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ABSTRACT

Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the

brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years

to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation

of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost

identical to those of LTP in the same region; b) hippocampal LTP in this region accompanies memory formation of that

task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and

in addition plastic events in several other brain regions (amygdala, entorhinal cortex, parietal cortex) are also necessary

for memory formation of the one-trial task, and perhaps of many others.
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INTRODUCTION

Long-term potentiation (LTP) was first described by

Bliss and Lomo (1973) and Bliss and Gardner-Medwin

(1973) in the dentate gyrus. It was recognized imme-

diately as a possible model of memory, being the only

stimulus-induced electrophysiological change that could

last as long as a memory (see Matthies 1982, Bliss and

Collingridge 1993, Reymann 1993). It consists of the

enhancement of a postsynaptic response during many

hours, days, or as it was later found, weeks (Barnes 1979)

following a brief repetitive afferent stimulation. Sub-

sequently LTP was seen in the CA3 region of the hip-

pocampus (Alger and Teyler 1976), in the CA1 region
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(Andersen et al. 1977), in the septo-hippocampal projec-

tion (Racine et al. 1983), and then in many regions of

the cortex and in other places (Martin et al. 2000, Xin

et al. 2006, Maroun 2006). LTP may even kindle silent

synapses into action (Kasten et al. 2007). The oppo-

site process, long-term depression (LTD) has also been

recognized and proposed to play a role in learning (see

Bliss and Collingridge 1993, Ito 2005, 2007, Steuber

et al. 2007). It will be dealt with here only passingly.

It is very prominent in cerebellum, where it has been

best studied.

The widespread existence of LTP strengthened the

views linking LTP with memory processes (Teyler and

DiScenna 1987, Collingridge 1985,Malinow et al. 1988,

Bliss and Collingridge 1993, Reymann 1993, Izquierdo

and Medina 1995, 1997, Malenka and Nicholl 1999,
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Kandel and Squire 2000, Malenka 2003, Riedel et al.

2003, Malenka and Bear 2004). Formal theories were

put forward in support of the idea that LTP actually un-

derlies, or is an important component of, memory (Lynch

and Baudry 1984, Frey and Morris 1997, Martin et al.

2000, Morris 2003, Morris et al. 2003, Martin and Clark

2007). In view of recent developments on the physiology

of dendrite responses to different sources of stimulation

(Sjöstreom and Hausser 2006, see also Nicholson et al.

2006), the theory most intriguing and with the largest

chance of survival is that of synaptic tagging (Frey and

Morris 1997, Morris et al. 2003). It presents a clear-cut

physiological explanation of why synaptic activity lead-

ing to LTP in one pathway afferent to CA1 can influence

synaptic activity brought in by another pathway.

In spite of the criticisms put forward bymany (Keith

and Rudy 1990, Martinez and Derrick 1996, see Barnes

1996 and Shors and Matzel 1997 for references), the

LTP hypothesis of memory held firmly (Izquierdo and

Medina 1995, 1997, Martin et al. 2000, Morris et al.

2003) and eventually was proven right (Gruart et al.

2006, Whitlock et al. 2006, Izquierdo et al. 2006). LTP

does account for key aspects of memory; although, as

will be seen, not all.

THE MOLECULAR BASIS OF CA1 LTP

Many studies have been carried out on the molecular

basis of LTP in the CA1 region of the hippocampus and

on the role of that region in the memory consolidation of

one-trial avoidance learning (see above, and Ahmed and

Frey 2005, Izquierdo et al. 2006 for references). The

studies show remarkable similarities both in the nature

and in the timing of the various molecular changes in

LTP and in memory formation (Izquierdo and Medina

1995, 1997, Izquierdo and McGaugh 2000, Izquierdo et

al. 2006).

CA1 LTP involves and requires initially an activa-

tion of AMPA, metabotropic and NMDA receptors in

pyramidal cell synapses (Bliss and Collingridge 1993,

Riedel et al. 2003). The induction of LTP is exquisitely

sensitive to inhibition by GABAA receptors (see Teyler

and DiScenna 1987, Bliss and Collingridge 1993 for

references). The AMPA receptor activation depolarizes

and thus renders NMDA receptors susceptible to gluta-

mate action and thus permits the entry of Ca2+ to the

cell. This causes a release of bound intracellular Ca2+;

the high [Ca2+] near the synaptic membrane stimulates

the local activity of Ca2+-calmodulin-dependent protein

kinase II (CaMKII), which promotes the phosphoryla-

tion of AMPA and other glutamate receptors (Barriá et

al. 1997). Increased Ca2+ also occurs presynaptically,

in which case it enhances the activity of protein kinase

C (PKC), which phosphorylates the protein GAP-43,

which further enhances glutamatergic transmission by

mobilizing synaptic vesicles (Routtenberg 2000). Post-

synaptically, PKC mediates further phosphorylation of

glutamate receptors and eventually also the phosphory-

lation of the cAMP response element binding protein

(CREB), a constitutive transcription factor (Roberson

et al. 1999, see also Routtenberg 2000). The CaMKII

change begins right after induction, and extends for

2-3 h (Barriá et al. 1997). The PKC changes peak at

30 min and extend for 1-2 h (Routtenberg 2000). At

3-4 h from training there is a dopaminergic D1 recep-

tor stimulated increase of cAMP and of the cAMP-de-

pendent protein kinase (PKA), which also phosphory-

lates CREB (Huang and Kandel 1995). There has been

abundant evidence that ERK is activated at about the

same time as PKA and that it is also essential for CA1

LTP maintenance and CREB (Selcher et al. 2004).

BDNF and ERK may be upstream to mTOR signaling

(Bekinschtein et al. 2007b), and which is crucial for

hippocampal LTP (Tang et al. 2002).

For a possible role of zif268 in the transition be-

tween early and late LTP and in memory formation, see

references in Izquierdo and Cammarota (2004). For ref-

erences on a role of Arc, see Vazdarjanova et al. (2006).

The importance of CREB for the mRNA synthe-

sis and subsequent protein synthesis that have long been

held as necessary for the development of enduring neu-

ronal plasticity (Kandel and Squire 2000) or, indeed, en-

during memory formation (see Igaz et al. 2002 for ref-

erences) has been repeatedly demonstrated (Bernabeu et

al. 1997, Bozon et al. 2003). The role of mRNA syn-

thesis and protein synthesis in CA1 LTP has been as-

certained by numerous studies (see Huang and Kandel

1995). Among the many new proteins that are synthe-

sized in CA1 following LTP ormemory processing, there

are those that result from the activation of early genes

(fos, arc, jun, Src, zif268, etc. see above and Bozon et
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al. 2003), and a variety of first glyco- (O’Connell et al.

1997) and then sialoglycoproteins (Foley et al. 2003).

These are believed to mold morphological changes at

dendritic spines and/or the axon terminals that make

synapse with them (see Rose 1995, Foley et al. 2003

for references). Such morphological changes have been

suggested repeatedly to underlie the long-term main-

tenance both of LTP and memory (Kandel and Squire

2000, Bozon et al. 2003, Lynch et al. 2007). Morpho-

logical changes of hippocampal synapses (increased cell

adhesion, bifurcation, and enlargement of both pre- and

postsynaptic components, including receptor area), in-

deed accompany both LTP (Geinisman 2000) and mem-

ory formation processes (O’Connell et al. 1997, Foley

et al. 2003). Undoubtedly all these changes suggest en-

hancement of synaptic function. The brain-derived neu-

rotrophic factor (BDNF) is important for neuritogene-

sis as a whole, but particularly for the generation of the

morphological changes at CA1 synapses that determine

long-term maintenance of LTP (Santi et al. 2006, Rex

et al. 2007, see also Lynch et al. 2007). The recep-

tor for BDNF is tyrosine kinase B (TrkB) (Yamada and

Nabeshima 2003, Brandner 2004), which activates the

ERK pathway (Selcher et al. 2004, Sharma et al. 2006).

This activation is necessary for the influence of BDNF

on neuritogenesis (Alonso et al. 2004).

Granado et al. (2007) showed that D1R but not D5R

are critical for hippocampal LTP and for the induction of

Zif268 and Arc, proteins required for the transition from

early to late LTP to L-LTP and for memory consolida-

tion. For a possible role of zif268 in the transition be-

tween early and late LTP and in memory formation, see

references in Izquierdo and Cammarota (2004). For ref-

erences on a role of Arc, see Vazdarjanova et al. (2006).

Thus, the making and maintenance of CA1 LTP

result from a well-timed and organized sequence of

molecular events initiated by NMDA receptor activation

and culminates by morphological changes at particular

synapses in CA1 and elsewhere.

THE CHOICE OF ONE-TRIAL AVOIDANCE AS THE TEST

MODEL OF THE LTP HYPOTHESIS

One-trial avoidance has long been a favorite for mem-

ory consolidation studies for several reasons: a) it is ac-

quired in seconds but may last months (Izquierdo et al.

2003, Frankland et al. 2006), like LTP, b) it requires

the participation of CA1, which is the region in which

LTP has been best studied (Izquierdo and Medina 1997,

Lorenzini et al. 1996); c) it is the task whose pharmacol-

ogy has also been best studied (Izquierdo and McGaugh

2000), particularly in relation to or in search of a parallel

with LTP (Izquierdo and Medina 1995, 1997, Izquierdo

et al. 2006, 2007).

Therefore, it is not at all surprising that this task

has been chosen as the model to test the LTP hypothesis

of memory formation by Izquierdo et al. (2006) and

Whitlock et al. (2006).

Other tasks in which the possibility that hippocam-

pal CA1 LTP has also been proposed to play a key role

in memory formation include, of course, spatial learn-

ing in a water maze (Morris et al. 1986), and classi-

cal eye blink conditioning (Tocco et al. 1991). Spatial

learning in a water maze (the Morris maze) has long

been known to depend on the hippocampus (Morris et

al. 1986, 2003). Although the long-term storage of clas-

sical eyelid conditioning requires the cerebellum (Krupa

and Thompson 1997), the earlier stages of memory for-

mation of this task require alike events in the hippocam-

pus of rabbits (Tocco et al. 1991, 1992). These events

(increased AMPA binding) have been also reported after

one-trial avoidance in rat CA1-CA3 (Cammarota et al.

1996, Izquierdo et al. 2006).

Due to the multi-trial nature of the task, a role for

LTP in spatial learning is difficult to prove (Izquierdo

et al. 2006). However, there are many preliminary and

scattered findings in favor of such a role in that task

(Morris 2003, Morris et al. 2003). On the other hand, a

role of LTP of the CA3-CA1 pathway has been recently

demonstrated in early classical eye blink conditioning

by Gruart et al. (2006).

CA1 LTP IN MEMORY CONSOLIDATION

LTP of CA1 synaptic responses relevant to the memory

being made has been recently observed in freely moving

rats during consolidation of one-trial inhibitory avoid-

ance (Whitlock et al. 2006). This fits with the simulta-

neous demonstration that the molecular requirements in

CA1 for consolidation of that task are indeed almost if

not completely identical to those of CA1 LTP (Izquierdo

et al. 2006).
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For analogies and correspondences between the

mechanisms of CA1LTP and those observed in CA1 dur-

ing the consolidation of one-trial inhibitory avoidance,

see Reymann (1993) and Izquierdo and Medina (1995,

1997). See also in particular Izquierdo et al. (1992),

Jerusalinsky et al. (1992), Bianchin et al. (1994), Cam-

marota et al. (1996) and specially Riedel et al. (2003)

for the involvement of glutamate receptors in CA1; Cam-

marota et al. (2000) for the dependence of all the enzy-

matic changes observed (see below) on NMDA recep-

tors activated at the time of training; Cammarota et al.

(1997) for the role of PKC andGAP43; Cammarota et al.

(1998) for the role of CaMKII; Bernabeu et al. (1997)

and Taubenfeld et al. (2001) for the role of the PKA-

CREB pathway; Ardenghi et al. (1997) and Bevilaqua et

al. (1997) for the role of monoaminergic modulation of

PKA (see below); Sweatt (2004), Alonso et al. (2002a,

b) and Rossato et al.(2004) for the role of ERKs, which

unlike CaMKII (Cammarota et al. 1998, Cammarota and

Medina 2004) and PKA (Bernabeu et al. 1997, Vianna

and Izquierdo 2004), is apparently related to the aver-

sive aspects of the task (Alonso et al. 2002b), Izquierdo

and Cammarota (2004), Bozon et al. (2003) and Vazdar-

janova et al. (2006) for the role of early gene products;

Igaz et al. (2002) for the need of mRNA and protein syn-

thesis in hippocampus and their timing; Igaz et al. (2004)

for posttraining protein synthesis in general (see below);

Rose (1995), O’Connell et al. (1997) and specially Fo-

ley et al. (2003) for the posttraining role of glyco- and

sialoglycoproteins in memory formation; Alonso et al.

(2002a, 2005) for the role of BDNF in memory forma-

tion and Bekinschtein et al. (2007a) for hippocampal

BDNF and memory persistence.

For the role of other enzymes related physiologi-

cally to PKC, PKA, CaMKII and the ERKs in memory

formation and in LTP (i.e., Junkinase, Src kinase, etc.),

see references in Izquierdo et al. (2006), Bevilaqua et al.

(2003a, b, 2007). Importantly, mTOR signaling, perhaps

stimulated by BDNF and ERKs, is crucial for the consol-

idation of one-trial avoidance (Bekinschtein 2007b), as

has been shown to be crucial for LTP (Tang et al. 2002).

Concerning the genes that are activated and the cor-

respondingproteins that are synthesized in the hippocam-

pus as a consequence of behavioral training and/or mem-

ory consolidation, Igaz et al. (2004) have recently ob-

served that CaMKII , Homer 1a, syntaxin 1a and ERK2

must be added to the list. These syntheses might involve

reposition of enzymes that had been used by the learning

process, or of other constitutive cell elements.

Certainly the observations of CA1 potentiation dur-

ing classic eye blink conditioning in mice by Gruart et al.

(2006) can be taken as a confirmation and an extension

of the findings by Izquierdo et al. (2006) and Whitlock

et al. (2006) on rat one-trial inhibitory avoidance and

vice versa. Together, the three papers have strongly en-

dorsed, to the point of actually proving, the LTP hypothe-

sis of memory formation. (See, however, the last section

below).

There have been three recent findings in the eye

blink conditioningmodel. First, it was found thatNMDA

NR2B receptors in CA1 are involved both in the learn-

ing and the LTP that goes with it (Valenzuela-Harrington

et al. 2007). These receptors had been previously shown

to be involved in both inhibitory avoidance and spa-

tial learning in the same area (Minichiello et al. 1999,

Suetake-Koga et al. 2006). Second, it was reported that

TrkB is crucially involved both in the eyelid condition-

ing and in the accompanying LTP (Gruart et al. 2007),

as had been previously shown in this and other types

of LTP and in avoidance and spatial tasks (see Brand-

ner 2004). Third, and importantly, a dissociation was

found inmice that hiperexpressTrkBbetween eyelid con-

ditioning memory and the accompanying LTP; the for-

mer was depressed but the latter was unaltered (Sahun et

al. 2007).

The first two findings on eyelid conditioning and

CA1 LTP simply update findings in that task concern-

ing both NR2B receptors and TrkB; both proteins have

long been to play a key role in LTP and memory forma-

tion had been described in other tasks (see, for example,

Fox et al. 2006 and Silhol et al. 2007, respectively). The

third finding, that of dissociation between LTP andmem-

ory, is disquieting but potentially important (see below,

last section).

It must be noted that there is much more certainty

of the relation between LTP and memory formation at

the systems level (see above) than at the cellular level.

Given the complexity of the possible interplays between

synaptic activation at one particular spine (Sjöstrom and

Hausser 2006, Nicholson et al. 2006), and the possi-
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bility that silent synapses are activated by LTP (Kasten

et al. 2007). The nature of the message relevant to a

particular learning that becomes enhanced by LTP, be it

in CA1 or anywhere else for that matter, becomes com-

pletely obscure. A possible role of cerebellar Purkinje

cell LTD in the recognition of afferent patterns has been

suggested by Steuber et al. (2007). Whatever happens

in LTD could also happen, theoretically, in LTP; perhaps

with a different sign (see Ito 2005, 2007).

It may however be overambitious to propose any

such jump to the cellular level from what we know about

the fundamental molecular mechanisms of memory in

the hippocampus and other brain areas (Izquierdo et al.

2006). We know that the mechanisms of LTP involve

protein synthesis leading to changes at synapses that can

only be interpreted as underlying strengthening of the

transmission across them (see Rose 1995, O’Connell et

al. 1997, Geinisman 2000, Geinisman et al. 2004, Foley

et al. 2003). This is certainly sufficient as a ground for

memory formation and storage and to support general

mechanisms and principles of memory storage. How are

the changes then transmitted from the hippocampus and

related structures to more distant areas of the brain (cere-

bral cortex, Izquierdo et al. 1997; cerebellum, Krupa and

Thompson 1997) is another matter.

In this connection, we are not much better off than

the physicians of eighty years ago, who could correctly

diagnose that an infectious agent caused pneumonia; but

did not know how or why it did, and what treatment to

give. The treatments had not been discovered yet; as the

pathways that harbor one or other memory have not been

shown in detail either.

LTP AND MEMORY OUTSIDE THE HIPPOCAMPUS

There have been postulations of possible LTP in the

basolateral amygdala in connection with the consolida-

tion of conditioned fear tasks that require freezing as

a response. Several authors proposed that, unlike in-

hibitory avoidance (McGaugh 2006), conditioned fear

tasks that result in acquired freezing consolidate in the

basolateral amygdala (Schafe et al. 2005, Wilenski et

al. 2006, Phelps 2006). While this position is adhered to

by a number of authors (eg., Phelps et al. 2004, Huang

and Kandel 2007), it is vigorously contested by others

(Vazdarjanova et al. 2001, Cahill et al. 2000, McGaugh,

2006), who advocate for a modulatory influence of the

basolateral amygdala in fear- or otherwise aversively-

motivated memories. The discussion is not closed. It

is possible that the amygdala may use some form or de-

gree of storage in order to fulfill its modulatory role;

but the evidence of the amygdale as a storage site is not

compelling (see McGaugh 2006). In contrast, the evi-

dence that the hippocampus is a storage site for aversive

(Lorenzini et al. 1996, Izquierdo et al. 2006) as well

as for a very wide variety of memories is overwhelming

indeed. The amygdala as a regulator could be as impor-

tant as the dopaminergic, noradrenergic and serotoner-

gic pathways that end on D1, beta- and 1A re-ceptors

respectively in CA1, the entorhinal cortex, the parietal

cortex and other areas that make aversive and othermem-

ories. The receptors mentioned modulate cAMP levels

and therefore the function of the cAMP-dependent pro-

tein kinase (PKA) that is central to memory making in

the CA1 area and perhaps in the other regions men-

tioned as well (Ardenghi et al. 1997, Bevilaqua et al.

1997, Rossato et al. 2004, Izquierdo et al. 2006). Inter-

estingly, neither the monoaminergic pathways nor their

receptors, which are strongly linked to the consolidation

of emotionally strongmemories, including those of aver-

sive nature, modulate memory formation of inhibitory

avoidance and other tasks in the basolateral amygdala

(Bevilaqua et al. 1997, Rossato et al. 2004, Izquierdo et

al. 2006). Highly emotional memories, including aver-

sive or otherwise high attention-demanding memories,

are, as known, those best remembered by humans

and animals (Hamann et al. 1997, Cahill and McGaugh

1998, Cahill et al. 1999). The dopaminergic D1 positive

regulation of one-trial avoidance memory in CA1 has

been confirmed by O’Carroll et al. (2006).

The mechanisms of LTP are far from identical in

all places. There are important differences between den-

tate gyrus LTP, which was the first one to be described

(Bliss and Lomo 1973), in CA3 LTP (Alger and Teyler

1976), and in CA1 LTP (Huang and Kandel 1995, 1996,

see Izquierdo et al. 2006 for references). CA1 LTP is

really triggered by glutamate action at NMDA recep-

tors (Bliss and Collingridge 1993); NMDA-independent

LTP is instead found in CA3 and elsewhere (Bortolotto

et al. 2005). In contrast to the hippocampus, where

it has not been described (see Huang and Kandel 1995,
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1996) and, if anything, an opposite effect of serotonin

might be expected (Bernabeu et al. 1997, Izquierdo et

al. 2006), in the amygdala the late maintenance phase

of LTP is stimulated by a 5HT4 mediated mechanism

which enhances both PKA and ERK activity (Huang

and Kandel 2007). Modulation of this phase depends

on dopamine D1 receptors in CA1 (Huang and Kandel

1995) and on β-noradrenergic processes in CA3 (Huang

and Kandel 1996). CA3 and various other forms of

LTP do not require NMDA receptor activation, which

is indispensable for CA1 LTP (see Martin et al. 2000).

Muscarinic- or nicotinic receptor-dependent LTP in

mammalian ganglia has been described long ago, and

seem not to require glutamate receptors at all (see Teyler

and DiScenna, 1987). The amygdala and the ventro-

medial prefrontal cortex have reciprocal pathways that

are important for the regulation of memory consolida-

tion (Izquierdo et al. 2007) and extinction (Milad et al.

2007). The prefrontal-amygdala pathway normally gen-

erates LTD, which can be reversed into LTP by exposure

to stress (Maroun 2006).

ADDITIONAL COMMENT ON AGING AND PRION

There is a decline in cognitive performance in rats and

mice between the age of 2-3 months and that of 8 months

attributable to a gradually increased sensitivity to down-

regulation by the PrPc protein (the physiological prion

protein, Coitinho et al. 2003). Coincidentally, both post-

tetanic potentiation and LTP in the CA1 region of ag-

ing PrP-null mice are also reduced, which has been at-

tributed to increased levels of oxidative stress in aged

animals (Curtis et al. 2003). PrPc modulates memory

consolidation in CA1 through an interaction with lami-

nin (Coitinho et al. 2006) and with the stress-inducible

protein 1 (Coitinho et al. 2007) resulting in changes of

PKA and/or ERK function.

Monfort and Felipo (2007) have reported a diminu-

tion of the strength of CA1 LTP in normal rats between

the age of 2 and 8 months, in which they detected an

influence of sex (females were more resistant to the de-

cline).

There are many things that age in the rat or the

mouse between the age of 2 or 3 months and that of

8 or 9 months. Since these animals live for over 20-22

months (see Izquierdo et al. 2003), it is perhaps wiser to

ascribe the changes that occur between 2 and 9 months

to “maturation” rather than aging. The rift between mat-

uration and aging is, of course, tenuous; and certainly

most physiological changes seen in real aging are ini-

tiated much earlier. So it is possible that the decline of

LTP (Monfort and Felipo 2007), and the decline of

memory processes (Coitinho et al. 2003) seen before the

age of 9 months may indicate early stages of those seen

at an advanced (senile?) age (eg. Barnes 1979, Izquierdo

et al. 2003). Sensitivity to regulation by PrPc may be

one aspect of this progression.

THERE ARE MORE THINGS

A very large amount of evidence (Izquierdo et al. 1992,

Jerusalinsky et al. 1992, Wolfman et al. 1994, Ardenghi

et al. 1997, Bevilaqua et al. 1997, Izquierdo andMedina,

1997, Bonini et al. 2003, Rossato et al. 2004, Izquierdo

et al. 2006, 2007) shows that glutamate receptor block-

ers, CaMKII, PKA, ERK inhibitors and other enzyme

inhibitors, and a variety of drugs that block memory

formation when given into the hippocampus, also block

memory formationwhengiven into the basolateral amyg-

dala, entorhinal cortex, posterior parietal cortex and pre-

frontal cortex. The effect of all these drugs in these other

structures has a very different timing from that observed

in CA1 and characteristic of LTP. In fact, in all these

other structures, the timing of their actions is incompati-

ble with an influence on LTP or an LTP-like mechanism

(Izquierdo et al. 2006).

Therefore, it must be concluded that a variety of

the mechanisms typical of LTP can act independently of

LTP, underlying other forms of plasticity in all the other

brain areas mentioned, and that these mechanisms are

also essential for the formation of one-trial inhibitory

avoidance and perhaps of many other tasks (see above).

The molecular changes that underlie the consolida-

tion of one-trial avoidance (Izquierdo et al. 2006) and

other aversive tasks (Matthies 1982) are in general bipha-

sic: there is a rapid posttraining peak of PKA (Bernabeu

et al. 1997) and ERK (Alonso et al. 2002b) activity and

RNA and protein synthesis (Quevedo et al. 1999, Igaz

et al. 2002) followed by and a second peak 2-6 h later

(Matthies 1982, Bernabeu et al. 1997, Cammarota et al.

2000, Igaz et al. 2002). The early peak of ERK is prob-

ably secondary to the aversive stimuli used for training
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(Alonso et al. 2002b). This is different fromwhat is usu-

ally assumed to happen in LTP, in which there appears

to be just one peak of molecular processes (Malinow et

al. 1988), usually believed to be late, at 3-4 h from in-

duction (Huang and Kandel 1995, 1996). Perhaps this

difference is not functionally important from the point of

view of a role of LTP in memory processing (Izquierdo

et al. 2006). Perhaps the rapid early peak has not been

sufficiently investigated in LTP; the effect of inhibitors

has been much more studied in LTP than the actual bio-

chemical changes.

In addition, the dissociation of CA1 LTP from

the classical eye blink conditioning task that was seen

in transgenic mice that overexpress TrkB (Sahun et al.

2007) clearly shows that LTP must be regarded not only

as “the” mechanism of memory formation. It certainly is

one mechanism of memory formation; but not the only

one, and in addition LTP can function alone, without

lending a basis to memory processes. For roles of LTP

in other processes that do not necessarily involve mem-

ory formation, see Teyler andDiScenna (1987) and Shors

and Matzel (1997).

It has been proposed long ago that different brain

structures and processes therein may handle different as-

pects or components of each memory (Izquierdo et al.

1992, 2006). One-trial inhibitory learning, in spite of its

simplicity, involves many such components and several

of them can be distinguishedmechanistically by different

forms of training and treatments (eg. Roesler et al. 2005,

2006). The hippocampus may be in charge of spatial

and contextual aspects (Morris et al. 1986, 2003, Mar-

tin and Clark 2007); the amygdala may be in charge of

highly attentional and/or aversive components (Phelps

2006, see McGaugh 2006); the parietal cortex may be in

charge of sensory signals or representations (Izquierdo

et al. 2006); etc. It is possible, perhaps very likely,

that each of these structures uses a different form of neu-

ral plasticity to handle these different components (see

Izquierdo et al. 2006). Even within the hippocampal

CA1 region NMDA-dependent and NMDA-independent

processes can be recognized as separate for different as-

pects of one-trial memory (Roesler et al. 2005, 2006).

The entorhinal cortex, by virtue of its interconnections

with all of the areas mentioned (Hyman et al. 1990) may

be the main connecting bridge between the various ar-

eas, processes and functions. The famous amnestic case,

H.M., who suffered a devastating bilateral temporal lobe

surgery in 1953 and was left with an impossibility of

making new declarative memories and a pronounced ret-

rograde amnesia was examined by fMRI in 1996 and

again last year by Corkin and her group. The lesions

of H.M. comprised most if not all the entorhinal cortex

on both sides and only part of the hippocampus (Corkin

et al. 1997, Salat et al. 2006). In monkeys, too, bilat-

eral entorhinal lesions cause much more amnesia than

bilateral hippocampal or hippocampo-amygdalar resec-

tion (see Squire et al. 2004 for references). Patients with

circumscribed hippocampal surgical lesions because of

epilepsy seldom present any amnesia in any way compa-

rable with that of H.M., if they present any amnesia at all

(Paglioli et al. 2006). In fact, their postoperativememory

performance is usually better than that of their preoper-

ative life, when they were plagued by epileptic seizures

(Tuon et al. 2007). Therefore the entorhinal cortex plays

a role in memory larger than its fame. At least certainly

larger than that of the hippocampus or amygdala.

Of a few things we can be sure. First, that there

is LTP in memory, but there is much more to memory

than hippocampal LTP. Second, that mechanisms out-

side the hippocampus are as important as those in that

structure, and probably do not involve LTP. Third, that

the ultimate storage of memory for weeks, months or

years certainly is not in the hippocampus, but elsewhere

in the brain, probably in the neocortex or in circuits that

heavily involve the neocortex (Izquierdo et al. 1997,

Squire et al. 2004). In the case of classic eye blink con-

ditioning, which is made originally in the hippocampus

(Tocco et al. 1991, 1992, Gruart et al. 2006, 2007), the

ultimate storage is in the cerebellum (Krupa and Thomp-

son 1997). In the case of one-trial avoidance, it is in

the neocortex (Izquierdo et al. 1997. Therefore, it is not

really necessary, or indeed believable, that the LTP in-

volved in memory acquisition or consolidation should

last as long as the memory itself. The search for storage

mechanisms continues.

RESUMO

A potenciação de longa duração (LTP) é o aumento de respos-

tas pós-sinápticas durante horas, dias ou semanas após a breve

estimulação repetitiva de aferentes pre-sinápticos. Foi pro-
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posto durante 30 anos ser a base da memória de longa duração.

Vários achados recentes finalmente apoiaram esta hipótese:

a) a formação da memória de esquiva inibitória adquirida numa

sessão depende de uma cadeia de processos moleculares na

região CA1 do hipocampo quase idêntica à da LTP nessa mes-

ma região; b) LTP hipocampal nessa região acompanha a for-

mação da memóría dessa tarefa e de outra semelhante. No

entanto, a LTP de CA1 e os processos de memória podem ser

dissociados e, fora disso, processos plásticos em outras regiões

cerebrais (amígdala, córtex entorrinal, córtex parietal) também

são necessários para a formação da memória da tarefa de uma

sessão e talvez de muitas outras.,

Palavras-chave: potenciação de longa duração, hipocampo,

memória declarativa, memória aversiva.
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