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ABSTRACT

Cell therapy for neurological disorders has advanced, and neural precursor cells (NPC) may become the ideal candi-

dates for neural transplantation in a wide range of diseases. However, additional work has to be done to determine

either the ideal culture environment for NPC expansion in vitro, without altering their plasticity, or the FGF-2 and

EGF mechanisms of cell signaling in neurospheres growth, survival and differentiation. In this work we evaluated

mouse neurospheres cultured with and without FGF-2 and EGF containing medium and showed that those growth

factors are responsible for NPC proliferation. It is also demonstrated that endogenous production of growth factors

shifts from FGF-2 to IGF-1/PDGFb upon EGF and FGF-2 withdrawal. Mouse NPC cultured in suspension showed

different patterns of neuronal localization (core versus shell) for both EGF and FGF-2 withdrawal and control groups.

Taken together, these results show that EGF and FGF-2 removal play an important role in NPC differentiation and may

contribute to a better understanding of mechanisms of NPC differentiation. Our findings suggest that depriving NPC

of growth factors prior to grafting might enhance their chance to effectively integrate into the host.

Key words: neural precursor cells, neurosphere, fibroblast growth factor 2, epidermal growth factor, differentiation.

INTRODUCTION

Evidence of neurogenesis in the adult brain of birds

(Goldman and Nottebohm 1983), rodents and primates

(Kuhn et al. 1996, Gould et al. 1999, Kuhn and Svend-

sen 1999), and the demonstration of stem cells in spe-

cific brain regions, such as the subventricular zone and

the hippocampus (Eriksson et al. 1998, Van Praag et al.

2002), brought new perspectives for cell therapy and

neural regeneration (Svendsen and Smith 1999). Al-
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though these cells in the adult brain have decreased plas-

ticity and are not as easy to manipulate and to grow in

culture as their embryonic stem cell counterparts (Gage

1998, Thomson et al. 1998), they do not involve ethical

questions.

During the development of the central nervous sys-

tem, there is extensive proliferation of neuroepithelial

cells lining the ventricular walls which give rise to the

neurons, astrocytes and oligodendrocytes of the mature

brain (Jacobson 1991). An experimental model to study

neural stem cells is the heterogeneous free floating ag-

gregates of cells, termed neurospheres (Reynolds and

Weiss 1996, McKay 1997, Gage 2000). Each neuro-
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sphere is derived from a single stem cell that, by asym-

metrical division, gives rise to another stem cell and one

progenitor cell. The progenitor cells, in turn, give rise

only to other progenitor cells. In this way, only a small

fraction of the neurosphere corresponds to real stem cells

(Reynolds et al. 1992). Here we use the terminology

neural precursor cells (NPC) to describe both cell types

within the neurosphere (Svendsen et al. 1999, Svendsen

and Caldwell 2000).

Cell therapy for neurological disorders has ad-

vanced, and NPC may become the ideal candidates for

neural transplantation in a wide range of diseases such

as Parkinson (Dunnett and Bjorklund 1999). Previous

studies have shown that mouse NPC can be pluripo-

tent when exposed to the correct environment and pro-

duce hematopoietic cells in irradiated mice (Bjornson et

al. 1999) and cells from distinct mesodermic lineages

when injected in mouse blastocysts or chicken embryos

(Clarke et al. 2000). Neurospheres are usually cultured

in fibroblast growth factor 2 (FGF-2) and epidermal

growth factor (EGF) containing medium in the first

weeks and switched to EGF alone after 4 weeks. It was

also shown that the acquisition of EGF responsiveness

by neural precursor cells is promoted by FGF-2 in the

early development in vitro. After several cell divisions,

the same cell type may respond to both EGF and FGF-

2 (Ciccolini and Svendsen 1998). Yet, FGF-2 and EGF

mechanisms of cell signaling in neurospheres growth,

survival and differentiation are still unclear. It was pre-

viously reported that a method of neurospheres passag-

ing, that maintain cell-cell contact, was also important

for neurosphere growth (Svendsen et al. 1998).

Manipulation of environmental signals can make

the cells differentiate in specific cell types and may help

us to understand the mechanisms of neural and glial de-

velopment to be assessed. Despite the advances in stem

cell studies, additional work has to be done to deter-

mine the ideal culture medium for NPC expansion in vitro

without altering their plasticity. It is likely that on and

off periods of growth factors might provide specific pat-

terns of cell proliferation, migration and differentiation.

In this work we evaluate mouse neurospheres cultured

with and without FGF-2 and EGF containing medium

and show that EGF and FGF-2 removal may influence

their differentiation and expression of neurotrophins.

MATERIALS AND METHODS

ETHICAL ISSUES

This work was developed under the approval of the

Ethics Committee of Universidade Federal de São

Paulo (UNIFESP), file 0976-04.

HARVESTING AND CULTURING MOUSE NPC

mNPC were obtained from E14 (embryonic day 14)

C57BL/6 mouse embryos. The fetuses were placed in

a Petri dish containing PBS (phosphate buffered saline)/

2% glucose, and the dissection was made under magni-

fying lens. The brains were sectioned and the tissue was

incubated with Trypsin-EDTA solution (Invitrogen) for

15min at 37◦C. Trypsin was inactivated with fetal bo-

vine serum, and, after cell sedimentation, the supernatant

was removed and the cells were dissociated. Cell suspen-

sion was counted in a hemocytometer and the cells were

seeded in 10 mL in a T25 flask at a density equivalent

to 100,000 cells/mL. Each flask contains cells derived

from a pool of 3 fetuses and all experiments were per-

formed using three independent cultures of mNPC. The

culture media is composed by 70% DMEM (Dulbecco’s

modified eagle medium; Invitrogen), 30% F12 (Invit-

rogen), 1% PSA (penicillin-streptomycin-amphotericin,

Invitrogen), 2% B27 (Invitrogen), 20ng/mL EGF (Sig-

ma), 20ng/mL FGF-2 (R&D), and 5μg/mL heparin (Sig-

ma). Cells were maintained in an incubator at 37◦C un-

der a 5% CO2 atmosphere. Every 3 days, half of the

volume was replaced with fresh medium.

GROWTH FACTORS WITHDRAWAL

After neurosphere expansion (as described above), half

of the population within one flask was kept in the com-

plete media (control group – CTR) and the other half

was cultured in the absence of growth factors (E/F

less). The spheres were transferred to conical tubes

and washed carefully 3 times with pre warmed DMEM.

If necessary, the spheres were centrifuged at 130Xg.

The spheres were put in growth factors free medium

(DMEM/F12/B27) and kept in those conditions in sus-

pension for 11 days. Every 3 days, half of the volume

was replaced with fresh medium.
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PREPARATION OF NEUROSPHERES SLICES

Whole neurospheres from the CTR and E/F-less groups

were taken from the flasks, washed with PBS to re-

move the excess of culture medium and fixed in 4% PFA

(paraformaldehyde) for 1h at room temperature. Neu-

rospheres were washed three times with PBS and then

transferred to PBS/10% sucrose solution for 1h at 4◦C,

PBS/20% sucrose solution for 1h at 4◦C and, finally,

PBS/30% sucrose solution at 4◦C overnight. Neuro-

spheres were then mounted in Histo Prep (Fisher Scien-

tific) and frozen in dry ice. Spheres were sliced at 10μm

on a cryostat and placed on silanyzed slides (Superfrost

slides, Fisher Scientific).

5-BROMO-2’DEOXYURIDINE (BRDU) INCORPORATION

BrdU (0.2μM) was added to the medium for 14h to the

CTR and E/F less groups. To visually inspect the local-

ization of proliferating cells in the neurosphere, whole

neurospheres were sectioned in a cryostat and placed on

silanyzed slides. For BrdU counting, spheres were disso-

ciated using Trypsin and plated onto poly-lysin/laminin

coated coverslips before immunocytochemistry. Sec-

tions or coverslips were incubated in HCl 1.5M for

30 min under gentle shaking, washed 3X 10 min in PBS

and blocked in 5% normal goat serum and 0.1%

TritonX-100 in PBS. The slides were incubated with

anti-BrdU (Axyll/Accurate Chemical & Scientific Cor-

poration, rat IgG, 1:200) for 2h and washed three times

in PBS. Cells were incubated with the secondary anti-

body (Alexa 488 anti-rat IgG, Molecular Probes) for 1h

and washed three times in PBS. DAPI solution (Sigma,

0.3μg/ml) was used as a nuclear stain. Cells were an-

alyzed under a fluorescence microscope (Nikon, model

Eclipse E600FM, Japan). The percentage of BrdU pos-

itive cells from the coverslips was statistically analyzed

by using the ANOVA test with post hoc test Newman-

Keuls with a significance level set at p < 0.05.

GROWTH CURVE

Isolated single neurospheres were placed in 96-multi-

well plates to avoid neurospheres fusion. Multiwell

plates were previously treated with Poly-(2-hydroxy-

ethyl methacrylate) (Sigma) solution to avoid neuro-

sphere adhesion on the bottom of the wells. Neuro-

spheres were maintained in the presence (CTR) or in

the absence (E/F-less) of growth factors for 11 days, and

the diameter of the neurospheres were measured at every

3 days. We used the diameter measures to calculate the

volume of the spheres during 11 days. For both CTR and

E/F- less groups, 4 distinct neurospheres were measured

in each triplicate. Growth curve results were submit-

ted to the Student t test with a significance level set at

p < 0.05.

IMMUNOCYTOCHEMISTRY FOR β-TUBULIN III,

GFAP (GLIAL FIBRILLARY ACIDIC PROTEIN)

AND GAL-C (GALACTOCEREBROSIDE C)

The slides were blocked and permeabilized in 5% nor-

mal goat serum and 0.1% Triton X-100 in PBS for 30

min (except for Gal-C, in which detergent was not

added). Primary antibodies for β-tubulin III (Sigma,

mouse IgG, 1:300), GFAP (DAKO, rabbit IgG, 1:500),

Gal-C (Chemicon, mouse IgG3, 1:200) were added, and

cells were incubated overnight at 4◦C. The slides were

washed in PBS and incubated with the secondary an-

tibodies (Alexa 546 anti-mouse IgG, Alexa 488 anti-

mouse IgG or Alexa 488 anti-rabbit IgG, Molecular

Probes, 1:250). After washing with PBS, DAPI solu-

tion (Sigma, 0.3μg/ml) was used as a nuclear stain. Cells

were analyzed under a fluorescence microscope. β-Tu-

bulin III was considered a reliable marker for neuronal

differentiation because it was shown previously that,

besides being expressed by both mature neurons and

neural progenitors, β-tubulin III+ migrating cells from

neurospheres adopt a neuronal phenotype and express

neurochemical markers (GABA, glutamate) and mature

neuronal markers (Neu-N, MAP-2ab) (Ostenfeld and

Svendsen 2004). GFAP is used as an astrocytic marker,

but it can be also expressed by immature neural progen-

itor cells.

TERMINAL DEOXYNUCLEOTIDYL TRANSFERASE-

MEDIATED BIOTINYLATED UTP NICK END

LABELING (TUNEL)

In situ cell death detection kit (Roche) labels apoptotic

cells, based on labelling of DNA strand breaks, with

fluorescein (green fluorescence). Coverslips contain-

ing dissociated cells were fixed with 4% paraformalde-

hyde in PBS for 10 min, washed 3 times with PBS and
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blocked and permeabilized in 5% normal goat serum and

0.2% Triton X-100 in PBS for 15 min at room tempera-

ture. Cells were washed one time with PBS and the en-

zyme and nucleotide mix were added (Enzyme-TdT and

Label-nucleotide) and incubated for 30 min at 37◦C.

Cells were washed 3 times with PBS and the nuclei were

labelled with DAPI for 5 min. Cells were washed with

PBS, mounted and analyzed under a fluorescence micro-

scope. TUNEL data were analyzed using the Student t

test (significance set at p < 0.05).

RNA EXTRACTION AND CDNA SYNTHESIS

Total RNA was isolated by using TRizol (Invitrogen) re-

agent according to manufacturers’ protocol. Total RNA

concentration and integrity were determined by spec-

trophotometer readings at absorbance 260nm and

280nm and by observation of the Ribosomal RNA bands

in a 1% agarose gel electrophoresis respectively. To

avoid DNA contamination, the RNA was previously

treated for 30 min at 37◦C with 1 U RQ1 RNase-Free

DNase (Promega) in presence of 20 U RNAseOUTTM

(Invitrogen) RNAse Inhibitor and the DNase was inac-

tivated by a 95◦C incubation for 15 min and immedi-

ately chilled on ice. First strand cDNA synthesis was

performed using SuperScriptTM II Reverse Transcrip-

tase (Invitrogen) as suggested by the manufacturer using

5μg of total RNA. Resultant cDNA was then used for

PCR as described below.

QUANTITATIVE REAL-TIME PCR

Expression analysis of mRNA was performed in the

ABI PRISM 7700 sequence detection system (Applied

Biosystem, EUA) using SYBRr-Green amplification

detection system. Each reaction was performed in a final

volume of 20μL using cDNA reversed transcribed from

25ng of the RNA, 10μL of the SYBRr-Green Universal

PCR Master Mix and 1μL of each forward and reverse

primers (10μM each) shown below. We conducted the

Real-Time PCR reactions separately using the follow-

ing temperature protocol: 50◦C-2 min, 95◦C-10 min,

and 50 cycles of 95◦C-15s and 60◦C-1 min, followed

by a dissociation curve protocol to check the specificity

of the amplicon produced in each reaction. To check

reaction efficiency, we previously run standard curves

for each primer set and cDNA sample. As the efficiency

of all reactions was approximately 100% (> 95%),

we were able to use 2−1Ct parameter to express rela-

tive expression data, taking TBP (TATA binding pro-

tein) as endogenous control. Real-Time PCR experi-

ments were submitted to the Student t test with a signifi-

cance level set at p<0.05. Primers, forward and reverse,

respectively, are represented in the 5′ →3′ direction:

β-tubulin III: AGACCTACTGCATCGACAATGAAG

and GCTCATGGTAGCAGACACAAGG;

GFAP: AAGAGTGGTATCGGTCCAAGTTTG

and CAGTTGGCGGCGATAGTCAT;

EGF: CCAAACGCCGAAGACTTATCC

and CTTATTACCGATGGGATAGCCC;

FGF2: CCAACCGGTACCTTGCTATGA

and TTCGTTTCAGTGCCACATACCA;

IGF1: GCCACACTGACATGCCCAAG

and TGCACTTCCTCTACTTGTGTTCTTC;

NT3: TTACAGGTGAACAAGGTGATGTCC

and CCGGCAAACTCCTTTGATCC;

PDGFa: CATTCGCAGGAAGAGAAGTATTG

and CTGGTCTTGCAAACTGCGGG;

PDGFb: GAAAGCTCATCTCGAGGGAGG

and GCGTCTTGCACTCGGCG;

Nestin: TGACCATTTAGATGCTCCCCAG

and GTCCATTCTCCATTTTCCCATTC;

TBP: GAATCTTGGCTGTAAACTTGACCT

and TCTTATTCTCATGATGACTGCAGCA.

RESULTS

To assess if there was a significant difference in growth

and in the expression of growth factors and neural specific

proteins between the CTR and E/F-less groups, three in-

dependent cultures of mNPC derived from E14 embryos

were subjected to growth factors deprivation for 11 days,

followed by analyses of proliferation, cell death and dif-

ferentiation.

To confirm if removal of EGF and FGF-2 would

have an effect in the proliferation rates of neurospheres

in suspension, BrdU incorporation and growth rates of

isolated neurospheres were evaluated. BrdU labeling

decreased 50% after growth factor withdrawal (Fig. 1).

The low proliferation rates could implicate in a lack of
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size increment for the E/F-less group, as observed in

the growth curves (Fig. 2). However, the percentage

of TUNEL positive cells did not change significantly

during the growth factors starvation process, when com-

pared to the CTR group (Fig. 3).

Given that growth factors removal leads to a de-

crease in cell proliferation, we expected to find cells un-

dergoing differentiation, even in suspension. Our results

show that staining of mNPC for neuronal and astrocytic

markers (β-tubulin III and GFAP respectively) yielded a

different distribution and localization of neurons in the

E/F-less and CTR groups. GFAP was found across the

whole neurosphere whereas β-tubulin III positive cells

were concentrated in the neurosphere core (Fig. 4). In

order to check if there is an increase in the transcripts

of β-tubulin III, gfap and nestin, we performed quantita-

tive PCR. The results showed a decreased expression of

nestin and gfap, but a tendency of increase in β-tubulin

III expression in the E/F-less group when compared to

CTR (Fig. 5).

Our results showed important differences in the

proliferation and distribution of cell populations within

the neurosphere after growth factors withdrawal. Then,

we asked if growth factors produced by the NPC could

be differentially expressed and play a role in cell sur-

vival and differentiation after EGF and FGF-2 removal.

The expression of a number of growth factors that are

relevant for cell proliferation and survival (egf – Epi-

dermal Growth Factor, fgf-2 – Fibroblast Growth Fac-

tor 2, igf-1 – Insulin-like Growth Factor 1, nt3 – Neu-

rotrophin 3, pdgfa and pdgfb – Plateled Derived Growth

Factor α and β) was measured in the CTR and the E/F-

less groups by using the Real-Time PCR technique. Our

Real-Time PCR results showed that, after growth fac-

tors withdrawal, mNPC decreased the expression of fgf-2

and increased the expression of igf-1 and pdgfb (Fig. 5).

DISCUSSION

This work demonstrates that mNPC can survive and dif-

ferentiate in suspension after EGF and FGF-2 removal,

but have reduced its proliferation capability. Only very

few BrdU positive cells were found in the E/F-less

groups (Fig. 1). The decreased BrdU incorporation after

starvation suggests that EGF and FGF-2 have a crucial

role for the maintenance of mNPC cell cycling. Mea-

surement of growth rates also showed that neurospheres

subjected to growth factor removal did not grow during

the period of growth factor absence (Fig. 2). However,

cell death percentage is around 5% in both CTR and

E/F-less groups, indicating that cells can survive in this

condition. The same cell survival under growth factor

deprivation must be due to the differential expression of

growth factors and cytokines in the neurosphere. Im-

munocytochemistry assays showed that mNPC cultured

in suspension differentiated into the three basic neural

cell types: neurons, astrocytes and a few oligodendro-

cytes (data not shown), in both the E/F-less and CTR

groups. This reproduces in vitro the development of the

cerebral cortex in vivo (Wright et al. 2006).

Campos and colleagues (2004) have recently pro-

posed a three-dimensional model of mouse neurospheres

based on the expression of specific proteins and BrdU

labeling. This model shows the presence of immature

(Nestin+) and cycling (BrdU+) cells in the outer layer of

the neurosphere, as well as laminin α2 and integrin β1.

Yet, the astrocytic marker GFAP is expressed across the

whole neurosphere, while some extracellular matrix pro-

teins and the neuronal marker β-tubulin III are preferably

expressed in the neurosphere core. Our findings are in

agreement with the mouse model for GFAP and β-tubulin

III of mNPC cultured in suspension in the presence of

EGF and FGF-2 (CTR group) (Fig. 4). We hypothesize

that this distribution of neurons is caused by a decreased

gradient of growth factors from the outer layer to the

center of neurospheres. Since the concentration of EGF

and FGF-2 inside the sphere might be lower than on the

outside in the CTR condition, cells in the neurosphere

core are able to stop proliferation and start differentiation

even in suspension.

On the other hand, in the E/F-less group, with the

absence of growth factors in the culture medium, neurons

concentrated on the border of the neurospheres, whereas

GFAP positive cells had the same localization (Fig. 4).

We hypothesize that, in the CTR group, cells from the

neurosphere core are exposed to a lower concentration

of growth factors than are the cells from the borders, be-

cause of the gradient. This condition induces the cells

from the core to initiate differentiation. After growth

factor removal, cells on the borders of the neurosphere

(that lack growth factors) initiate differentiation, while
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Fig. 1 – Proliferation analysis of mNPC by BrdU incorporation after growth factor removal. The differences in the percentage of BrdU positive cells

between the CTR and the E/F-less groups after 11 days of growth factor withdrawal were statistically significant (n= 3; P < 0.05). Abbreviations:

11d – duration of treatment; CTR – neurospheres submitted to regular conditions; E/F-less – neurospheres grown in absence of FGF-2 and EGF.

Fig. 2 – Analysis of mouse neurospheres growth during growth factor withdrawal. We found no significant increase in size during starvation of

mNPC. In contrast, neurospheres from the CTR groups increased significantly in size during the experiment. After 7 days in culture, mNPC reach

a plateau and they keep the same size until 21 days. Abbreviations: CTR – neurospheres submitted to regular conditions; E/F-less – neurospheres

grown in absence of FGF-2 and EGF. Statistically significant differences in growth rates are represented by * (n= 3; P < 0.005).

Fig. 3 – Apoptosis analysis of mNPC by TUNEL labeling. There were no significant changes in the percentage of TUNEL positive cells between

the CTR and the E/F-less groups after 11 days of growth factor withdrawal (n= 3; P < 0.05).
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Fig. 4 – Immunolabeling of neurospheres slices for neurons (β-tubulin III – in red) and astrocytes (GFAP – in green) from the CTR and E/F-less

groups of mNPC. GFAP positive cells were found across the whole neurosphere, whereas β-tubulin III positive cells were concentrated in the

neurosphere core. A fusion of two neurospheres is shown for the (E/F-less) group. Despite the fusion, neurons are localized at the borders of the

neurospheres. Total nuclei were stained with DAPI (blue). 200X magnification.

Fig. 5 – After 11 days of growth factor withdrawal, mNPC decrease the expression of

FGF-2, GFAP and Nestin, and increase the expression of IGF-1 and PDGFb (P < 0.05).

cells from the core produce growth factors, maintain-

ing these cells in an undifferentiated state. In the core

of the growth factor deprived neurospheres, the smaller

concentrations of such autocrine production of growth

factors, as compared to exogenous administration in the

medium, would be sufficient to maintain an undifferenti-

ated state while insufficient to trigger mitotic activity, as

shown by BrdU uptake experiments and growth rates of

neurospheres (Figs. 1, 2). This represents a reasonable

explanation for understanding the altered distribution of

neuronal phenotypes (core versus shell) as a consequence

of growth factor withdrawal.

Mouse neurospheres are known to produce a vari-

ety of growth factors when they are subjected to growth

factor deprivation (Einstein et al. 2006). Our Real-Time

PCR results showed that mNPC from the E/F-less group
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decreased the expression of fgf-2, gfap and nestin, and

increased the expression of igf-1 and pdgfb (Fig. 5).

Taken together, these results suggest that, during EGF

and FGF-2 removal, there is an alteration in the ex-

pression of growth factors and of neural specific pro-

teins (gfap, β-tubulin III and nestin). When we removed

growth factors from the culture media, cells stopped pro-

liferating and started differentiating. Therefore, the de-

creased expression of nestin, a marker for stem cells or

immature neural progenitors, was expected. Also, given

that we encountered a tendency of increased transcripts

of β-tubulin III, we suggest that growth factor removal

preferentially lead to neuronal differentiation rather than

glial differentiation, when compared to the standard cul-

ture media. In addition, as previously mentioned, gfap

can be expressed by immature neural progenitors. In this

way, if growth factor withdrawal induces differentiation

of cells in suspension, the number of neural stem/im-

mature cells should be expected to decrease. This, in

part, could explain the difference in the level of differenti-

ation and in the neuronal distribution in the neurospheres

before and after growth factor removal.

Real-Time PCR experiments (Fig. 5) clearly de-

monstrate that endogenous production of growth factors

shifts from FGF-2 to IGF-1/PDGFb upon growth fac-

tor withdrawal. Erickson and co-workers (2008) showed

that the addition of low concentrations of IGF-1 was nec-

essary for continued passaging and that NPC survived

for long periods in culture without EGF or FGF-2 when

IGF-1 was added to the media. It has been suggested that

IGF-1 effects on NPC lifespan were mediated by means

of its own tyrosine kinase receptor. The increased ex-

pression of PDGFb can be related to cell survival upon

growth factor withdrawal (Ishii et al. 2008), since the

PDGFb receptor signaling in neurospheres can prevent

apoptosis. The hypothesis that the differential expres-

sion of igf-1 and pdgfb in the E/F-less group is impor-

tant to maintain cell survival is in agreement with the

proportion of TUNEL positive cells (only 5%, for both

groups). It is also known that PDGF influences the gen-

eration of neurons and glia during embryogenesis and in

early postnatal life (Forsberg-Nilsson et al. 2003). Again,

it can be related to the decreased expression of gfap and

nestin. Thus, the increased expression of igf-1 and pdgfb,

induced by the absence of EGF and FGF-2 in the culture

media, may play a role in cell death and differentiation

mechanisms in mNPC.

To conclude, the main findings of this work are that,

under EGF and FGF-2 starvation, mNPC: i) stop grow-

ing; ii) show increased expression of igf-1 and pdgfb that

can promote cell survival; iii) have changes in the dis-

tribution of β-tubulin III+ cells according to the avail-

ability of growth factors; iv) induce differentiation of

cells in suspension. These results may contribute to the

understanding of EGF and FGF-2 mechanisms on NPC

differentiation and are relevant for defining the ideal cul-

ture medium for neural progenitors expansion in vitro.

In addition, these findings could be useful for therapies

using NPC aiming at improved lifespan and integration

of pre-differentiated cells after transplantation. Our find-

ings suggest that depriving NPC of growth factors prior

to grafting might enhance their chance to effectively in-

tegrate into the host.
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RESUMO

As terapias celulares para doenças neurológicas têm avançado

e células precursoras neurais (NPC) surgem como candidatas

ideais para o transplante de células neurais em muitas doenças.

No entanto, trabalhos adicionais devem ser feitos para deter-

minar o ambiente de cultivo ideal para a expansão in vitro das

NPC, sem alterar sua plasticidade, e os mecanismos de sina-

lização celular do fator de crescimento epidérmico (EGF) e

fator de crescimento de fibroblasto 2 (FGF-2) no crescimento,

sobrevivência e diferenciação da neuroesfera. Nesse trabalho

avaliamos NPC cultivadas na presença e na ausência de FGF-2 e

EGF e mostramos que esses fatores de crescimento são respon-

sáveis pela proliferação das NPC. Também foi demonstrado

que a produção endógena de fatores de crescimento alterna de

FGF-2 a fator de crescimento de insulina 1 (IGF-1) e fator de

crescimento derivado de plaquetas b (PDGFb) após remoção de
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EGF e FGF-2. NPC de camundongo cultivadas em suspensão

mostraram padrões de localização neuronal distintos (centro

versus borda) tanto no grupo controle como no grupo sem EGF

e FGF-2. Juntos, esses resultados mostram que a remoção

de EGF e FGF-2 exerce importante ação na diferenciação de

NPC e possivelmente contribui para melhor compreensão dos

mecanismos envolvidos na diferenciação. Nossos achados su-

gerem que, privando as NPC de fatores de crescimento antes do

transplante, talvez aumente as chances de que as células efeti-

vamente se integrem ao hospedeiro.

Palavras-chave: células precursoras neurais, neuroesfera,

fator de crescimento de fibroblasto 2, fator de crescimento

epidérmico, diferenciação.
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