focal: a decomposição focal da estrutura Riema-

niana genérica em uma variedade M é estável por perturbações dessa estrutura. No presente trabalho demonstramos

essa conjectura quando M tem dimensão dois e não existem pontos conjugados.

Palavras-chave: geodésicas, decomposição focal, estabilidade focal, genetricidade, espaço de Teichmuller.
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