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ABSTRACT

This note is about the geometry of holomorphic foliations. Let X be a polynomial vector field with isolated

singularities on C2. We announce some results regarding two problems: 1. Given a finitely curved orbit L

of X , under which conditions is L algebraic? 2. If X has some non-algebraic finitely curved orbit L what

is the classification of X? Problem 1 is related to the following question: Let C ⊂ C2 be a holomorphic
curve which has finite total Gaussian curvature. Is C contained in an algebraic curve?
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1 INTRODUCTION

Let X be a holomorphic vector field with isolated singularities onC2 and let L ⊂ C2 be a non-singular orbit.

Then L is an immersed holomorphic curve in C2, and its topology can be very complicated (space of ends

not denumerable, infinity genus and so on). It is also a minimal surface in R4 to which we can associate a

holomorphic Gauss map as in (Lawson 1980, Scárdua 2002). A classical theorem of Osserman states that,

for a complete minimal surface in Rn , the finiteness of the total curvature is equivalent to algebraicity of

its holomorphic Gauss map. See (Lawson 1980). For instance, if L is obtained from an algebraic curve

C ⊂ C2 by deleting some points then its holomorphic Gauss map is algebraic. In this work we study, for

orbits of polynomial vector fields, the possible converses to this fact. Our main tools are the dynamics

of the vector field in a neighborhood of the line at infinity L∞ = CP2 \ C2 and the fact that, since L

is a holomorphic curve, its corresponding holomorphic Gauss map takes values into CP1 which can be

identified with L∞. This will relate the finiteness of the total curvature of L with the dynamics of X close

to L∞.

Given a polynomial vector field

X = P
∂

∂x
+ Q

∂

∂y
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with isolated singularities on C2, the dual 1-form ω = Pdy − Qdx defines a holomorphic foliation on C2

whose leaves are the non-singular orbits of X and whose singular set is sing(X). This foliation extends

naturally to a one-dimensional holomorphic foliation with singularities F(X) of the complex projective

planeCP2 and the geometry of its leaves contains important additional information on the orbits of X . Thus

we shall work with the foliation F(X) in most of our considerations. Let us recall some basic definitions

about singularities of holomorphic foliations in dimension two. LetF a holomorphic foliation with discrete

singular set sing(F) on a complex surface M . A singularity p ∈ sing(F) is called irreducible if there is an

open neighborhood U of p in M where F is induced by a holomorphic differential 1-form which has one

of the following types:

ω(x, y) = xdy − [λy + h. o. t.]dx, λ /∈ Q+(non-degenerate),

or

ω(x, y) = xm+1dy − [y(1 + λxm) + h. o. t.]dx, m ≥ 1(saddle-node).

See (Camacho and Sad 1982).

An isolated singularity is called a generalized curve if its reduction process exhibits only non-degenerate

singularities. It is non-dicritical if the exceptional divisor of this reduction is invariant by the foliation. See

(Camacho et al. 1984).

Under suitable non-degeneracy conditions on the singularities of the foliation, a finitely curved orbit

is algebraic as it follows from the following theorem:

THEOREM 1. Let X be a polynomial vector field defined on C2 and let L be a finitely curved orbit of X.

Suppose that the singularities of F(X) on CP2 are non-dicritical generalized curves, then L is contained

in an algebraic curve.

A Poincaré-Dulac normal form vector field

Yn,c(x, y) = (nx + cyn)
∂

∂x
+ y

∂

∂y
, n ∈ N \ {0}, c ∈ C \ {0}

has non-algebraic orbits (except for the orbit contained on {y = 0}) but are finitely curved. This situation

is described by the following theorem:

THEOREM 2. Let X be a polynomial vector field on C2 such that the singularities of F(X) are non-

dicritical and in the Poincaré domain. If X has a finitely curved non-algebraic orbit then F(X) is given

by a closed rational 1-form on CP2. Indeed, either F(X) is a logarithmic foliation or there is a rational

map f : CP2 ��� CP2 such that F(X) is the pull-back f ∗F(Yn,c) where Yn,c is a Poincaré-Dulac normal

form. In particular all orbits of X have finite total curvature.

Complete proofs of Theorems 1 and 2 are given in (A.C. Mafra, unpublished data, Mafra 2006).

2 SKETCH OF THE PROOF OF THEOREMS 1 AND 2

Let us begin with a brief idea of the proof of Theorem 1. First we study the local behavior of a finitely

curved orbit L in a neighborhood of a non-degenerated irreducible singularity p ∈ sing(X) in C2.
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LEMMA 1. Let X be a holomorphic vector field on C2 and p ∈ sing(X) an irreducible singularity with

first jet of the form

J1 X p(x, y) = µx
∂

∂x
+ λy

∂

∂y
, µ/λ ∈ C \Q+.

If an orbit of X accumulates at p and is not contained in the union of separatrices of X through p then this

orbit has infinite total curvature.

This lemma and the hypothesis in the singular set of F(X) imply:

LEMMA 2. A finitely curved orbit L of a vector field X as in Theorem 1 is contained in an analytic curve

in C2. Indeed, we have L̄ ⊂ L ∪ sing(X).

The proof of Lemma 2 involves some combinatorial in the reduction of singularities for sing(F(X))

as in (Mol 2002) in order to exclude the case where L accumulates on two straight lines intersecting at the

singular point on C2. Indeed, blowing up the singularity which is the intersection of two invariant lines we

conclude that the area of the Gauss map is infinite. The second step is to assure the analytical behavior of

L in a neighborhood of L∞. As we have remarked above for a non-singular orbit L ⊂ C2 the holomorphic

Gauss map can be identified with a map � : L → L∞ ∼= CP1. Moreover, there is a leaf L̃ ⊂ CP2 of the

foliation F(X) such that L = L̃ \ (L̃ ∩ L∞). The finiteness of the total curvature of L then implies the

following:

LEMMA 3. (i) If L∞ is not invariant by F(X) then L̃ is analytic in a neighborhood of L∞. (ii) If L∞ is

invariant by F(X) then L accumulates only on points in sing(F(X)) ∩ L∞.

In order to finish the proof of Theorem 1 one applies Remmert-Stein Extension Theorem to conclude

that ¯̃L ⊂ CP2 is an analytic subset of dimension one and then Chow’s Theorem.

SKETCH OF THE PROOF OF THEOREM 2. Let L be a nonsingular transcendental orbit of X with finite

total curvature. We have two possibilities:

CASE 1. L is closed in C2 \ sing(F(X)). In this first case we can assume that the line L∞ is invariant by

F(X). Moreover, given a small transverse disc � to L∞ at a point q ∈ L∞ \sing(F(X)), L induces in � an

orbit which is discrete outside the origin q = � ∩ L∞. According to Nakai’s density theorem (Nakai 1994)

this implies that the holonomy group of the leaf L∞ \ sing(F(X)) is a solvable subgroup of Diff(C, 0).

Now, according to the construction and classification results in Sections 5 and 6 in (Scárdua 1999) this

implies, taking into account the hypothesis on the singularities ofF(X), that the foliationF(X) is given by

a rational 1-form on CP2. According then to Section 7 in (Bracci and Scárdua 2007) this implies, always

taking into account the nature of the singularities, thatF(X) is conjugated to a Poincaré-Dulac normal form

as stated.

CASE 2. L is not closed in C2 and L accumulates in some invariant line E ⊂ C2. The same argumentation

of the first case can be applied to E in place of L∞ to show thatF(X) must be conjugated to a Poincaré-Dulac

normal form. �
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RESUMO

Esta nota versa sobre a geometria de folheações holomorfas. Seja X um campo vetorial polinomial complexo

com singularidades isoladas. Anunciamos resultados relacionados a dois problemas: 1. Dada uma órbita L de X

finitamente curvada sob quais condições L é algébrica? 2. Se X possui alguma órbita não algébrica finitamente

curvada L qual é a classificação de X? O problema 1 está relacionado à seguinte questão: Seja C ⊂ C2 uma curva

holomorfa com curvatura Gaussiana total finita. C está contida numa curva algébrica?

Palavras-chave: Folheações holomorfas, campos de vetores polinomiais, curvas algébricas, curvatura total finita.
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