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ABSTRACT

In this paper we study a class of symmetric polynomial differential systems in R3, which has a set of parallel

invariant straight lines, forming degenerate heteroclinic cycles, which have their two singular endpoints at

infinity. The global study near infinity is performed using the Poincaré compactification. We prove that for

all n ∈ N there is εn > 0 such that for 0 < ε < εn the system has at least n large amplitude periodic orbits
bifurcating from the heteroclinic loop formed by the two invariant straight lines closest to the x-axis, one
contained in the half-space y > 0 and the other in y < 0.
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1 INTRODUCTION

In this paper we study the following class of symmetric polynomial differential systems in R3

ẋ = dx
dt

= y,

ẏ = dy
dt

= z, (1)

ż = dz
dt

= p(y) + ε q(x) z,

where ε is a small positive real parameter,

p(y) =
m∑
i=0
ai yi and q(x) =

m/2∑
i=1
b2i−1x2i−1, (2)

AMS Classification: Primary: 58F21; Secondary: 34C05, 58F14.
Correspondence to: Marcelo Messias
E-mail: marcelo@fct.unesp.br

An Acad Bras Cienc (2007) 79 (4)



564 JAUME LLIBRE and MARCELO MESSIAS

with m an even natural number, a0 > 0 and bm−1 > 0. Under these assumptions system (1) has no singular

points in R3. This system can be extended to an analytic system on a closed ball of radius one, whose

interior is diffeomorphic to R3 and its boundary (a 2-dimensional sphere S2) plays the role of infinity. The

technique for making such an extension is called the Poincaré compactification, which is described in detail

in Appendix 1.

We suppose that the polynomial p(y) which appears in the third equation of system (1) has k ≥ 2

simple real roots ri , i = 1, . . . , k, with at least two of them having opposite signs. In this way the system
has k parallel invariant straight lines given by

γi = {
γi (t) = (x(t), y(t), z(t)) = (ri t, ri , 0) ∈ R3 : t ∈ R}.

These invariant straight lines tend toward two diametrally opposite singular points at infinity when t →
±∞, corresponding to the endpoints of the x-axis, after the Poincaré compactification. In fact, each straight
line γi reaches the points at infinity with slope ri in a sense that we shall describe in the Subsection 2.2.
Consider r1 and r2 the real roots of p(y), with r1 the largest negative and r2 the smallest positive root. In
this way, the invariant lines γ1 = {

(r1t, r1, 0) : t ∈ R} and γ2 = {
r2t, r2, 0) : t ∈ R} together with the two

singular points at infinity located at the end of the x-axis form a degenerate heteroclinic loop L .
It is important to observe that system (1) is invariant under the symmetry

S : (x, y, z, t) → (−x, y, −z, −t).

This means that if γ (t) = (x(t), y(t), z(t)) is a solution of the system, then

S
(
γ (t)

) = (− x(−t), y(−t), −z(−t))
is a solution too. So, due to the symmetry, if γ has a point on the y-axis, then the orbits γ and its symmetric
orbit S(γ ) with respect to the y-axis coincide. Moreover if γ has two points on the y-axis, then γ (t) is a
symmetric periodic orbit. Therefore a way to find periodic orbits is to look for orbits having two points
on the y-axis. This technique will be used here to prove the existence of large amplitude periodic orbits
bifurcating from the loop L described above.

Let δ > 0 but small. We take an open segment � = {(0, y, 0) : r1 < y < δ + r1} (note that r1 < 0) of

the y-axis with its left endpoint (0, r1, 0) on the heteroclinic loop L = γ1 ∪ γ2 and we will follow its image

under the flow of system (1) until its first intersection with the plane x = 0 near the point (0, r2, 0) of L ,
see Figure 4. We denote by π the Poincaré map going from x = 0 near (0, r1, 0) to x = 0 near the point

(0, r2, 0). Then we shall prove that π(�) is a spiral near the point (0, r2, 0) giving finitely many turns for
every ε > 0 sufficiently small. This number of turns tends to infinity as ε → 0. The orbits through the

intersection points of π(�) with the y-axis are periodic because, by construction, they have two points on
the y-axis. Using these ideas in Section 2 we shall prove the following result. As usual we denote by N the
set of positive integers.

THEOREM 1. For all n ∈ N there is εn > 0 such that system (1) for ε ∈ (0, εn) has at least n periodic
orbits near the heteroclinic loop L .
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The idea that heteroclinic loops to infinity can create a set of large amplitude periodic orbits (and even

chaotic ones) has already appeared in several papers, see for instance (Newell et al. 1988).

Llibre, MacKay and Rodríguez (Llibre et al. 2004, preprint) study system (1) for the case where

considering p(y) = 1− y2 and q(x) = x . In this case the system is equivalent, by a change of coordinates
and a reparametrization of time, to the differential equation

y′′′ + y′′y + λ
(
1− y′2) = 0, (3)

which is related to boundary layer theory in fluid mechanics where it is know as the Falkner-Skan equation

(see Guyon et al. 1991) for a derivation of this equation. See also (Sparrow and Swinnerton-Dyer 1995,

2002) for analytical information on the existence of periodic and other types of orbits in the Falkner-Skan

equation. In fact, for this system, there is a hyperbolic subshift near the infinite heteroclinic loop (Llibre et

al. 2004, preprint). But, in this paper, we will restrict attention to finding large amplitude periodic orbits

and understanding the geometrical mechanism which create them.

2 PROOF OF THE THEOREM 1

In this section we shall prove our main result. The proof is constructive and will be presented in the four

next subsections. In order to fix the notation we write the polynomial differential system (1) in R3 in the

form

ẋ = P1 (x, y, z) = y,

ẏ = P2 (x, y, z) = z,

ż = P3 (x, y, z) = p(y) + εq(x)z,

where p(y) and q(x) are given in (2) and ε > 0 is a small parameter. In what follows we denote by X the
vector field associated to this system.

2.1 THE HETEROCLINIC LOOP L

Let γ1(t) = (r1t, r1, 0) and γ2(t) = (r2t, r2, 0) be the two invariant straight lines of system (1), related to
the largest negative and the smallest positive real root of p(y), r1 and r2, respectively. The endpoints of
these two lines at infinity in the Poincaré compactification are the origins p1 = (0, 0, 0) and p2 = (0, 0, 0)

of the local charts V1 and U1, respectively. For more details see Appendix 1.

2.2 THE LOCAL FLOW AT THE SINGULAR POINT p1 AT INFINITY

Using the results stated in Appendix 1, we have that the expression of the Poincaré compactification p(X)

in the local chart V1 is

ż1 = z21 z
m−1
3 − z2 zm−1

3 ,

ż2 = z1 z2 zm−1
3 − p(z1, z3) − ε

z2
z3
q(z3), (4)

ż3 = z1zm3 ,
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where

p(z1, z3) =
m∑
i=0
ai zi1 z

m−i
3 and q(z3) =

m/2∑
i=1
b2i−1zm−(2i−1)

3 . (5)

We want to study the local flow of this system around the singular point p1 = (0, 0, 0). The eigenvalues

of the linear part of this flow at p1 = (0, 0, 0) are 0, 0 and −εbm−1. As we are considering bm−1 > 0,

the singular point p1 has a two dimensional central manifold and the flow outside this manifold tends
exponentially to it because of the negative eigenvalue −εbm−1. Now we shall study the flow on this central
manifold. For more details on central manifolds see (Carr 1981, Chow and Hale 1982).

PROPOSITION 2. The invariant straight lines γi in a neighborhood of p1 are contained in the central
manifold of the singular point p1 of system (4).

PROOF. From Theorem 1 of (Carr 1981, page 4), we know that there exists a center manifold to p1 given
by z2 = h(z1, z3) in a neighborhood of p1, which satisfies the conditions

h(0, 0) = Dh(0, 0) = 0 and ż2 = d
dt
h(z1, z3) = ∂h

∂z1
ż1 + ∂h

∂z3
ż3 (6)

(for more details see (Carr 1981, page 5)). Moreover, the flow on this center manifold is governed by the

2-dimensional system
ż1 = z21z

m−1
3 − zm−1

3 h(z1, z3),

ż3 = z1zm3 .
(7)

Note that the straight line z3 = 0 is filled of singular points.

Considering conditions (6) and the derivatives given in system (4), the function h must satisfy the
equation (

z21z
m−1
3 − h zm−1

3

) ∂h
∂z1

+ z1zm3
∂h
∂z3

−
(
z1zm−1

3 h − p − ε
h
z3
q(z3)

)
= 0,

or, equivalently,

zm−1
3

(
z21

∂h
∂z1

− h ∂h
∂z1

+ z1z3 ∂h
∂z3

− hz1
)

+ p + ε
h
z3
q(z3) = 0.

Expanding the function h(z1, z3) in power series in a neighborhood of p1, and substituting it in the
previous equation we obtain

h(z1, z3) = − 1

εbm−1
p(z1, z3) + Om+1(z1, z3), (8)

where p(z1, z3) is given in (5). Since system (1) has the invariant straight lines x = r t , y = r , z = 0,

where r is a real root of the polynomial p(y) given in (2), it follows that system (4) has the invariant straight
lines z1 = r z3, z2 = 0 (observe that we take x = 1/z3, y = z1/z3 and z = z2/z3 in the local chart V1 in
the compactification procedure, see Appendix 1). Therefore, system (7) has also the invariant straight lines

z1 = r z3. So for system (7) we have that
ż1 − r ż3

∣∣
z1=r z3 = −zm−1

3 h(r z3, z3) = 0.

Consequently h(r z3, z3) = 0. In short, the invariant straight lines γi in a neighborhood of p1 are contained
in the central manifold of the singular point p1 of system (4) and they reach this point with slope ri . �

An Acad Bras Cienc (2007) 79 (4)



LARGE AMPLITUDE OSCILLATIONS IN R
3 567

Recall that r1 and r2 denote the real roots of p(y), with r1 the largest negative and r2 the smallest
positive. Such a roots exist by assumptions. We denote by γ1 and γ2 the two invariant straight lines

associated to these two roots, respectively.

PROPOSITION 3. On the center manifold of the singular point p1 of system (4) and in a neighborhood of
p1 restricted to z3 < 0, there exists a hyperbolic sector having as separatrices the invariant straight lines
γ1 and γ2 restricted to this neighborhood.

PROOF. Again we use the notations introduced in the proof of Proposition 2. We consider now the invariant

straight lines γ (t) = (r t, r, 0) with r a real root of the polynomial p(y).

Suppose that r < 0, then on the straight line γ and on the half-plane x < 0; i.e. on the half-straight line

γ contained in V1, considering the change of coordinates in the compactification process (see Appendix 1
for details) we have that z3 = 1/x < 0, z1 = y/x > 0, ż1 < 0 (recall that on these invariant straight lines

h(z1, z3) = 0) and ż3 > 0.

Similarly for the straight line γ with r > 0 contained in V1, we have that z3 = 1/x < 0, z1 = y/x < 0,

ż1 < 0 and ż3 < 0.

In short the flow on the straight lines γ1 and γ2 in a neighborhood of p1 is as it is described in Figure 1.

z2

z3

p1

γ1 γ2

Fig. 1 – The flow on the center manifold.

Using (8) the differential system (7) on the central manifold z2 = h(z1, z3) of the singular point p1 for
system (4) can be written, after a rescaling of the time by zm−1

3 , as

ż1 = z21 + 1

εbm−1
p(z1, z3) + Om+1(z1, z3),

ż3 = z1z3.
(9)

We claim that the unique directions for tending to the origin of system (9) when the time t → ±∞ are the

ones given by the invariant straight lines z1 = r z3 with r a real root of the polynomial p(y). Before proving
the claim we end the proof of the proposition.

By Proposition 2 we know that the invariant straight lines γ1 and γ2 restricted to V1 are solutions of
system (9). Moreover from the previous paragraphs the solution defined by γ1 ends at p1, and the one
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defined by γ2 starts at p1. By the claim there are no other directions between the directions given by γ1 and

γ2 for reaching the singular point p1 in forward or backward time. Now from the differential system (7) on
the central manifold z2 = h(z1, z3) of the singular point p1 and taking into account (8) we have that

ż1
∣∣
z1=0 = a0

εbm−1
z2m−1
3 + O(z2m3 ).

On z3 < 0 this expression is negative, so we have a hyperbolic sector. Recall that it is known that the local

phase portraits of the singular point p1 is a finite union of hyperbolic, elliptic and parabolic sectors (see,
for instance, Andronov et al. 1973 or Dumortier et al. 2006).

Now we prove the claim. First we write system (9) in polar coordinates (ρ, θ) given by z1 = ρ cos θ

and z3 = ρ sin θ . The system becomes

ρ̇ = cos θ
[
ρ2 + aρm p (cos θ, sin θ)

]+ O(ρm+1),

θ̇ = −a sin θ p (cos θ, sin θ)ρm−1 + O(ρm),
(10)

where a = a0/(εbm−1). If a solution (ρ(t), θ(t)) of this system tends to the origin when t → ±∞ (i.e.

ρ(t) → 0 when t → ±∞), then the limit of θ(t) when t → ±∞ exists, because the solution (ρ(t), θ(t))
cannot spirals tending to the origin due to the existence of invariant straight lines through the origin.

Now from the differential system (10) it is clear that the unique directions θ∗ in which a solution
(ρ(t), θ(t)) can reach the origin when t → ±∞ are the zeros of sin θ p(cos θ, sin θ). That is, the directions

of the invariant straight lines z1 = r z3 with r a real root of the polynomial p(y), and z3 = 0. Hence the

claim is proved. Consequently Proposition 3 follows. �

2.3 HAMILTONIAN STRUCTURE ASSOCIATED TO SYSTEM (1) WITH ε = 0

In this Subsection we analyze the flow of system (1) for ε = 0 in the (y, z)-plane. The equations for ẏ
and ż of system (1) with ε = 0 are the equations of the following Hamiltonian system with one degree of

freedom

ẏ = dy
dt

= z,

ż = dz
dt

= p(y),
(11)

with Hamiltonian given by

H(y, z) = 1

2
z2 −

∫
p(y)dy = 1

2
z2 −

m∑
i=0

ai
(i + 1) y

i+1.

Under the assumptions on the polynomial p(y), this Hamiltonian system has k ≥ 2 singular points, given
by (ri , 0), where the ri ’s are the real roots of p(y). The jacobian matrix of system (11) calculated at one of
these singular points is given by

DX (ri , 0) =
(

0 1

p′(ri ) 0

)
;

hence the singular point (ri , 0) is a saddle if p′(ri ) > 0, and a center if p′(ri ) < 0.
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Since p(r1) = 0, r1 being the largest negative root of p(y) and p(0) = a0 > 0, it follows that

p′(r1) ≥ 0. We suppose that p′(r1) > 0, and in a similar way we also assume that p′(r2) < 0, where r2 is
the smallest positive root of p(y). Therefore, (r1, 0) is a saddle and (r2, 0) is a center.

If all the real roots of p(y) are simple, then the singular points (ri , 0) alternate between saddles and
centers. In Figure 2, a possible phase portrait for the Hamiltonian system (11) is shown for the particular

case in which the number of real roots of p(y) is k = 4 (see Example 4 below).

z

y

r1
r2

Fig. 2 – The orthogonal projection of the flow of system (1) with ε = 0 into the (y, z)–plane.

From Figure 2 it is easy to understand the flow of system (1) when ε = 0. The singular points of Figure

2 correspond to the invariant straight lines γi ; i.e. the point (ri , 0) is the orthogonal projection with respect
to the x-axis of γi onto the (y, z)-plane. Observe that the invariant lines closest to the z-axis are γ1 and γ2.

We note that the flow of system (1), near the invariant straight line γ2 when ε = 0, is surrounded

by invariant cylinders, the flow on these cylinders goes from −∞ to +∞ in the x variable increasing
monotonically because ẋ = y > 0 in a neighborhood of γ2. Hence, the flow of system (1) when ε = 0

sufficiently near to γ2 rotates around this straight line.

Let

h2 = H(r2, 0) =
m∑
i=0

ai
(i + 1) r

i+1
2 .

Then for the periodic orbits of the Hamiltonian system (11) surrounding the center (r2, 0) the Hamiltonian
H takes values in an open interval with endpoint h2. Let T (h) be the period of the periodic orbit of this
center contained in H = h. We introduce the potential energy

U (y) = −
∫
p(y)dy = −

m∑
i=0

ai
(i + 1) y

i+1,

associated to the Hamiltonian system (11). Then, from (Arnold 1980, page 20) we know that

lim
h→h2

T (h) = 2π

U ′′(r2)
= 2π

β
, (12)

where

β = −
m∑
i=1
iai r i−12 .
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Therefore the periods of the periodic orbits close to the point (r2, 0) are finite. This result will be used in
the proof of Theorem 1 in the next Subsection.

EXAMPLE 4. If we take p(y) = y4 − 5y2 + 4 and q(x) = x + x3, then system (1) has the form

ẋ = y,

ẏ = z, (13)

ż = y4 − 5y2 + 4+ ε z (x + x3).
The polynomial p(y) has the four simple real roots: −2,−1, 1, 2. So this system has four invariant straight
lines and for ε = 0 the orthogonal projection with respect to the x-axis of its solutions on the (y, z)-plane
is shown in Figure 2.

The expression of the Poincaré compactification of (13) in the local chart V1 is

ż1 = z21 z
3
3 − z2 z33,

ż2 = z1 z2 z33 − (
4z43 − 5z21z23 + z41

)− ε z2
(
z23 + 1), (14)

ż3 = z1z33.

The origin p1 = (0, 0, 0) is a singular point of this vector field with eigenvalues 0, 0, −ε, and then the

system has a central manifold z2 = h(z1, z3) and the flow of the system on this manifold is governed by the
equation

ż1 = z21 + 1

ε

(
z41 − 5z21z23 + 4z43

)
ż3 = z1z3,

whose phase plane is as shown in Figure 3.

z2

z3

Fig. 3 – The local phase portrait on the center manifold for system (14).

2.4 CONSTRUCTION OF THE POINCARÉ MAP AND THE PROOF OF THEOREM 1

Let�1 be a small square centered at the point (0, r1, 0) and contained in the plane x = 0. Let�2 be a small

square centered at the point (−k, r1, 0) and contained in the plane x = −k for k > 0 sufficiently large. So,
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we can assume that �2 is contained in a neighborhood of the point p1 at infinity. Let �3 be a small square

centered at the point (−k, r2, 0) and contained in the plane x = −k. Hence, again we can suppose that �3

is contained in a neighborhood of p1. Finally, let �4 be a small square centered at the point (0, r2, 0) and
contained in the plane x = 0.

Σ1 Σ4

Σ2

Σ3γ1

γ2

Γ

π(Γ)

z

y

p1

Fig. 4 – The Poincaré map.

We denote by π the Poincaré map going from�1 to�4. Such a Poincaré map exists due to the existence

of the heteroclinic loop L and to the local phase portrait on the center manifold of p1, see Proposition 3. We
split π into three pieces. Let π1 : �1 → �2, π2 : �2 → �3 and π3 : �3 → �4. Therefore, π = π3 ◦π2 ◦π1.

See Figure 4.

Let δ > 0 but small. We consider the open segment � = {
(0, y, 0) : r1 < y < δ + r1

}
on the y-axis

having the left endpoint at (0, r1, 0). Then, since π1 is a diffeomorphism (because the orbits going from �1

to �2 use only a bounded time), π1(�) is an arc in �2 having the left endpoint at (−k, r1, 0).
We assume that �2 and �3 are in a neighborhood of p1 where the local phase portrait studied in

Subsection 2.2 holds. That is, γ1 and γ2 are in the center manifold of p1 drawn in Figure 1, and the flow
outside this center manifold tends exponentially to it. Therefore, by Proposition 3, (π2 ◦ π1)(�) is an arc

in �3 having the left endpoint at (−k, r2, 0).
Denote the time that the orbit γ2 needs to go from the point (−k, r2, 0) to the point (0, r2, 0) by τ .

Then, if ε > 0 is sufficiently small, by the theorem on continuous dependence on initial conditions and

parameters, during a finite time the flow of system (1) is close to the flow of system (1) with ε = 0, and

in particular τ is close to k. So, during the time τ ≈ k the orbits of system (1) near γ2 passing through

points of�3 have made approximately βk/2π turns (see expression (12) in Subsection 2.3). Consequently,

(π3 ◦ π2 ◦ π1)(�) is an arc in �4 which spirals to the point (0, r2, 0) giving approximately βk/2π turns.

Note that the number of turns tends to infinity when k → ∞, and we can take k as large as we want by
taking the neighborhood of infinity where we choose �2 and �3 sufficiently small.

The orbits through the intersection points of π(�)with the y-axis are periodic because, by construction,
they have two points on the y-axis. This completes the proof of Theorem 1.

A more complete analysis would produce a whole subshift passing near infinity, containing the derived
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symmetric periodic orbits. But in this note we are only interested in describing the geometrical mechanism

which creates these large amplitude periodic orbits near the invariant straight lines γ1 and γ2.

APPENDIX 1: POINCARÉ COMPACTIFICATION IN R3

In R3 we consider the polynomial differential system

ẋ = P1(x, y, z),

ẏ = P2(x, y, z),

ż = P3(x, y, z),

or equivalently its associated polynomial vector field X = (P1, P2, P3). The degree n of X is defined as
n = max{deg(Pi ) : i = 1, 2, 3}.

Let S3 = {y = (y1, y2, y3, y4) ∈ R4 : ‖y‖ = 1} be the unit sphere in R4, and

S+ = {y ∈ S3 : y4 > 0} and S− = {y ∈ S3 : y4 < 0}

be the northern and southern hemispheres, respectively. The tangent space to S3 at the point y is denoted
by TyS3. Then, the tangent plane

T(0,0,0,1)S
3 = {(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3}

is identified with R3.

We consider the central projections

f+ : R3 = T(0,0,0,1)S
3 S+ and f− : R3 = T(0,0,0,1)S

3 S− ,

defined by

f+(x) = 1


x
(x1, x2, x3, 1) and f−(x) = − 1


x
(x1, x2, x3, 1) ,

where


x =
(
1+

3∑
i=1
x2i

)1/2
.

Through these central projections, R3 can also be identified with the northern and southern hemispheres.

The equator of S3 is S2 = {y ∈ S3 : y4 = 0}. Clearly, S2 can be identified with the infinity of R3.
The maps f+ and f− define two copies of X , one Df+ ◦ X in the northern hemisphere and the other

Df− ◦ X in the southern one. Denote by X the vector field on S3 \ S2 = S+ ∪ S− which restricted to S+
coincides with Df+ ◦ X and restricted to S− coincides with Df− ◦ X .

In what follows we shall work with the orthogonal projection of the closed northern hemisphere to

y4 = 0. Note that this projection is a closed ball B of radius one, whose interior is diffeomorphic to R3 and
whose boundary S2 corresponds to the infinity of R3. We shall extend analytically the polynomial vector

field X to the boundary, in such a way that the flow on the boundary is invariant. This new vector field
on B will be called the Poincaré compactification of X , and B will be called the Poincaré ball. Poincaré
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introduced this compactification for polynomial vector fields in R2, and its extension to Rm can be found

in (Cima and Llibre 1990).

The expression for X(y) on S+ ∪ S− is

X(y) = y4




1− y21 −y2y1 −y3y1
−y1y2 1− y22 −y3y2
−y1y3 −y2y3 1− y23
−y1y4 −y2y4 −y3y4






P1

P2

P3


 ,

where Pi = Pi (y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X(y) is a vector field in R4 tangent to the
sphere S3.

Now we can extend analytically the vector field X(y) to the whole sphere S3 by

p(X)(y) = yn−14 X(y);

this extended vector field p(X) is called the Poincaré compactification of X .
As S3 is a differentiable manifold, to compute the expression for p(X) we can consider the eight local

charts (Ui , Fi ), (Vi ,Gi ) where Ui = {y ∈ S
3 : yi > 0}, and Vi = {y ∈ S

3 : yi < 0} for i = 1, 2, 3, 4;

the diffeomorphisms Fi : Ui → R3 and Gi : Vi → R3 for i = 1, 2, 3, 4 are the inverses of the central

projections from the origin to the tangent planes at the points (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0) and
(0, 0, 0, ±1), respectively. We now do the computations on U1. Suppose that the origin (0, 0, 0, 0), the

point (y1, y2, y3, y4) ∈ S3 and the point (1, z1, z2, z3) in the tangent plane to S3 at (1, 0, 0, 0) are collinear,
then we have

1

y1
= z1
y2

= z2
y3

= z3
y4

,

and consequently

F1(y) =
(
y2
y1

,
y3
y1

,
y4
y1

)
= (z1, z2, z3)

defines the coordinates on U1.
As

DF1(y) =




−y2/y21 1/y1 0 0

−y3/y21 0 1/y1 0

−y4/y21 0 0 1/y1


 and yn−14 =

(
z3

z

)n−1
,

the analytical field p(X) becomes

zn3
(
z)n−1

(−z1P1 + P2, −z2P1 + P3, −z3P1
)

,

where Pi = Pi (1/z3, z1/z3, z2/z3).
In a similar way we can deduce the expressions of p(X) in U2 and U3. These are

zn3
(
z)n−1

(−z1P2 + P1, −z2P2 + P3, −z3P2
)

,
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where Pi = Pi (z1/z3, 1/z3, z2/z3) in U2, and
zn3

(
z)n−1
(−z1P3 + P1, −z2P3 + P2, −z3P3

)
,

where Pi = Pi (z1/z3, z2/z3, 1/z3) in U3.
The expression for p(X) in U4 is zn+13

(
P1, P2, P3

)
where Pi = Pi (z1, z2, z3). The expression for

p(X) in the local chart Vi is the same as in Ui multiplied by (−1)n−1.
When we shall work with the expression of the compactified vector field p(X) in the local charts we

shall omit the factor 1/(
z)n−1. We can do that through a rescaling of the time.
We remark that all the points on the sphere at infinity in the coordinates of any local chart have z3 = 0.
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RESUMO

Neste trabalho estudamos uma classe de campos vetoriais polinomiais com simetria, definidos no R3 e dependendo

de um parâmetro real ε, que possui um conjunto de retas invariantes paralelas que tendem para dois pontos singulares

no infinito, formando ciclos heteroclínicos degenerados. A análise global na vizinhança dos pontos no infinito é

desenvolvida utilizando-se a compactificação de Poincaré. Provamos que para todo n ∈ N existe εn > 0 tal que, para

todo 0 < ε < εn , o sistema considerado possui pelo menos n órbitas periódicas de grande amplitude, que bifurcam
do ciclo heteroclínico formado pelas duas retas invariantes mais próximas do eixo-x , uma contida no semi-espaço
y > 0 e a outra contida no semi-espaço y < 0.

Palavras-chave: ciclo heteroclínico infinito, órbitas periódicas, sistemas reversíveis.

REFERENCES

ANDRONOV AA, LEONTOVICH EA, GORDON II AND MAIER AL. 1973. Qualitative Theory of Second-Order
Dynamical Systems. J Wiley & Sons, New York.

ARNOLD VI. 1980. Geometrical Methods in the Theory of Ordinary Differential Equations. Graduate Texts in

Mathematics. Springer-Verlag, New York, 60.

CARR J. 1981. Applications of centre manifold theory. Applied Math Sciencies, Springer-Verlag, New York, 35.

CHOW SN AND HALE JK. 1982. Methods of bifurcation theory. Grundlehren der Mathematischen Wissenschaften

(Fundamental Principles of Mathematical Science). Springer-Verlag, New York, 251.

CIMA A AND LLIBRE J. 1990. Bounded polynomial vector fields. Trans Amer Math Soc 318: 557–579.

DUMORTIER F, LLIBRE J AND ARTÉS JC. 2006. Qualitative theory of planar differential systems. Universitext,

Springer, New York.

An Acad Bras Cienc (2007) 79 (4)



LARGE AMPLITUDE OSCILLATIONS IN R
3 575

GUYON E, HULIN JP AND PETIT L. 1991. Hydrodynamique physique. InterEditions/Editions du CNRS.

LLIBRE J, MACKAY RS AND RODRÍGUEZ G. 2004. Periodic Orbits Passing Near Infinity (preprint).

NEWELL AC, RAND DA AND RUSSELL D. 1988. Turbulent transport and the random ocurrence of coherent events.

Phys D 33: 281–303.

SPARROW C AND SWINNERTON-DYER HPF. 1995. The Falkner-Skan equation I. The creation of strange invariant

sets. J Differential Equations 119: 336–394.

SPARROW C AND SWINNERTON-DYER HPF. 2002. The Falkner-Skan equation II. Dynamics and the bifurcations

of P- and Q-orbits. J Differential Equations 183: 1–55.

An Acad Bras Cienc (2007) 79 (4)


