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ABSTRACT

The differentiation of proliferating epimastigote forms of Trypanosoma cruzi, the protozoan parasite that causes Chagas’
disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating

the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical

nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast – an organelle

that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum

protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the mor-

phological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction

of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an

already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative

to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also

examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process.

Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis.

RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that tran-

scription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast

and flagellum reach the posterior position of the parasites in the infective form.
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INTRODUCTION

The differentiation of epimastigotes into metacyclic try-

pomastigotes (metacyclics), called metacyclogenesis, is

a fundamental step in the life cycle of T. cruzi, the eti-
ological agent of Chagas’ disease. This process occurs

at the terminal portion of the triatomine hindgut, where

elongated epimastigotes attach prior to differentiating

into metacyclic forms (Kollien and Schaub 2000). Once
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formed, metacyclics detach from the hindgut wall and

are excreted. Infection ismediated through the contact of

these excreta with mucous membranes of a mammalian

host. It is not clear how the differentiation process is trig-

gered, but it has been demonstrated that metacyclogene-

sis is induced by a nutritional stress that happens in the in-

sect’s gut environment (Contreras et al. 1988, Figueiredo

et al. 2000, Wainszelbaum et al. 2003). Since the estab-

lishment of Contreras’ triatomine artificial urine (TAU)

medium, a chemically-defined medium that mimics the
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composition of the insect’s urine, this process can be re-

produced in vitro. Metacyclogenesis is induced, in vitro,
by incubating epimastigote forms in TAU medium and,

subsequently, in TAU supplemented with amino acids

and glucose (TAU3AAG medium). Under these condi-

tions, parasites adhere to the flask and undergo differen-

tiation (Bonaldo et al. 1988). In vitro metacyclogenesis
makes synchronization of the cells possible; hence para-

sites at different stages of the differentiation process can

be isolated from the culture and their biological features

studied. Several major phenotypic changes occur dur-

ing metacyclogenesis, including non-proliferation and

the development of infectivity with changes in the cell

morphology. In addition, nuclear structuremodifications

(Elias et al. 2007), chromatin remodeling, and differ-

ential mRNA stability (Krieger and Goldenberg 1998,

Yamada-Ogatta et al. 2004), result in differences of pro-

tein expression (Parodi-Talice et al. 2007) during meta-

cyclogenesis.

Gene expression in T. cruzi is controlled post-trans-
criptionally. Genes are transcribed polycistronically and

subsequently cleaved into functional mRNAs, requiring

trans-splicing of a capped 39-nucleotide leader RNA de-

rived from a short transcript, the spliced leader (SL)RNA

(Teixeira 1998). As described previously T. cruzi RNA
polymerase II (RNA Pol II) is found concentrated in

a domain close to the parasite nucleolus, which repre-

sents actively transcribed spliced leader genes (Dossin

and Schenkman 2005). The remaining RNA Pol II is

distributed in several foci in the nucleoplasm. In try-

pomastigote stages, transcription is diminished (Elias et

al. 2001) with dispersal of the major RNA Pol II foci

(Dossin and Schenkman 2005). In the present work

we asked when, during metacyclogenesis, the transcrip-

tional activity decreases and RNA Pol II foci disperse.

We also describe the morphological events that include

the repositioning of the flagellum and the kinetoplast

in the parasite cell body and characterize the interme-

diate form at the ultrastructure level. We found that

transcriptional activity is constant and RNA Pol II dis-

tribution is maintained in the nucleus during the entire

metacyclogenesis process, disassembling only when the

metacyclic-trypomastigotes are formed, implying that

transcriptional activity is required to complete meta-

cyclogenesis.

MATERIALS AND METHODS

PARASITES AND IN VITRO METACYCLOGENESIS

The T. cruzi Dm28c clone was obtained and cultured in
the laboratory in liver infusion tryptose (LIT) medium,

containing 10% fetal bovine serum at 28◦C (Contreras
et al. 1988). To induce metacyclogenesis we followed

the procedure described by (Contreras et al. 1988, Fi-

gueiredo et al. 2000). Briefly, epimastigotes were grown

to stationary phase (5× 107 cells/mL), collected by cen-
trifugation at 2000 g for 15 minutes at 10◦C, and resus-
pended to 5 × 108 cells/mL in TAU medium (190 mM
NaCl, 17 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 8 mM

sodium phosphate buffer, pH 6.0). After 2 hours at 37◦C,
parasites were diluted 100 fold in TAU supplemented

with 50 mM sodium glutamate, 10 mM L-proline, 2 mM

sodium aspartate, and 10 mM glucose, allowed to attach

to culture flasks and maintained afterwards at 28◦C. At-
tached parasites were collected 24, 48 and 72 hours later

by removing the supernatant and vigorously shaking the

parasites with supplemented TAU medium. Metacyclic

trypomastigotes were obtained from the culture super-

natants after 72 hours.

IMMUNOFLUORESCENCE ANALYSIS

Immunofluorescence experiments were done with para-

sites attached to glass slides pretreated with 0.01% poly-

L-lysine. Alternatively, the differentiation process was

conducted in 24 well plates containing 12 mm glass cov-

erslips. Attached parasites were fixed with 0.5 to 4%

paraformaldehyde at 4◦C for 15 minutes and perme-
abilized in phosphate-buffered saline (PBS) containing

0.1% Triton X-100. The fixed and permeabilized cells

were washed with PBS, and the slides, or coverslips,

were incubated with the primary antibody for 1 hour at

room temperature. Antibodies to T. cruzi RNA-Pol II
were obtained from rabbits immunized with a recombi-

nant carboxy-terminal fragment unique to T. cruzi RNA-
Pol II as described previously (Dossin and Schenkman

2005). Monoclonal antibody 25 (mAb 25), which is

specific for the flagellar calcium-binding protein (Elias

et al. 2007), was used to highlight flagellar structures.

The preparations were washed with PBS, incubated with

anti-rabbit, or anti-mouse IgG, conjugated respectively

to rhodamine or fluorescein (Santa Cruz Biotechnology,

Santa Cruz, CA), and mounted in VectaShield (Vector
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Laboratories) in the presence of 10µg of 4’6’diamidino-

2-phenylindole (DAPI) per mL.

SCANNING ELECTRON MICROSCOPY

Parasites were fixed with 2.5% glutaraldehyde, 2% for-

maldehyde in 0.1 M cacodylate buffer pH 7.2, for 1 hour

at room temperature under constant agitation. The fixed

parasites were then decanted overnight on glass cover-

slips precoated with 0.01% poly-L-lysine. The cover-

slips were washed three times with 0.1 M cacodylate

pH 7.2 (10 minutes each) and then incubated with 1%

osmium tetroxide in the same buffer for 30 minutes at

room temperature, washed with cacodylate buffer, and

treated for 30minuteswith 1% tannic acid solution. After

this treatment coverslips were washed twice in distilled

water (10minutes each) and impregnated oncemorewith

1%osmium tetroxide (30minutes), gradually dehydrated

in ethanol solutions (70, 90 and 100%), and dried in a

Balzers CPD 030 apparatus. The slides were mounted,

gold coated in a Balzers SCD 050, and examined in a

Scanning Electron Microscope JEOL 5300.

TRANSMISSION ELECTRON MICROSCOPY

Parasites were fixed for 2 hours at room temperature

with 2% formaldehyde, 2.5% glutaraldehyde in 0.1 M

sodium cacodylate buffer at pH 7.2. Ultrathin serial lon-

gitudinal sections were obtained as described (Alberio

et al. 2004), by processing fixed parasites attached to

plastic coverslips precoated with 0.01% poly-L-lysine

as described above for scanning electron microscopy.

Parasites on the coverslips were then post-fixed with 1%

osmium tetroxide in the same buffer for 30 minutes at

room temperature, washed with cacodylate buffer, grad-

ually dehydrated in a series of ethanol solutions, and

embedded in Epon resin. After sectioning to produce

consecutive sections thematerial was stainedwith uranyl

acetate and lead citrate, mounted on Formvar grids, and

observed in a JEOL 1200 EX II transmission electron

microscope at 80 kV.

THREE-DIMENSIONAL RECONSTRUCTIONS

Three-dimensional reconstruction was made with im-

ages obtained with a CCD camera attached to the micro-

scope. The images were aligned using the Reconstruct�

(version 1.0.9.6) software (Fiala 2005) in the linearmode

by selecting congruent points in alternate images. After

alignment, the morphological structures were manually

traced using the Draw Closed Point by Point function,

and the three-dimensional images generated by the

program.

TRANSCRIPTION ASSAY

Transcription assays were performed with 2× 108 lysed
parasites per time point. Parasites were harvested at dif-

ferent time points of metacyclogenesis. The adherent

parasites (24 and 48 hours) were harvested by gentle

cell scraping. The parasites were centrifuged at 2000 g

for 10 minutes and washed twice in transcription buffer

(150 mM sucrose, 20 mM potassium glutamate, 3 mM

MgCl2, 3 mM DTT and 10 g/mL leupeptin). Nuclei

were isolated in transcription buffer containing 0.5% of

Nonidet P40, centrifuged at 10000 g for 3 minutes, and

washed twice in transcription buffer to remove the re-

sidual detergent. Labeling reactions were done in tran-

scription buffer containing 100 mCi of [α32P]-UTP
(3000 Ci/mmol, Dupont) per 2 × 108 parasites, 4 mM

of ATP, CTP, GTP (Roche), 200µg of creatine kinase

per mL, 50 mM creatine phosphate for 15 minutes at

30◦C. Nascent radio-labeled RNA was extracted using
Trizol (Invitrogen) and incorporation was measured by

liquid scintillation counting.

RESULTS

MORPHOLOGICAL ALTERATIONS AND REPOSITIONING OF

THE NUCLEUS, FLAGELLUM AND KINETOPLAST DURING

DIFFERENTIATION

Induction of metacyclogenesis occurs after starving the

parasites in TAU medium and diluting the parasites in

the same medium additionally containing glucose and

the amino acids proline, aspartate and glutamate (Bo-

naldo et al. 1988). Within twenty fours after induction,

almost all parasites attach to the cell culture flask and

conserve the morphology of epimastigotes. Indirect im-

munofluorescence using an antibody against the flagel-

lum and DAPI (to highlight the nucleus and kinetoplast)

allowed us to see details of the progress of T. cruzi differ-
entiation (Fig. 1). The epimastigote forms have a spheri-

cal nucleus with a flagellum protruding from the anterior

portion of the cell body near the disk-shaped kinetoplast

(top panel, Fig. 1). Forty-eight hours after the induction,

an increased number of intermediate forms, but not try-
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pomastigotes, could be detected. These forms consisted

of parasites with kinetoplast superimposing an elongated

nucleus. In some parasites the kinetoplast was anterior,

in others at the middle, and in others posterior in re-

lation to the elongated nucleus. The anterior part of the

parasite is defined by the direction of epimastigote swim-

ming, which is towards the flagellum protrusion of the

epimastigote. At longer incubation periods, increasing

numbers of metacyclic trypomastigotes were found in

the cell culture supernatant. Metacyclic forms have a

fully elongated nucleus with a round kinetoplast at the

posterior portion end of the parasite (Fig. 1, bottom

panel).

Based on their morphology we divided the interme-

diate forms that occur duringmetacyclogenesis into three

stages: Ia, Ib and Ic as shown in Figure 2A. The percent-

age of each intermediate stage was quantified along the

differentiation time. At 24 hours after induction of dif-

ferentiation, about 40% of the parasites were at stage Ia

and very few at stages Ib and Ic (Fig. 2B). At 48 hours,

a larger proportion amount of parasites were at stages

Ib and Ic, but almost one half of the attached parasites

were similar to epimastigotes and the other half in stage

Ia. At 72 hours, a large percentage number of parasites

detach from the substrate, most of them as metacyclic

trypomastigotes.

RNA POL II LABELING AND TRANSCRIPTIONAL ACTIVITY

IS ONLY REDUCED IN COMPLETELY DIFFERENTIATED

CELLS

As described earlier, the RNA polymerase II (RNA Pol

II) of exponentially growing epimastigotes is concen-

trated in the nuclear interior in a region that correspond

to the active transcription of spliced leader genes (Dos-

sin and Schenkman 2005). When transcription dimin-

ishes in the infective trypomastigote forms derived from

infected mammalian cells (Elias et al. 2001), the RNA

Pol II labeling decreases (Dossin and Schenkman 2005).

By using the same antibody, directed to the carboxy-

terminal domain of RNA Pol II it was evident that a

similar RNA Pol II labeling was obtained in parasites

before metacyclogenesis induction, and in all interme-

diate stages (see green spots in Fig. 2A). The labeled

major spot only disappears in fully differentiated meta-

cyclic forms.

Toconfirm that transcriptiondecreases only inmeta-

cyclic trypomastigotes, cells were treated with detergent

to isolate nuclei and probed by incorporation of radio-

labeled [α32P]-UTP at conditions optimized for RNA
Pol II labeling (Ullu andTschudi 1990, Elias et al. 2001).

Radiolabeled nascent RNA was isolated and quantified

by liquid scintillation counting. The percentage of incor-

poration relative to epimastigotes was calculated based

on three independent experiments and revealed that tran-

scriptional activity was also maintained during metacy-

clogenesis, declining only after 72 hours, when most of

the parasites had completed metacyclogenesis (Fig. 3).

ULTRASTRUCTURE CHARACTERIZATION OF

INTERMEDIATE FORMS REVEALS AN ACTIVE RE-

LOCATION OF THE KINETOPLAST AND THE FLAGELLUM

Changes in T. cruzi morphology during metacyclogene-
sis were visualized by transmission and scanning elec-

tron microscopy. As illustrated in Figure 4, epimastig-

otes present a typical disk-shaped kinetoplast (k) located

between the nucleus (n) (panel A) and the flagellum (f)

(panel B). The cell can be divided in two portions; the

anterior, which is linked to the flagellum, and the pos-

terior, a more enlarged and conical form. In dividing

cells, a new flagellum is seen exiting the small aperture

of the flagellar pocket (see arrow in panel B). Interme-

diate forms, collected 48 hours after induction of meta-

cyclogenesis, show the kinetoplast between two portions

of the nucleus (panel C), and the flagellum protruding

from a larger orifice overture of the flagellar pocket be-

tween two more similar portions of the cell body (panel

D). Scanning electron microscopy images also show that

intermediate formshavepronouncedbody torsion. Meta-

cyclic-trypomastigotes typically have a very elongated

nucleus and a circular-shaped kinetoplast at the poste-

rior of the cell body (panel E). The flagellum is connected

to the entire length of the cell body (panels E and F).

To further understand how the transition occurs,

longitudinal serial sections of intermediate forms as

shown in Figure 4 and attached to a coverslip, were

photographed (Fig. 5A) and the images used to recon-

struct three-dimensional representations of the parasite.

As shown in Figure 5B and in more detail in Figure

5C, the disk-shaped kinetoplast (yellow), still associated

with the flagellum (red), is compressed against the cell

nucleus (cyan). The nucleus, containing the nucleolus
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Fig. 1 – Visualization of the metacyclogenesis process. Stationary growing T. cruzi (DM28c strain) epimastigotes
were incubated in TAU medium at 28◦C at the concentration of 5 × 108 parasites per mL. After 2 hours, the cells
were diluted in TAU3AAG medium to a concentration of 5 × 106 parasites per mL and plated on tissue culture

flasks. Parasites were harvest at different time points during the metacyclogenesis process and attached to glass

slides pretreated with 0.01% poly-L-lysine. Attached parasites were fixed with 4% paraformaldehyde in PBS and

permeabilized with 0.1% Triton X100 before DAPI (left column) and indirect immunofluorescence reactions using

mAb 25 (anti-flagellum, middle column). The figure also shows the merged fluorescent images, and the phase

contrast of the same field (right column). Bars = 3µm.

(violet) appears to be distorted by unknown forces or

intracellular structures.

DISCUSSION

We have characterized some morphological events oc-

curring when T. cruzi epimastigotes transform into

metacyclic trypomastigotes, particularly the reposition-

ing of the mitochondrial kinetoplast relative to the cell

nucleus. While in epimastigotes the disk-shaped kine-

toplast is located between the spherical nucleus and the

site of flagellum protrusion, the metacyclic kinetoplast

becomes spherical and is located at the opposite side of

the cell. We found that after stress induction, no signif-

icant changes in kinetoplast and flagellum position oc-

cur. However, after 24 to 48 hours after stress induction,

the kinetoplast, in association with the flagellum, is pro-

gressively displaced over the nucleus. At 72 hours, fully

differentiatedmetacyclics appear in the culture. Detailed

ultrastructure analysis and three-dimensional reconstruc-

tion of the parasite indicates that the kinetoplast and flag-

ellum are compressed against the elongated nucleus, sug-

gesting that active movements force the displacement of

them in intermediate forms. As we observed that tran-

scription remains active in these intermediate forms, de-

creasing significantly only in fully differentiated forms,

we suggest that thesemorphological changes are actively

driven and that entire metacyclogenesis process is not

caused by a shutdown of parasite metabolism.

The results showing the presence of intense labeling

of RNA Pol II in the nucleus of intermediate forms sup-

port the notion that differentiating cells are still actively

transcribing, as transcription inhibition were show pre-
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Fig. 2 – RNAPol II labeling decreases only at the end of metacyclogenesis. A. Parasites at different times

after metacyclogenesis were labeled with DAPI and by indirect immunofluorescence using antibodies

against the T. cruzi RNA Pol II and DAPI (top and middle images). The bottom figures correspond to
merged DAPI and immunofluorescence images. The figure show representative images of epimastigotes,

intermediate stages and metacyclic-trypomastigotes. Panel B show the relative number of each parasite

form as defined in panel A in exponentially growing cells, at the stationary phase, and 24 and 48 hours

after the nutritional stress. The 72 hour graphic indicates the distribution found in the supernatant.

viously to promote its dispersal (Dossin and Schenkman

2005). Indeed, RNA Pol II labeling is completely ab-

sent in fully differentiated metacyclics forms, defined

as parasite stages with a round kinetoplast and express-

ing the gp90 antigen (Yoshida et al. 1990). However,

the fact that in vitro transcription is largely decreased
after 72 hours of stress induction in the total parasite

population, which contains around 60% of fully differ-

entiated metacyclics (in three independent experiments),

indicates that transcription is diminished in all stages,

even in non-differentiated parasites at 72 hours. Bromo-

uridine triphosphate, a labeled nucleotide used to de-

tected transcription, could be incorporated in permeable

epimastigotes and some intermediate forms, but never

in metacyclics (data not shown). However, the con-

ditions to obtain permeable metacyclic trypomastigotes

were too harsh, destroying all epimastigotes and inter-

mediate forms and making it impossible to precisely
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Fig. 3 – Transcription decreases at 72 hours after stress induction. Nuclei were isolated

from 2×108 parasites per time point, washed twice in transcription buffer and labeled in
the presence of [32P]-UTP for 15 minutes at 30◦C. The results are the percentage means
of total RNA ± standard deviation relative to exponentially growing epimastigotes of

three independent experiments.

Fig. 4 – Ultrastructure details of epimastigote, intermediate and metacyclic-trypomastigotes. The figure show

transmission (left panels) and scanning electron micrographs (right panels) of T. cruzi forms obtained during meta-
cyclogenesis. The letters indicate the kinetoplast (k), the nucleus (n) and the flagellum (f). Bars = 1µm.
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Fig. 5 – Three-dimensional reconstruction of T. cruzi undergoing metacyclogenesis. Panel A shows serial sections
of one intermediate stage, isolated 48 hours after stress induction. Panel B and C show cell body (gray), the

flagellum (red), the kinetoplast (yellow), the nucleus (blue) and the nucleolus (violet) obtained after three-dimensional

reconstruction of the sections shown in A. The cell body, the nucleus and flagellum were made in transparent colors

to visualize the internal structures, particularly the base of the flagellum shown in orange.

compare their transcription efficacy in situ. Upon induc-
tion of metacyclogenesis, accumulation of mRNA gran-

ules is observed (Cassola et al. 2007), with changes in

transcript accumulation and protein expression (Krieger

et al. 1999). Endocytosis is also diminished (Figuei-

redo et al. 2000), and the reservosomes, structures that

accumulate endocytic products, are gradually degraded

(Cunha-e-Silva et al. 2006, Sant’anna et al. 2004), sug-

gesting that a general catabolic process takes place dur-

ing metacyclogenesis. Thus, our results suggest that

although the parasite is reprogrammed to use accumu-

lated nutrients, by changing protein expression, it still

requires an active remodeling of its structure. It should

be noted that stress induction in Trypanosoma brucei
affects spliced leader RNA transcription only after a few

days, considered a key factor in promoting a general de-

crease in transcription (Lustig et al. 2007).

Conventional electron microscopy analysis illus-

trates some features of the differentiation process. It is

particularly noticeable the conservation of the nuclear

structure, with an evident nucleolus and small amounts

of condensed chromatin in epimastigotes and intermedi-

ate forms, modified inmetacyclic forms, compatiblewith

a decreased transcription in this latter form as showed

early for tissue culture trypomastigotes (Elias et al.

2001). Nevertheless, the nuclear elongation is seen very

early during the differentiation process, indicating that

alterations in the nuclear envelope, perhaps on the nu-

clear lamina components indentified in trypanosomes

(Rout and Field 2001), has already taken place prior to

differentiation.

It became possible to visualize the cellular organi-
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zation of the intermediate stage only after three-dimen-

sional reconstruction of serial sections of parasites un-

dergoing metacyclogenesis. By serial sectioning par-

asites (attached on coverslips) longitudinally, we were

able to obtain nearly complete cell images necessary for

the reconstruction. With this reconstruction, we found

the kinetoplast associated with the flagellum closely jux-

taposed to the nuclear envelope. A clear deformation of

the nucleus can be seen, indicating that either the kineto-

plast is pushing backward the nucleus, or that the nucleus

is sliding forward.

Alternatively, the sliding forces can be a conse-

quence of T. cruzi cytoskeletal contraction and/or reor-
ganization, perhaps with the flagellum pushing the kine-

toplast. Metacyclics are smaller than epimastigotes and,

most likely, the subpellicular cytoskeleton underneath

the posterior portion of the cell body shrink, with the

flagellum and kinetoplast remaining fixed. Interestingly,

gene knockout of a protein involved in flagellum attach-

ment impairs the appearance of trypomastigotes (Ribeiro

de Jesus et al. 1993) and reduces T. cruzi infectivity
(Basombrio et al. 2002), suggesting that flagellum at-

tachment could be required for the cellular rearrange-

ments during metacyclogenesis. In conclusion, we have

provided evidence that metacyclogenesis involves active

cellular reorganization and the next step would be to un-

derstand the molecular basis of this cell reorganization.
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RESUMO

A diferenciação de formas epimastigotas (proliferativas) do

Trypanosoma cruzi, parasita protozoário causador da doença
de Chagas, em formas metacíclicas tripomastigotas (infecti-

vas e não proliferativas), pode ser reproduzida em laboratório

incubando-se as células em um meio quimicamente definido

que imita a urina do inseto vetor deste parasita. Os epimasti-

gotas têm um núcleo esférico, o flagelo se projeta da metade

do corpo do protozoário e o cinetoplasto (organela que pos-

sui o DNA mitocondrial) possui formato de disco. Os tripo-

mastigotas metacíclicos têm um núcleo alongado com o flagelo

emergindo da extremidade posterior da célula associado ao

cinetoplasto esférico. Neste trabalho descrevemos asmudanças

morfológicas que ocorrem durante essa transformação e carac-

terizamos uma nova forma intermediária do parasita usando

reconstrução tridimensional de cortes seriados, visualizados

por microscopia eletrônica de transmissão. Essa nova forma

intermediária é caracterizada pela compressão do cinetoplasto

contra o núcleo alongado, indicando que a metaciclogênese

envolve movimentos ativos do cinetoplasto associado à estru-

tura flagelar em relação ao corpo celular. Como tripomastigotas

metacíclicos transcrevem menos que as formas epimastigotas

proliferativas, verificamos a presença da RNA polimerase II e

medimos a atividade transcricional durante o processo de dife-

renciação. A presença da enzima e a atividade transcricional

permanecem inalteradas durante todas as etapas da metaci-

clogênese, desaparecendo apenas quando as formas metacícli-

cas são formadas. Sugerimos que a diferenciação requer uma

atividade transcricional, necessária para uma intensa remo-

delação da célula, que acontece até o cinetoplasto e o flagelo

atingirem uma posição posterior do corpo do tripomastigota

metacíclico.

Palavras-chave: Trypanosoma cruzi, metaciclogênese, trans-
crição, RNA polimerase II.
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