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ABSTRACT
Thisnoteis about the geometry of holomorphic foliations. Let X be apolynomial vector field with isolated
singularities on C?. We announce some results regarding two problems: 1. Given afinitely curved orbit L
of X, under which conditionsis L algebraic? 2. If X has some non-algebraic finitely curved orbit L what
is the classification of X? Problem 1 is related to the following question: Let C ¢ C2? be a holomorphic
curve which has finite total Gaussian curvature. 1sC contained in an algebraic curve?
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1 INTRODUCTION

Let X beaholomorphic vector field with isolated singularitieson C? and let L ¢ C? beanon-singular orbit.
Then L isan immersed holomorphic curve in C2?, and its topology can be very complicated (space of ends
not denumerable, infinity genus and so on). It isaso aminimal surface in R* to which we can associate a
holomorphic Gauss map asin (Lawson 1980, Scardua 2002). A classical theorem of Osserman states that,
for a complete minimal surface in R”, the finiteness of the total curvature is equivalent to algebraicity of
its holomorphic Gauss map. See (Lawson 1980). For instance, if L is obtained from an algebraic curve
C c C? by deleting some points then its holomorphic Gauss map is algebraic. In this work we study, for
orbits of polynomial vector fields, the possible converses to this fact. Our main tools are the dynamics
of the vector field in a neighborhood of the line at infinity L., = CP?\ C? and the fact that, since L
is a holomorphic curve, its corresponding holomorphic Gauss map takes values into C P! which can be
identified with L,. Thiswill relate the finiteness of the total curvature of L with the dynamics of X close
10 L.

Given apolynomial vector field
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with isolated singularities on C?, the dual 1-form w = Pdy — Qdx defines aholomorphic foliation on C?
whose leaves are the non-singular orbits of X and whose singular set is sing(X). This foliation extends
naturally to a one-dimensional holomorphic foliation with singularities F(X) of the complex projective
plane C P2 and the geometry of itsleaves containsimportant additional information ontheorbitsof X. Thus
we shall work with the foliation F(X) in most of our considerations. Let us recall some basic definitions
about singularities of holomorphicfoliationsin dimension two. Let 7 aholomorphic foliation with discrete
singular set sing(F) on acomplex surface M. A singularity p € sing(F) iscalled irreducible if thereisan
open neighborhood U of p in M where F isinduced by a holomorphic differential 1-form which has one
of the following types:

w(x,y) =xdy —[Ay +h.o.tldx, X ¢ Q,(non-degenerate),

or
o, y) = x"dy — [y(1+ 1x™) + h.o.t.]Jdx, m > 1(saddle-node).

See (Camacho and Sad 1982).

Anisolated singularity iscalled ageneralized curve if itsreduction processexhibitsonly non-degenerate
singularities. It isnon-dicritical if the exceptional divisor of thisreduction isinvariant by thefoliation. See
(Camacho et a. 1984).

Under suitable non-degeneracy conditions on the singularities of the foliation, afinitely curved orbit
isalgebraic asit follows from the following theorem:

THEOREM 1. Let X be a polynomial vector field defined on C? and let L be a finitely curved orbit of X.
Suppose that the singularities of F(X) on CP? are non-dicritical generalized curves, then L is contained

in an algebraic curve.

A Poincaré-Dulac normal form vector field

Yyc(x,y) =(nx+cy”)%+y 9 n e N\{0}, ce C\ {0}

5a
has non-algebraic orbits (except for the orbit contained on {y = 0}) but are finitely curved. This situation
is described by the following theorem:

THEOREM 2. Let X be a polynomial vector field on C? such that the singularities of F(X) are non-
dicritical and in the Poincaré domain. If X has a finitely curved non-algebraic orbit then F(X) is given
by a closed rational 1-form on CP?. Indeed, either F(X) is a logarithmic foliation or there is a rational
map f: CP? -—»> CP? such that F(X) is the pull-back f*F(Yy,c) where Y, . is a Poincaré-Dulac normal

form. In particular all orbits of X have finite total curvature.

Complete proofs of Theorems 1 and 2 are given in (A.C. Mafra, unpublished data, Mafra 2006).

2 SKETCH OF THE PROOF OF THEOREMS 1 AND 2

Let us begin with a brief idea of the proof of Theorem 1. First we study the local behavior of a finitely
curved orbit L in aneighborhood of a non-degenerated irreducible singularity p e sing(X) in C2.
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LEMMA 1. Let X be a holomorphic vector field on C? and p € sing(X) an irreducible singularity with
first jet of the form

) B
NXp(x,y) =px—+ry—, p/AeC\Qs.
ax ady

If an orbit of X accumulates at p and is not contained in the union of separatrices of X through p then this

orbit has infinite total curvature.
Thislemma and the hypothesisin the singular set of F(X) imply:

LEMMA 2. A finitely curved orbit L of a vector field X as in Theorem 1 is contained in an analytic curve
in C2. Indeed, we have L C L U sing(X).

The proof of Lemma 2 involves some combinatorial in the reduction of singularities for sing(F (X))
asin (Mol 2002) in order to exclude the case where L accumulates on two straight lines intersecting at the
singular point on C2. Indeed, blowing up the singularity which is the intersection of two invariant lines we
conclude that the area of the Gauss map isinfinite. The second step is to assure the analytical behavior of
L inaneighborhood of L.,. Aswe have remarked above for anon-singular orbit L c C? the holomorphic
Gauss map can be identified withamap ®: L — L., = CP. Moreover, thereisaleaf L ¢ CP?2 of the
foliation F(X) suchthat L = L \ (L N Ls). The finiteness of the total curvature of L then implies the
following:

LEMMA 3. (i) If Lo is not invariant by F(X) then L is analytic in a neighborhood of Les. (i) If Lo is
invariant by F (X) then L accumulates only on points in SINg(F (X)) N L.

In order to finish the proof of Theorem 1 one applies Remmert-Stein Extension Theorem to conclude
that L ¢ C P2 isan analytic subset of dimension one and then Chow’s Theorem.

SKETCH OF THE PROOF OF THEOREM 2. Let L be anonsingular transcendental orbit of X with finite
total curvature. We have two possibilities:

CASE 1. L isclosedin C?\ sing(F(X)). In thisfirst case we can assume that the line L, isinvariant by
F(X). Moreover, givenasmall transversedisc ¥ to L, atapointg € Lo, \ Sing(F (X)), L inducesin ¥ an
orbit which isdiscrete outsidethe origing = ¥ N L,. According to Nakai’s density theorem (Nakai 1994)
this implies that the holonomy group of the leaf L, \ sing(F (X)) is a solvable subgroup of Diff (C, 0).
Now, according to the construction and classification results in Sections 5 and 6 in (Scardua 1999) this
implies, taking into account the hypothesis on the singularities of F(X), that thefoliation F(X) isgiven by
arational 1-form on CP2. According then to Section 7 in (Bracci and Scardua 2007) thisimplies, aways
taking into account the nature of the singularities, that 7 (X) isconjugated to a Poincaré-Dulac normal form
as stated.

CASE 2. Lisnot closed in C? and L accumulatesin someinvariant line E ¢ C2. The same argumentation
of thefirst casecan beappliedto E inplaceof L, toshow that 7 (X) must be conjugated to aPoincaré-Dulac
normal form. O
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RESUMO

Esta nota versa sobre a geometria de folheagBes holomorfas. Seja X um campo vetorial polinomia complexo
com singularidades isoladas. Anunciamos resultados relacionados a dois problemas. 1. Dada uma érbita L de X
finitamente curvada sob quais condi¢des L é algébrica? 2. Se X possui alguma Orbita ndo algébrica finitamente
curvada L qual é a classificacgo de X? O problema 1 esta relacionado & seguinte questdo: SgiaC ¢ C2 umacurva
holomorfa com curvatura Gaussiana total finita. C esta contida numa curva algébrica?

Palavras-chave: FolheacBes holomorfas, campos de vetores polinomiais, curvas algébricas, curvaturatota finita.
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