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ABSTRACT

Bed aerators designed to increase air void ratio are used to prevent cavitation and related damages in
spillways. Air entrained in spillway discharges also increases the dissolved oxygen concentration of the
water, which can be important for the downstream fishery. This study considers results from a systematic
series of measurements along the jet formed by a bed aerator, involving concentration profiles, pressure
profiles, velocity fields and corresponding air discharges. The experimental results are, then, compared,
with results of computational fluid dynamics (CFD) simulations with the aim of predicting the air discharge
numerically. Comparisons with jet lengths and the air entrainment coefficients from the literature are also
made. It is shown that numerical predictive tools furnish air discharges comparable to measured values.
However, if more detailed predictions are desired, verification experiments are still necessary.
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INTRODUCTION

Bottom aerators are a technique used to prevent cavitation erosion on spillways and to enhance the oxygen

content of the water. Air vented through the bottom aerators is entrained into the flowing water, increasing

the compressibility of the air-water mixture and lowering the velocity of pressure waves. When implosion

of cavitation bubbles occurs, the higher compressibility of the surrounding fluid dampens the impact of the

pressure waves. Additionally, the bubbles increase the contact area between air and water, improving the

oxygen dissolution into the water and the DO content downstream of the spillway.
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Experimental investigations on spillway air entrainment by bottom aerators have resulted in empirical

design equations. Schwarz and Nutt (1963) presented a theoretical equation for the jet length formed after

the ramp. Pan et al. (1980) and Pinto et al. (1982) related the air discharge to geometrical parameters of

the jet. Additionally, Tan (1984) and Rutschmann and Hager (1990) explained the dependence of the air

discharge on the jet length. The jet length predictions obtained by Tan (1984) are close to those of Schwarz

and Nutt (1963).

In Brazil, the studies on aerated spillways were intensified during the construction of the hydropower

dams in the 1970 and 1980 decades. The first relevant conclusions for spillways were presented by Pinto et

al. (1982), while Borsari (1986) and Fuentes (1992) furnished reviews of important studies and procedures.

These aerator studies helped in the establishment of locally adopted procedures. Some early studies,

like Volkart (1980) and Wood (1985), added important conceptual contributions for the understanding of

aerated flows. Practical applications of the research results, however, require more detailed measurements

and the review of existent results. Kökpinar and Gögüs (2002) conducted an extensive experimental study

and furnished correlations not only for the jet length, but also for the air entrainment in lower and upper

nappes, and a graphical presentation of the effect of ramp heights and bed slopes. The redistribution of

flow velocity in the aeration zone was considered by Toombes and Chanson (2005), while the details of the

geometry of the air-water interface were used to propose the concept of “entrapped air” by Wilhelms and

Gulliver (2005). A similar entrapped air concept was used by Lima et al. (2008) to explain measurements

of air void ratios in lower nappe aeration.

This paper seeks to compare CFD simulations with a detailed experimental study of the lower nappe

of a jet generated by an aerator in a laboratory chute. Measurements of velocity fields, pressure and air

concentration (void ratio) profiles will be compared to CFD results. The CFD simulations of air discharges

were comparable to the measured values. It is also shown that, if a more detailed description is needed,

experiments are still necessary.

EXPERIMENTAL METHODS

The experiments were conduced in a chute built in the Laboratory of Environmental Hydraulics of the

School of Engineering at São Carlos, Brazil. The chute had a slope of 14.5◦, an useful length of 5.0 m, with

a rectangular cross section 0.20 m wide and 0.50 m high. The bed aerator was composed of a ramp with a

length of 23.0 cm, a final height tr = 4.0 cm and an angle of 10◦ relative to the chute. The chamber under

the jet had a depth of 12.0 cm, a length of 18.0 cm and a width of 20.0cm. The air discharge was measured

in the air supply tube, which had a diameter of 71.65mm. Air velocities were obtained from pressure

measurements, with a micromanometer having one side opened to the atmosphere and the other fixed in a

pre-calibrated position in the tube. The concentration measurements in the flow were made with a Cesium

137 probe, as shown in Figure 1. Calibration was made with the channel a) full with water and b) empty.

The Cesium 137 radiation was projected perpendicularly to the flow in the channel and a counter registered

the remaining radiation after passing the mixture of air and water and the glass walls. The concentration

measurements thus consider the entire width of the channel. Air concentration profiles were obtained by

positioning the probe and radiation counter along the vertical of every studied cross section. Each obtained

concentration is a horizontal mean value transverse to the flow direction.
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Fig. 1 – Equipment used for the concentration measurements with Cesium 137 probe.

An electromagnetic flow meter was used to measure the water discharges, which were checked with

a rectangular weir located at the outlet of the channel. The measurement of velocity fields in the jet was

performed for nine runs, using a mirror inside of the flow. Velocity fields were measured using particle

image velocimetry (PIV). The light source was a copper gas Laser, with a mean power of 20 W and pulses

at 10 kHz. The pulse power ranged from 60 to 140 kW. Generated wavelengths were 510.6 nm (green)

and 578.2 nm (yellow). A CCD camera with a resolution of 1024 pixels × 1024 pixels was used to record

the images. After capturing and storing the images in the computer, PIV software was applied to each

image to obtain velocity vector fields by using auto-correlation calculations. 234 images were taken for

each run. Figure 2 shows all cross sections used in the present study. Sections 1, 2 and 3 were used to

obtain the approach flow information (velocity and water depth). Sections 4 through 8 were used for the

concentration measurements. Additional sections SIX and SX were used for velocity measurements in the

jet core. For velocity measurements in sections 1 and 2, the laser sheet was introduced in the flow from the

bottom of the channel.

Fig. 2 – Measurement sections for the present study. Distances are in centimeters.
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For velocity measurements in the jet core, a mirror was positioned downstream in the jet before the

upper and lower white water regions came together, as shown in Figure 3, and the laser sheet was intro-

duced into the flow from the side of the channel. Detailed descriptions of the chute and the measurement

equipment may be found in Carvalho (1997) and Lima (2004).

Fig. 3 – Experimental arrangement for the velocity measurements in the jet core using a mirror.

SIMULATION METHODS

In this study, the inhomogeneous multiphase model was applied with the liquid and the gaseous phases

considered. There is one solution field for each separate phase, and the fluids interact via interphase transfer

terms. For example, the two phases may have separated velocity and temperature fields, but there will be a

tendency for these to come to an equilibrium through interphase drag and heat transfer terms (CFX 2004).

The following equations for inhomogeneous multiphase flow were used to simulate the air and water

flows, and air uptake:

Continuity Equations:

∂

∂t

(
raρa

)
+ ∇ ×

(
raρa ∪a

)
= SM Sa +

Np∑

b=1

0ab (1)

Momentum Equations:

∂

∂t

(
raρa ∪a

)
+ ∇ ×

(
ra

(
ρa ∪a × ∪a

))
=

−ra∇ pa + ∇ ×
(
raμa

(
∇ ∪a +

(
∇ ∪a

)T ))
+

Np∑

b−1

(
0+

ab ∪b −0+
ba ∪a

)
+ SM A + Ma

(2)

where: ra is the volume fraction of each phase (phases indicated by “a”, with “a” assuming values from

1 to Np, the total number of phases), ρa is the density of phase “a”,
−→
U a is the velocity vector of phase

“a”, μa is the viscosity of phase “a”, SM Sa represents mass sources specified by the user; 0ab is the mass

flow rate per unit volume from phase “b” to phase “a”. This term only occurs if interphase mass transfer

takes place; SMa represents momentum sources due to external body forces, and Ma represents interfacial

forces acting on phase “a” due to the presence of other phases. The term
(
0+

ab
−→
U b − 0+

ba
−→
U a

)
represents
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momentum transfer induced by interphase mass transfer. The volume fractions of the phases sum to unity,

that is:
Np∑

a=1

ra = 1 (3)

There are 4NP + 1 equations to describe the fluid dynamics for the 5NP unknowns ra , Ua||, ||Va , Wa ,

(components of the velocity vectorial field
−→
U a), and Pa (the pressure field of each phase). The additional

NP − 1 equations needed to close the system of equations were supplied by assuming that all phases

shared the same pressure field, P , that is:

Pa = P for all a = 1, . . . , NP (4)

A scalar variable φ in phase “a” has the corresponding transport equation:

∂

∂t

(
raρaφa

)
+ ∇ ×

(
ra

(
ρa ∪a φa

))
− ∇ ×

(
ra

(
ρa D(φ)

a +
μta

Scta

)
∇φa

)
= S(φ)

a + T (φ)
a (5)

where D(φ)
a is the Diffusivity of φa , S(φ)

a represents an external source in phase “a”, and T (φ)
a represents

sources of φa due to interphase transfers. Details of the multiphase model may be found in CFX (2004).

To initialize a simulation, a relatively gross mesh was first used to locate the air-water interface. Then,

the regions of the upper and lower free surfaces were refined, allowing a detailed location of the interface

for the definitive run. The final mesh of each case presented a higher concentration of cells in the upper

and lower nappes of the jet, as shown in Figure 4. Details are described by Arantes (2007). Table I shows

the main characteristics of the grids and the simulated fluids (air and water). The number of nodes and

elements of the grids are mean values for all simulated conditions.

Fig. 4 – Example of refined mesh used for the numerical calculations.

The model allows the adjustment of constants and boundary conditions in order to calibrate the pre-

dictions with measured results. Different combinations were tested, but they in general reproduced only
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TABLE I

The Domain, Fluids and Simulation characteristics,

initial and boundary conditions.

Domain (after adaptation)

Number of Nodes ≈ 550000

Number of Elements ≈ 2750000

Fluid: Water

Temperature 25◦C

Dynamic Viscosity 8.899*10−4 kg.m−1.s−1

Density 998 kg.m−3

Surface Tension Coef. 0.0732 N.m−1

Fluid: Air

Temperature 25◦C

Dynamic Viscosity 1.831*10−5 kg.m−1.s−1

Density 1.185 kg.m−3

Simulation

Time step 0.1 s

Simulation Time 10 s

Processor Processor 3.2 GHz
Characteristics (Opteron 64 bits)

CPU Processing time ≈1*105 s

a portion of the observed results. The CFX standard constants and conditions, on the other hand, led to

acceptable predictions for the whole set of experiments, being thus used in this study.

The conditions in the inlet were imposed as:

– Pressure: hydrostatic pressure,

– Turbulence intensity: fixed at 5% of the water velocity (standard for CFX),

– Turbulence model: SSG Reynolds Stresses using CFX standard parameters. The model allows the

simulation of non-isotropic situations, and the use of the law of the wall.

– Roughness for the law of the wall: 1.0 mm.

The calibration was primarily based on the predictions of the jet lengths.

RESULTS AND DISCUSSION

Fourteen runs were conducted in the chute. Table II provides the experimental conditions. The jet length

of run 2 is not available because the jet was longer than the channel. Velocity field measurements using

PIV were performed in the nine runs indicated by (*). Results of all fourteen runs were used to check the

reproducibility of the data, while the results of the nine runs with velocity data were used to compare with

CFD predictions.
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TABLE II

Experimental conditions.

Run

Opening
Depth Water Velocity Froude Jet Air flow Air Water

of the
at S2 flow rate at S2 Number Length rate Temp. Temp.

floodgate
h (cm) Qw (l/s) Vw (m/s) Fr L (m) Qair (l/s) (◦C) (◦C)

H (cm)

1*
3

3.37 45.77 6.79 11.81 2.08 23.06 27.5 24.2
2* 3.51 63.93 9.11 15.52 NA 27.82 26.0 25.1

3* 5.26 47.65 4.53 6.31 1.08 12.66 24.0 22.0
4

6
5.50 58.85 5.35 7.28 1.38 18.37 24.7 24.0

5* 5.40 64.37 5.96 8.19 1.48 20.17 25.5 24.1
6* 5.85 92.05 7.87 10.39 2.28 29.49 23.0 24.1

7 6.00 44.44 3.70 4.82 0.78 9.92 29.0 28.0
8*

9
7.05 64.38 4.57 5.50 0.98 14.26 28.0 22.5

9* 8.31 98.20 5.91 6.55 1.48 22.92 21.4 21.0
10 8.54 119.86 7.02 7.67 2.08 31.69 29.0 22.0

11 6.92 46.58 3.37 4.09 0.68 11.28 23.8 21.8
12*

11
7.94 64.38 4.05 4.59 0.88 15.52 25.8 23.0

13* 9.10 94.64 5.20 5.50 1.18 20.28 25.8 22.1
14 10.16 128.76 6.34 6.35 1.58 27.45 21.4 21.0

COMPARISON OF MEASUREMENTS WITH LITERATURE

Verification of the jet length L

Jet lengths are commonly used to quantify the air uptake by the water flows. The jet lengths of Table II

were compared with theoretical predictions of Schwarz and Nutt (1963) and Tan (1984), given respectively

by equations 6 and 7, and plotted in Figure 5. Also shown are the predictions of the empirical correlation

of Kökpinar and Gögüs (2002), given by equation 8. The theoretical equations 6 and 7 were obtained with

no restrictions to α. Equation 8 was adjusted from experimental data, being thus restricted by the range of

α tested during the experiments. A systematic underestimation of equation 8 is observed, which may be

due to extrapolations of its limits of application. For example, the ramp slope is limited to 0 < α < 9.45◦,

but in this study α = 10◦.

The good agreement between measured and literature results is taken as an indication that the experi-

mental data for jet length can be used to compare with CFD simulations.

L

h
=

α(1 + α tan θ)

cos θ
Fr2

{
1 +

[
1 + 2

tr + ts
h

cos θ

(αFr)2

]}
+

tr + ts
h

tan θ (6)

L

h
=

g sin θ

2h
t2 +

(V cos θ)

h
t, t =

V sin α

g
(

cos θ + 1P
ρwgh

)





1 +

√√
√
√

1 + 2(tr + ts)
g

(
cos θ + 1P

ρwgh

)

(V sin α)2





 (7)
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L

h
= 0.28(1 + α)0.22 Fr1.75

(
tr + ts

h

)0.44 [
(1 + tan θ)

Aa

Aw

]−0.087

(8)

In the above equations, α is the ramp slope, θ is the chute slope, α is the take off angle (which is the

angle followed by the liquid when it leaves the ramp. α is equal to α because no inertial effects altered

the observed direction of the flow after leaving the ramp), tr is the ramp height, ts is the step height (zero

in the present experiments), t is the time, ρw is the water density, g is the gravity acceleration, 1P is the

relative pressure under the jet (taken positive), h, V , Fr and L are defined in Table I, and Aair/Aw is the

ratio between the air supply pipe entrance area, Aa , and the area of the water flow before the aerator, Aw.

Figure 5: Predicted and measured jet lengths.  
Fig. 5 – Predicted and measured jet lengths.

Verification of the air entrainment coefficient β as a function of L/h

Pinto et al. (1992) proposed that the ratio between Qair and Qw||, ||Qair/Qw, is proportional do L/h,

with a coefficient of proportionality between 0.023 and 0.033. Rutschmann and Hager (1990) found a

coefficient of proportionality of 0.030, for the maximum value of β (zero relative pressure in the cavity

under the jump). The authors showed that the straight line of β vs. L/h intercepted the L/h axis around

L/h = 5 for a first set of data, so that the equation β = 0.030(L/h − 5) was proposed. For a second set of

data, the simple proportionality β = 0.030L/h was followed. The authors measured L/h up to around 45.

Chanson (1991) suggested that β and L/h follow linear trends with lower slopes for L/h < 20 and higher

slopes for L/h > 20. The L/h values ranged up to around 25. Kökpinar and Gögüs (2002) presented the

empirical correlation

β = 0.0189(L/h)0.82
[(

Aa/A2
)
(1 + tan θ

)]0.24
(9)

in which the coefficient of β = β(L/h) depends on the channel slope (θ) and the ratio Aair/Aw. L/h

ranged up to 30. Equation 9 shows a nonlinear dependence between β and L/h, and that the coefficient

may be lower than 0.0189. The equation is valid for 0 < θ < 51.3◦.

Figure 6 shows β against L/h for the data of these experiments. A constant β seems to occur for L/h

between 10 and 15. However, as no measurements were made for L/h < 10, this apparent constancy may

be only the scatter of the data. Figure 6 also shows the region containing the lower nappe data of Low (1986)

and analyzed by Chanson (1991), obtained for a chute slope θ = 52.33◦; and the equations of Rutschmann
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and Hager (1990), for θ = 51.3◦ and θ = 34.4◦. The dependence of the function β = β(L/h) on

geometrical characteristics, such as the slope of the spillway, is clearly visible. Applying equation 9 for the

conditions of this study (θ = 14, 5◦) led to good predictions of the measured data, with deviations occurring

for the lower range of L/h. These deviations may be due to the extrapolations of the application limits of

equation 9 or bias in the measurements. As already mentioned, the used ramp slope α = 10◦ extrapolates

the 0 < α < 9.45◦ limits. Also the experimental range of Froude numbers (Fr), 4.08 < Fr < 15.5,

extrapolates the application limits of equation 4, given as 5.56 < Fr < 10.00. However, equation 9 shows

that the data followed the general expected behavior for the applied experimental conditions, indicating that

the experimental data for air/water flow ratio can be used to compare with CFD simulations.

Fig. 6 – Measured β and L/h values, together with data and correlations from other authors. θ is the angle of the spillway in each

experiment. The present set of data approximates to the general trend of the correlation of Kökpinar and Gögüs (2002).

Verification of the air entrainment coefficient β as a function of Fr

Figure 7 shows the β data of the present study (white circles) and those of Kökpinar and Gögüs (2002)

(gray circles) against the Froude number. The data of Kökpinar and Gögüs were obtained for flows over a

step height ts of 5 cm, while, for the present data, ts = 0. Moreover, their tr/h values ranged from 0.0 to

0.4, while in the present study they ranged from 0.4 to 1.2. The different experimental conditions generated

clouds of points with similar trends, but separated in the graph β vs. Fr , as shown in Figure 7.

Fig. 7 – Measured β against the Froude number.

To consider the different parameters in a correlation for β, a dimensional analysis leads to

β = f
(

Fr ,
tr
h

,
ts
h

)
(10)

An Acad Bras Cienc (2010) 82 (2)



“main” — 2010/5/3 — 18:15 — page 530 — #10

530 EUDES J. ARANTES et al.

The combined effect of tr and ts is represented here through the ratio (tr + k ∙ ts)/h, where k is an

adjusted constant. A multiple regression analysis furnished the result

β = 0.0278 Fr1.044

(
tr + 3ts

h

)−0.460

(11)

Predicted and measured data are presented in Figure 8, showing that the present data and those from

literature are complementary and form a single cloud of points. The agreement between present and

literature data (Figs. 5, 6 and 8) allowed the use of the corresponding experimental results of air concen-

tration profiles, pressure profiles, velocity profiles and air discharges to compare to the CFD predictions.

Fig. 8 – Calculated β obtained using equation 6 against measured β.

COMPARISON OF CFD PREDICTIONS WITH EXPERIMENTS

Jet length

Table III shows six predictions of the jet length. As mentioned, the turbulence conditions were adjusted in

the inlet of the numerical domain, but the CFX standard parameters of the turbulence model furnished the

best predictions for the set of jet lengths. These conditions were similar for all runs. The simulated lengths

were in the range of 0.81 to 1.08 times the measured length for the six runs. These runs were used to obtain

numerical air discharges.

TABLE III

Simulated runs, showing predicted and measured

lengths of the jet.

Measured Predicted Lpredicted

Lmeasured
Run Length Length

(m) (m)

3 1.08 1.17 1.08
5 1.48 1.18 0.81
8 0.98 1.02 1.04
9 1.48 1.32 0.89
12 0.88 0.88 1.00
13 1.18 1.21 1.03
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Pressure distribution

The pressure distribution along the channel bed was used to measure the jet length, taken as the position of

the pressure peak. Figure 9 presents an example measurement and simulation results for run 13, showing

good agreement between CFD simulations and the experiment.

Figure 9: Pressure distribution along the channel bed for run 13. The axis x represents the 
Fig. 9 – Pressure distribution along the channel bed for run 13. The axis x
represents the longitudinal distance with origin taken at the beginning of the jet.

Velocity distribution

The velocity distribution in section S3, measured using the PIV technique, was compared with the predicted

distribution. Figure 10 shows the comparison for runs 3 and 5, taken as examples. The agreement between

measured and predicted profiles is considered acceptable, having a maximum difference of ten percent. The

imposed turbulence intensity in the inlet of the numerical domain, maintained constant for all simulations,

may be a cause of the observed deviations. No numerical bias of the related concentration fields were

observed (see Fig. 11), so that the obtained velocity distributions were considered adequate for this study.

Fig. 10 – Velocity distributions for runs 3 and 5.
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Fig. 11 – Void ratio profiles along the jet upstream of the reattachment section (run 5).

Concentration profiles

Lima et al. (2008) presented measured values for the air discharge entering into the cavity under the jet, and

also values obtained calculating the air discharge from air concentration profiles measured at cross sections

along the lower nappe of the jet. The authors applied Equation (12) along sections 4 through 8 (Fig. 2),

corresponding to a distance between 3.9% and 132% of the jet lengths.

Qx = B

Upper boundary∫

Lower boundary

C(y)Vx(y)dy (12)

where Qx is the air discharge, B is the channel width, C is the air concentration (void ratio), Vx is the

velocity in the x direction and y is the distance normal to the chute face. The upper and lower boundaries

of the domain were set at two conditions: 1) C values of 95% and 5%, and 2) C values of 90% and 10%.

Lima et al. (2008) showed that the measured air discharges are substantially lower than the air dis-

charges evaluated from the concentration profiles. Previous results of Wilhelms and Gulliver (2005), when

evaluating entrained air from concentration profiles for upper surface aeration, showed that corrections must

be made because the measurements involve air among water parcels of the surface distortions, not absorbed

by the water. Lima et al. (2008) suggested that a similar effect influenced the measurements along the lower

nappe, with the addition of the effect of the spray that emanates from the aerator lip as water. Substantial

sprays could account for water measurement throughout the air pocket, affecting the air discharge results.

Numerical predictions of air concentrations are shown in Figure 11. Run 5 is presented because

it represents the worst agreement between the measured and predicted jet lengths (predicted length =

81% of measured length). Even for this condition, the agreement between measured and predicted

concentration profiles is good. The displacement observed between profiles, mainly for sections S7

and S8, is due to the lower predicted position of the jet when compared with the measured position.

Measurements and predictions considered the entire thickness of the jet.

All profiles of Figure 11 were obtained upstream of jet reattachment with the channel bed. Figure 12a

shows the predicted concentration field along the jump. Figures 11 and 12 show that the concentration
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Fig. 12 – a) Concentration field along the jet, showing the end of the region of the water core with zero air concentration (arrow).

b) A sketch of a possible path followed by a bubble originated in the upper nappe.

profiles of the upper and lower nappes interact downstream of the position indicated by the black arrow

in Figure 12a, where the concentration in the water core ceases to be zero (shown in black). Non-zero air

concentrations in the core are related to bubbles originating either at the upper or at the lower surfaces.

Figure 12b shows a sketch of an eventual intrusion of air originated in the upper nappe. In this case,

concentration measurements can also be affected by this new air source, and air discharges obtained from

concentration measurements can eventually be different from those measured in the inlet structure.

The measured and calculated concentration profiles for the impact region could also be compared for

one run of the present set of experiments. Figure 13 shows the results obtained for run 12 at section 8, the

only case in which the pressure point that quantifies the jet length coincided with a measurement section.

Although the general behavior of both profiles is the same, substantial differences are observed between

the concentration values. The measured profile is, in general, steeper than the calculated profile, and the

concentration differences are higher for distances to the channel bottom between 0 and 5 cm. Also in

this case, the differences may result from the turbulence condition imposed in the inlet of the simulation

domain. For example, higher levels of homogenization (softer profiles) are obtained for higher turbulent

diffusivities, which are dependent on the turbulent conditions.

Fig. 13 – Void ratio profile at the impact section. (Run 12, section 8).
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Air discharges

Predicted air discharges are compared with measurements for the six simulated cases presented in Fig-

ure 14. Although the predicted air discharges have the same magnitude as the measured air discharges, a

relatively high spread is observed. The predicted air discharges were obtained by integrating air concen-

tration at the cross section of the inlet tube (Fig. 2). The differences between experimental and numerical

data are probably associated with the constant parameters of the turbulence model (the CFX standards

were used) for the different experimental situations, and the constant turbulence intensity in the inlet of the

numerical domain (5%), as previously mentioned. As shown by Ervine et al. (1995), the air uptake by the

water depends on the turbulence intensity perpendicular to the flow direction.

Fig. 14 – Comparison between measured and predicted air dis-
charges, for the six conditions simulated in the present study.

The results indicate that, for a first evaluation of the magnitude of the air discharge, numerical procedures

can be used to help in the decision-making process. However, the numerical code must be calibrated, based

on measured characteristics. In the present study, the jet lengths were used to calibrate the model (to adjust

parameters and inlet conditions), and the measured concentration, pressure, and velocity profiles were used

to check the numerical results. If more detailed information is needed, say for cavitation erosion potential, it

is still necessary to conduct experimental studies and to scale up the results based on empirical procedures.

CONCLUSIONS

Experimental studies on air absorption by flows over a bed aerator were described and compared with

theoretical and empirical predictions found in the literature and computational results conducted here.

1. Jet lengths were well predicted by the equations of Schwarz and Nutt (1963) and Tan (1984). The air

entrainment coefficients β, when expressed as a function of L/h, were well predicted by the equation

of Kökpinar and Gögüs (2002), unless for the lower range of L/h, that is, for ∼ 10 < L/h <∼ 15.

In this case, it must be remembered that the conditions of the experiments extrapolated the conditions

prescribed by Kökpinar and Gögüs (2002). Considering the dependence of the air entrainment co-

efficient on the Froude number and geometrical characteristics, it was shown that the experimental
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data here described and those of Kökpinar and Gögüs (2002) can be presented together, following

the same trend.

2. Computational predictions of the jet length were taken as control parameter for the numerical sim-

ulations (calibrations). The CFX standard parameters were adopted for the turbulence model. The

turbulence intensity at the inlet was fixed at 5% of the mean flow velocity, and the roughness used in

the law of the wall was fixed at 1.0 mm, which generated predicted jet lengths between 0.8 and 1.2

times the measured length.

3. It was observed that the pressure distribution along the channel bed, the velocity profiles at the end of the

ramp, and the concentration profiles along the jet could be represented by the calibrated computational

code. Considering the air concentration at the impact point, the measured and predicted profiles

presented the same general form, although concentration differences were observed.

4. The computational predictions of the air discharges followed the magnitude of the measured data.

However, a relatively large scatter was observed. For a first evaluation of the magnitude of the air

discharge, computational procedures can be used to help in making decisions. However, the numerical

code must be calibrated, based on previous measured characteristics. In the present study, the jet

lengths were used to calibrate the model (to adjust parameters and inlet conditions), and the measured

concentration, pressure, and velocity profiles were used to check the numerical results.

NOMENCLATURE TABLE

a a physical phase t time

A amplitude of oscillation tr ramp height

Aa area crossed by air ts step height

Aw area crossed by water T (φ)
a sources of φa

B channel width
−→
U a velocity vector of phase a

C air concentration (void ratio) Ua , Va , Wa components of
−→
U a

D(φ)
a diffusivity of φa V generic velocity

Fr Froude number Vx velocity in the x direction

g acceleration of gravity x longitudinal axis

h height y distance normal to the chute face

L jet length α ramp slope

Ma interfacial forces acting on phase a α take off angle

Np total number of physical phases β air entrainment coefficients (β = Qa/Qw)

Pa pressure field of phase a 0ab specific mass flow rate from phase b to a

Qa air discharge φa conserved specific variable of phase a

Qw water discharge 1P relative pressure under the jet

ra volume fraction of phase a μa viscosity of phase a

S(φ)
a external source in phase a θ chute slope

SMa momentum sources ρa density of phase a

SM Sa mass sources ρw water density
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RESUMO

Aeradores de fundo projetados para aumentar a concentração de ar são utilizados para previnir a cavitação e danos

dela derivados em vertedouros. O oxigênio contido na água também é um parâmetro relevante para garantir alta

qualidade das águas a jusante do vertedouro, com reflexos na qualidade ambiental. Equações e critérios de projeto

existentes ainda são considerados aproximados, mostrando a necessidade de mais estudos para elucidar os meca-

nismos que governam o carreamento de ar. Este trabalho apresenta resultados de uma série sistemática de medidas

de concentração de ar ao longo da superfície inferior do jato de um aerador de fundo, juntamente com medidas

pertinentes de descargas de ar e campos de velocidade da água. Foram feitas comparações com resultados da lite-

ratura, considerando perfis de concentração ao longo do jato do aerador até a região de jusante. As medições sob

condições controladas forneceram informações necessárias para testar resultados numéricos de aeração obtidos em

simulações desses escoamentos, utilizando mecânica dos fluidos computacional (CFD). Mostra-se que ferramen-

tas numéricas preditivas fornecem vazões de ar comparáveis aos valores medidos. Também é concluído que, se

detalhes são necessários, experimentos são ainda úteis.

Palavras-chave: aeradores de vertedouros, carreamento de ar, escoamento ar-água, escoamentos multifásicos.
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