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ABSTRACT

The analysis of electromagnetic fields caused by alternate or transient electric currents flowing along a cable

in sea water has several applications. It supports the interpretation of electromagnetic geophysical data and

safety procedures against the threat of sea mines. The approach to the problem employs a magnetic vector

potential in the frequency domain due to a pulse source electric dipole, and performs Laplace and Hankel

transforms and integration along the cable, to describe the variation of the magnetic induction field due

to an electric dipole of finite length. The result is applicable to shallow or deep sea water environments,

adaptable to any transmitting current waveform and useful for wave-field separation. The prospects relate

to a horizontal receiving coil at the sea bottom and simulate: a minesweeper campaign with a current source

at the sea surface or a geophysical survey with a current source close to the sea floor. Therefore, the present

analysis may serve: to define parameters in counter-sweeping of submarine mines; to map the conductivity

of sediments under shallow waters for the prevention and control of contamination; and as a first approach

in the characterization of offshore mineral and oil economic deposits.
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INTRODUCTION

Magnetic tail is a nautical designation for a line of electric dipoles. It consists of a steady state or a transient

electric current flowing along a cable of finite length. The tail may be placed at any point between the

surface and the bottom of a salty water layer to originate an electromagnetic field. The description of the

magnetic field vector in the time domain caused by the tail inside the same region is useful for several

applications in physics and in electrical and mechanical engineering to calibrate laboratory simulations and

field experiments.

In naval engineering, it is employed to protect ships from the threat of sea mines, for the safety

of maritime transportation (Pinheiro and Sampaio 1993, Rayner 2007). In geophysics, it can be of help
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in investigating the submarine substratum (Constable and Cox 1996, Flosadóttir and Constable 1996,

Goldman 1990); to map pollution of the sea bottom in shallow waters (Cheesman et al. 1987, Scholl

and Edwards 2007, Souza and Sampaio 2001); to prospect for minerals in the seafloor (Wolfgram et al.

1986, Wynn 1988); and to detect the presence of gas hydrate deposits (Edwards 1997). It is also becoming

increasingly important for the prospection and monitoring of offshore hydrocarbon reservoirs (Ellingsrud

et al. 2002, Eidesmo et al. 2002).

We compute and analyze in this paper both the spatial and the time variation of the vertical component

of the magnetic field due to a magnetic tail for two cases: (1) a current source at the sea surface and a

horizontal coil at the sea bottom; and (2) a current source and a horizontal coil at the sea bottom. The first

case simulates the situation of a minesweeper campaign and may have application for monitoring pollution

in shallow sea waters. The second case simulates a submarine geophysical investigation.

There is a substantial body of geophysical investigation about electromagnetic sources on the sea

surface and in the sea floor, as for example: (Chave and Cox 1982, Chave et al. 1991, Constable 2006,

Constable and Weiss 2006, Løseth and Ursin 2007, Guimarães and Sampaio 2008a, b). However, this

paper has two distinct goals and employs a different procedure from these investigations.

The goals of this paper are: (1) to provide a general solution of the problem, which is valid for any

current waveform; and (2) to represent the main part of the wave field as a series of real terms identified

with successive reflections at the top and the bottom of a sea water layer confined between the air and a

homogeneous substratum. This one-dimensional model represents a new procedure applicable in marine

transportation safety and for mapping seafloor pollution of marshes and bays in shallow waters. Though

it has a restricted application in geophysics, especially in reservoir characterization, the analysis of 2-D

and 3-D scattering problems usually employs the result of a one-dimensional model in building up the

respective 2-D or 3-D solutions. Such is the case, for instance, of the Sampaio approximation (Sampaio

and Fokkema 1992, Sampaio and Popov 1997, Batista and Sampaio 2003), as well as of the Born or

integral equation approximations (Wannamaker et al. 1984, Torres-Verdín and Bostick Jr. 1992, Spies

and Habashy 1995, Torres-Verdín and Habashy 2001, Tseng et al. 2003). Furthermore, the contribution

of a homogeneous or a layered half-space is usually larger than the contribution scattered by 2-D or 3-D

inhomogeneities. So, it is necessary to understand better the homogeneous or 1-D response in order to

interpret adequately the inhomogeneity response.

We solve the problem in the time domain by employing the following procedure. First we determine

the frequency domain vector potential due to an electric dipole whose current waveform is a delta function

in the time domain in free-space. This step is capable of providing the general solution for an arbitrary

current waveform by convolving it with the solution for the delta function. Next, we apply the pertinent

boundary conditions and solve the correspondent frequency domain problem for the magnetic induction

field under quasi-static conditions in a three layered space: air, sea, and substratum. In the following

steps, we expand the reflection coefficient and retain only three first order terms, substitute the complex

inverse Fourier transform of the delta function by the time derivative of the inverse Laplace transform of

the step function, perform a Hankel transform, and integrate along the length of the tail. By doing so,

we fulfil the second aim.
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DEVELOPMENT OF THE SOLUTION

We will develop the algebra of the solution in this section. However, we will not reproduce here the basic

details of the mathematical development of this problem because its theory is well known in the geophysical

literature (Stratton 1941, Wait 1982, Ward and Hohmann 1988, Pinheiro and Sampaio 1993).

DIPOLE IN A CONDUCTIVE INFINITE MEDIUM

Let an electric dipole be in a conductive infinite medium as shown in Figure 1. The magnetic vector poten-

tial, A(x, y, z, ω), and the magnetic induction field, B(x, y, z, ω), are related by the following equation:

B = ∇ × A, (1)

where: (x, y, z) represent the coordinates of the observation point, ω = 2π f , and f is the frequency.

X

Z

Y

r

R

Fig. 1 – A x-directed electric dipole I dx0 i at (x0, y0, z0) in a homogeneous isotropic and infinite medium. Observation point

at (x, y, z). R represents the source-receiver distance, and r the horizontal projection of R.

The magnetic vector potential obeys the non-homogeneous Helmholtz wave equation:

∇2A + κ2A = −μ0Js . (2)

In Equation 2, the wave-number κ =
√

μ0εω2 − iμ0σω, where: i =
√

−1, μ0 = 4 π 10−7 (henry/m)

is the magnetic permeability of the free-space, ε is the dielectric permittivity, and σ is the electric con-

ductivity. In free space, κ0 =
√

μ0ε0 ω. The term that represents the source is the Fourier transform of

the current density waveform, Js . We define an oscillating electric dipole at (x0, y0, z0), as represented

in Figure 1, by the following expression:

Js = I (ω) dx0 δ(x − x0) δ(y − y0) δ(z − z0) i. (3)

In Equation 3, I (ω) represents the Fourier transform of the electric current; dx0 is the element of length

of the x-oriented electric dipole, and each δ(φ − φ0) represents the Dirac delta function with singularity

on φ = φ0. Equation 2 shows that the primary potential, Ap(x, y, z, ω), presents only an x-component,

and it is given by:

Ap(R, ω) =
μ0 I (ω)dx0

4π

e−iκ R

R
i, (4)

where: R =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 is the source-receiver distance. Because R is always

positive, we guarantee the convergence of the potential at infinity, assuming that = (κ) < 0. Applying

Equation 1 in Equation 4 yields the expressions for the primary magnetic field in the frequency domain.
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We obtain the solution for an arbitrary function of the current waveform by convolving this function

with the impulse response solution. So, we solve the problem expressing the source current waveform

as: I(t) = C δ(t) ampere and I (ω) = C coulomb. We also assume the quasi-static condition, valid

for frequencies below 1MHz, and a non-magnetic medium. So σ >> εω, and we may write either κ ≈
√

2
2

√
μ0 σ ω (1 − i) or κ ≈

√
−μ0 σ s, s = i ω. Next, we employ Laplace Transform in Equation 4

to obtain the primary potential and the magnetic field in the time domain due to a dipole in a conductive

infinite medium.

ap(R, t) = F(R, t) i, (5)

bp(R, t) =
μ0σ

2t
F(R, t)

(
0i, −(z − z0)j, (y − y0)k

)
, (6)

F(R, t) =

√
μ3

0 σ Cdx0

8
√

π3

e−
μ0σ R2

4t

√
t3

u(t),

where u(t) is the Heaviside step function, u(t) = 0 for t < 0 and u(t) = 1 for t > 0.

DIPOLE IN A THREE-LAYERED MEDIUM

Figure 2 illustrates the geometry of the model. In the air, z < 0, μ0, ε0 ≈ 10−9/(36π) (farad/m), and

σ0 = 0. In the sea, 0 < z < h1, μ1 = μ0, ε1 = 81ε0, and 1 (S/m)< σ1 < 6 (S/m). In the substratum,

z > h1, μ2 = μ0, ε0 < ε2 < 25ε0, and 10−3 (S/m)< σ2 < 10−1 (S/m).

μ0, ε0, σ0 = 0

μ0, ε1, σ1
μ0, ε2, σ2

z = 0

z = h1

-L/2 +L/2
• (x, y, z)

X

Z
Fig. 2 – Illustration of the geometry of the problem with a magnetic tail positioned inside a salty water layer, centered at

y0 = 0, 0 ≤ z0 ≤ h1 and laid between −L/2 ≤ x0 ≤ +L/2. Observation point at (x, y, z) of a homogeneous and isotropic

three-layered medium.

The secondary potential obeys the homogeneous wave equation and has both the x and the z compo-

nent for the geometry illustrated in Figure 2. Therefore, for η = x, z and j = 0, 1, 2 its general solution

can be expressed by the following series of Hankels’ integrals:

AS
η, j (x, y, z, ω) =

∞∑

n=0

cos(nφ)

∫ ∞

0
F±

η, j e±α j |z−z0| Jn(λr)dλ dx0, (7)

where: cos(φ) = (x−x0)

r and α j =
√

λ2 − κ2
j is complex with a positive real part. Employing Hankel

transform (Sommerfeld 1949), Equation 4 assumes the following expression for the dipole in the water

layer:

Ap,1(x, y, z, ω) =
μ0 I (ω)

4π

∫ ∞

0

λ

α1
e−α1|z−z0| J0(λr) dλ dx0, 0 ≤ z0 ≤ h1. (8)
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In Equations 7 and 8, Jn(λr) represents the Bessel Function of first kind and nth order and

r =
√

(x − x0)2 + (y − y0)2.

Adding the secondary and the primary potentials expressed by Equations 7 and 8, respectively, yields

the total potential in the three-layered medium. The solution for the eight functions F±
η, j (λ) is determined

by applying the condition of convergence of the potentials at infinity, Maxwell’s equations, Equation 1, and

the following boundary conditions:

Bz,0 = Bz,1; μ1 Bx,0 = μ0 Bx,1; on z = 0,

Ey,0 = Ey,1; μ1 By,0 = μ0 By,1; on z = 0,

Bz,1 = Bz,2; μ2 Bx,1 = μ1 Bx,2; on z = h1,

Ey,1 = Ey,2; μ2 By,1 = μ1 By,1; on z = h1.

(9)

THE TAIL IN THREE-LAYERED MEDIA

We represented the tail by a horizontal line of electric dipoles of length L . Figure 2 illustrates both the

geometry of the model and the magnetic tail in the sea. By applying the boundary conditions expressed in

the system of Equations 9 and integrating along the cable length (x0), one writes the final expression for

Bz,1(R, ω) due to a magnetic tail situated between the surface and the sea floor.

Bz,1(R, ω) = −
μ0

4 π
I (ω)

∂

∂y

{ ∫ ∞

0

{
λ

α1
e−α1|z−z0| + F+

x,1(λ) e+α1z

+F−
x,1(λ) e−α1z

}[ ∫ + L
2

− L
2

J0(λr) dx0

]
dλ

}
, (10)

F+
x,1 =

λ

α1

R1,2e−2α1h1(R1,0e−α1z0 + e+α1z0)

1 − R1,0 R1,2e−2α1h1
,

F−
x,1 =

λ

α1

R1,0(R1,2e+α1z0e−2α1h1 + e−α1z0)

1 − R1,0 R1,2e−2α1h1
,

R1, j =
α1 − α j

α1 + α j
, j = 0, 2.

The magnetic field in the time domain

To obtain bz,1(R, t), we apply Fourier or Laplace transform to Equation 10. Only in special cases bz,1(R, t)

is obtained analytically, because α j , j = 1, 2, 3 is also a function of ω. In general, it is necessary to

perform three numerical integrations: in λ, x0, and ω. Therefore, the computation of the time domain

representation is complex, quite cumbersome, and time consuming as a rule. Let bz,1(R, t) = bzp(R, t) +
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bzs(R, t). So, we will have for the impulse response that

bzp(R, t) =

√
μ5

0σ
3
1 C

16
√

π3

y
√

t5
u(t)

∫ +L
2

− L
2

e−
μ0σ1 R2

4t dx0,

bzs(R, t) = −
μ0 C

8 π2

{∫ +∞

−∞
e+iωt

{∫ +∞

0
λ

{
F+

x,1(λ, ω)

λ
e+α1z

+
F−

x,1(λ, ω)

λ
e−α1z

} [∫ + L
2

− L
2

∂ J0(λr)

∂y
dx0

]

dλ

}

dω ; (11)

and for the step response, I(t) = C u(t), I (s) = C
s , that

bzp(R, t) =
μ0 C y

4 π
u(t)

∫ + L
2

− L
2

1

R3

{
er f c

(√
μ0σ1 R

2
√

t

)
+

√
μ0σ1 R
√

π t
e−

μ0σ1 R2

4t

}
dx0,

bzs(R, t) = −
μ0 C

8 π2 i

{∫ β +i∞

β −i∞
e+st

{∫ +∞

0

{

+
F+

x,1(λ, s)

s
e+α1z

+
F−

x,1(λ, s)

s
e−α1z

} [∫ + L
2

− L
2

∂ J0(λr)

∂y
dx0

]

dλ

}

ds . (12)

Notice that, by taking the time derivative of the expression of the secondary field and substituting

s = i ω in Equation 12, we obtain the equivalent expression of Equation 11.

METHOD OF COMPUTATION

Presently, there are several available techniques that improve the computation of the field components.

We developed one that is particularly suitable for an approximate computation of bzs(R, t) in a highly

conductive environment such as the sea water. Next we will describe the procedure. The related algebra is

given in the Appendixes A, B, and C.

Write the Fourier transform of the impulse as a time derivative of the Laplace transform of the step.

Expand the kernels by the binomial theorem neglecting second and higher order terms of the reflection

coefficients. Evaluate the inverse transform of each term of the expansion in s = i ω by a deformation

of the Bromwich path (Br) into a closed contour. Evaluate the Hankel (λ) and the tail (x0) integrals in the

best order. By employing Equation A1 of Appendix A and Equations B1, B2, and B4 of Appendix B, we

rewrite Equation 11 and express bz,1(R, t) as:

bzp(R, t) =
π y σ1

105 t2
e

−
(
(

y
2 χ

)2+(
z−z0
2 χ

)2
) {

er f

(
x + L

2

2 χ

)

− er f

(
x − L

2

2 χ

)}

u(t)

bzs(R, t) = 100 y
∫ +∞

0
ḟx,1(λ, t)

[∫ + L
2

− L
2

J1(λr)

r
dx0

]

λ dλ. (13)

In Equation 13 we made C = 1 coulomb, substituted the value of μ0 in henry/m, employed time in

second, and multiplied by 109 to obtain bz,1(R, t) in nanotesla, with the unit of ḟx,1(λ, t) in hertz. Adding
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the partial derivative with respect to time of the terms of Equation B1, of Equations B2 and B3, and of

Equations B4, B5, and B6 of Appendix B, we express ḟx,1(λ, t) approximately as:

ḟx,1(λ, t) ≈





λ e−λ2χ2

μ0 σ1 χ
√

π

4∑

j=1

(−1) j e
−

q2
j

4χ2 +
4, j 6=3∑

j=1

(−1) j+1
∂g+

j

∂t

+
4∑

j=2

(−1) j+1

(
∂g−

j

∂t
+

∂h−
j

∂t

)



u(t). (14)

Substituting Equation 14 in Equation 13 with the help of Equations B1, B2, B4, B3, B5, and B6, we

obtain the following expression for bzs(R, t):

bzs(R, t) = 100 y
∫ + L

2

− L
2

{ ∫ +∞

0
2 λ

{ 4∑

j=1

(−1) j e
−

q2
j

4χ2
e−λ2χ2

2
√

π μ0 σ1 χ

+
4, j 6=3∑

j=1

(−1) j+1 e
−

q2
j

4χ2
e−λ2χ2

√
πμ0(σ1 − σ2)χ

+
4, j 6=3∑

j=1

(−1) j+1 λ

μ0(σ1 − σ2)

×
{

e−λq j

2
er f c

(
− λχ +

q j

2χ

)
−

e+λq j

2
er f c

(
λχ +

q j

2χ

)}

+
4, j 6=3∑

j=1

(−1) j+1
√

σ2
√

p1

π
√

μ0

∫ 1

0

√
1 − p sin(ξ j

√
p1 )

(σ1 − σ2)p + σ2
e−(γ+p1 p)t dp

+
4∑

j=2

(−1) j+1 e−γ t

√
μ0σ1

{
λχ e+λ2χ2

2
√

t

{
e−λq j er f c

(
− λχ +

q j

2χ

)

− e+λq j er f c
(

λχ +
q j

2χ

)}
−

√
γ + σ1

ε0
e+γ t+

σ1
ε0

t

2

×
{

e
−

√
γ+

σ1
ε0

√
μ0σ1q j er f c

(
−

√(
γ +

σ1

ε0

)
t +

q j

2χ

)

− e
+

√
γ+

σ1
ε0

√
μ0σ1q j er f c

(
+

√(
γ +

σ1

ε0

)
t +

q j

2χ

)}}

+
4∑

j=2

(−1) j+1 c0

π

∫ +∞

0

√
(p + p0)(p + ṗ0) sin(ξ j ) e−(γ+p)t

(p + γ )(p + γ + σ1
ε0

)
dp

−
4∑

j=2

(−1) j+1 2 c0

π

∫ c0λ

0

{
σ1

ε0

sin(pt − b j )

p
+ cos(pt − b j )

}

×

√
c2

0λ
2 − p2 e−a j

σ 2
1

ε2
0

+ p2
dp

}
J1(λr) λ dλ

}
dx0

r
, (15)

ξ j =
√

μ0σ1q j
√

p.
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Equation 13 shows that the primary field is independent of the thickness of the liquid layer. On the other

hand, the secondary field depends on it and is made up of an infinite sequence of terms, of which we

computed only the first four of them as shows Equation 15. Though the electromagnetic energy, in fact,

scatters at each interface, we can associate the series to an infinite sequence of reflections at the top and

bottom of the liquid layer, by analogy with the ray theory. Therefore, Equation 15 individualizes the

wavefield components, and we may employ it for data processing such as filtering and continuation oper-

ations, as well as decomposition into upward and downward terms (Amundsen et al. 2006). Furthermore,

Equation 15 is already equivalent to a multiple suppression of the exact equation.

Recall that both a j and b j are linear functions of q j . We may associate q j respectively to: a single

reflection at the bottom – q1; a single reflection at the surface – q3; a reflection at the surface followed

by a reflections at the bottom – q2; and a reflection at the bottom followed by a reflection at the surface

– q4. The first term of Equation 15 contains all four q j . It is the leading term and only depends on the

properties of the sea. It would be the only one if the air and the substratum were perfect conductors. It

is of the same order of magnitude and of opposite sign to the primary field. The following three terms

contain the contribution of the conductive substratum, primarily via q1, and secondarily via q2 and q4. They

don’t have the term in q3, and the first one is similar to the main term. The last three terms contain the

contribution from the air-sea interface via q3, q2, and q4, and they don’t have the term in q1. In Appendix C

we develop the first two terms on the right-hand side of Equation 15 to obtain Equations C4 and C5.

We computed the other five terms of Equation 15 numerically.

Alternative representations for the reflection coefficient

If the conductivity contrast between two sea water layers or between the sea water and its substratum is

sufficiently small: σ1 − σ2 << 1, we may express the reflection coefficient approximately as:

R1,2 ≈

(
1 − σ2

σ1

)
s

4
(

s + λ2

μ0σ1

) .

If, however, the contrast is very large, we may expand R1,2 approximately as:

R1,2 =
(

1 −
α2

α1

) +∞∑

n=0

(−1)n

(
α2

α1

)n

≈ 1 − 2
α2

α1
.

In this second case, a procedure similar to the one developed in Appendix B gives the following alternative

representation for ḟx,1(λ, t) of Equation 13:

ḟx,1(λ, t) ≈ −
λ2 e−λ2χ2

μ0 σ1





4 −

σ2

σ1
−

e
−

(
z−z0

2χ

)2

+ e
−

(
z+z0

2χ

)2

λχ
√

π





. (16)

To compute the secondary field, we perform the Hankel transform from the λ domain in Appendix D

before integrating in x0. The transform of the third term of Equation 16 yields the Error Function. The

transform of the first two terms yields either a partial y derivative of Kummer’s confluent hypergeometric
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series or a generalized Laguerre polynomial of order 1/2 and coefficient 1 (Erdélyi 1954, Abramowitz

and Stegun 1968). We determined this particular Laguerre polynomial employing fractional derivative

(Sokolov et al. 2002) and obtained Equation D4.

RESULTS OF THE NUMERICAL SIMULATIONS

The following parameters are constants in the maps and graphs: σ1 = 3 S/m, which is an average value

for the conductivity of sea water; L = 300 m; x0 = y0 = 0; and z = h−
1 . We also set t = 0.001 s in the

maps, and x = 0 m and y = 20 m in the graphs. The caption of each figure contains the values of the

other parameters.

We set the sea layer thickness, h1, equal to 20 m and 100 m to simulate, respectively, a shallow water

and an intermediate depth environment. For surveys at the sea surface, as in magnetic submarine counter-

sweep campaigns, z0 = z(1)

0 = 0. For ocean bottom geophysical surveys, z0 = z(2)

0 = z = h−
1 . We

employed three values for the conductivity of the substratum, σ2, to cover the average range of variation

of the conductitivity of rocks: 0.3 S/m; 0.03 S/m, and 0.003Ṡ/m.

In the case of the maps, it is sufficient to represent only one quadrant of them, because all the vari-

ations are even with respect to x and odd with respect to y. We computed the functions described by

Equations 13, 14, and 15 for values of time up to 10−2 s because they decay steadly for t > 10−2 s.

The graphs of Figure 3 represent the primary and the total field at the bottom of a 20 m water layer,

overlying a substratum in which σ2 = 0.3 S/m. Both the magnitude and the time displacement of the

peaks of the curves are compatible with the source-receiver distances. The graphs of Figure 4 represent

the primary and the total field at the bottom of an 100 m water layer, also overlying a substratum in which

σ2 = 0.3 S/m. In this case, the magnitude and the time displacement of the peaks of the curves are

compatible only for the primary field. The magnitude of the total field in Figure 4(c) is larger than in

Figure 4(d), in spite of a smaller receiver-transmitter distance in this last one. The magnitude of the total

field differs substantially between Figures 3(d) and 4(d), even though they have the same transmitter-

receiver configuration. These two facts show the role that the thickness of the sea water layer plays in the

secondary field.

If we neglect the length of the tail and assume the origin of the pulse at its center, we can estimate a

group velocity, Vg, of the peak for the primary field under the conditions of Figures 3 and 4. The precision

will be better for a larger transmitter-receiver distance. For instance: for Figure 4(a), Vg ≈ 25 km/s: and

for Figure 3(a), Vg ≈ 70 km/s. In the present case, the phase velocity for the plane wave approximation

under quasi-static conditions is given by V f = 103√3.3 f . Since we may express the group velocity as:

Vg =
V f

1 − κ
d V f

d ω

,

we may conclude that Vg ≈ 2 V f ≈ 103 √
13.3 f . So, the energy of the signal is centered, respectively,

about 47 Hz and 370 Hz on Figures 4(a) and 3(a). This fact and the definition of the quality factor de-

serves further investigation, because it is useful to select the on and off times of a square or a pseudo-

square source waveform.

An Acad Bras Cienc (2011) 83 (3)



“main” — 2011/7/6 — 12:35 — page 844 — #10

844 EDSON E.S. SAMPAIO

( a ) ( b )

( c ) ( d )

Fig. 3 – Graphs of the time variation of the vertical component of the magnetic field for the case of a water layer with

h1 = 20 m and σ1 = 3 S/m, overlying a basement with σ2 = 0.3 S/m. Primary: bzp . Total: bz,1.

The contour maps of Figure 5 display the variation of the primary and the total field at the bottom

of a 20 m water layer, overlying a substratum in which σ2 = 0.3 S/m. All the maps show a perfect delin-

eation of the tail position, and their magnitudes are also compatible with the transmitter-receiver distances.

The contour maps of Figure 6 display the variation of the primary and the total field at the bottom of a

100 m water layer, also overlying a substratum in which σ2 = 0.3 S/m. Only the primary field map shows

a perfect delineation of the tail position and a field magnitude compatible with the transmitter-receiver

distance. The two maps of the total field reflect the influence of the larger water layer thickness.
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( a ) ( b )

( c ) ( d )

Fig. 4 – Graphs of the time variation of the vertical component of the magnetic field for the case of a water layer with h1 = 100 m

and σ1 = 3 S/m, overlying a basement with σ2 = 0.3 S/m. Primary: bzp . Total: bz,1.

The primary field reaches the higher values along a strip on each side of the tail. The longitudinal

extension and transversal position of the peak depend on time and on the vertical distance between the tail

and the receiver. As an average, the peak covers 80% of the length of the tail and spreads at a transversal

distance of approximately 6% of the same length. Let us assume for those maps an average displacement

of 18 m at t = 0.001 s. Under the present circumstances, we obtain Vg ≈ 18 km/s. This suggests that the

energy of the signal is centered about 24 Hz at that instant.
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( a ) ( b )

( c ) ( d )

Fig. 5 – Contour maps of the vertical component of the magnetic field for the case of a water layer with h1 = 20 m

and σ1 = 3 S/m and a substratum with σ2 = 0.3 S/m. Primary: bzp . Total: bz,1.

The graphs of Figure 7 show the contribution of the substratum to the secondary field for three values

of σ2: 0.3 S/m, 0.03 S/m, and 0.003 S/m. Together they show the influence that the conductivity of the

substratum, the position of the transmitter and the water layer thickness have on the time variation of the

field. The change in sign of the three terms of the series of Equation 15 and the variation of q j help to

understand the behavior of the curves. There is a paradox related to the peak values in this figure.
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( a )

( b ) ( c )

Fig. 6 – Contour maps of the vertical component of the magnetic field for the case of a water layer with h1 = 100 m

and σ1 = 3 S/m and a substratum with σ2 = 0.3 S/m. Primary: bzp . Total: bz,1.

Figure 7(b) has a peak value five times larger than the peak value of Figure 7(a) for σ2 = 0.03 S/m

and even larger for σ2 = 0.003 S/m, but the magnitude ratio is inverse for σ2 = 0.3 S/m. A similar

behavior occurs between Figures 7(d) and 7(c). However, the curve for σ2 = 0.03 S/m presents a value

smaller than the curve for σ2 = 0.003 S/m in graph (d), while the contrary occurs in graph (b). Therefore,

the graphs of Figure 7 indicate how to improve the choice of the transmitter distance to the bottom of the

sea for each water layer thickness and for each conductivity of the top layer of the sea substratum.
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( a ) ( b )

( c ) ( d )

Fig. 7 – Graphs of the time variation of the main contribution of the substratum for the vertical component of the magnetic field:

σ2 represents the conductivity of the substratum. (a) and (b) h1 = 20 m. (c) and (d) h1 = 100 m. Solid line: σ2 = 0.3 S/m.

Dotted line: σ2 = 0.03 S/m. Dashed line: σ2 = 0.003 S/m.

In order to evaluate the discrimination capability of the electromagnetic method in the present

situation, we also computed the difference between the values of the field for two different substratuns.

The contour maps of Figures 8, 9, and 10 display the results, respectively, for the following pairs of con-

ductivity values: 0.3 S/m and 0.03 s/m; 0.3 S/m and 0.003 S/m; and 0.03 S/m; and 0.003 S/m. All the maps

display a monotonic behavior with respect to the transverse distance to the tail. Except for the map of

Figure 9, under an 100 m water layer, the values have the same order of magnitude of the total field values:
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see maps of Figure 6(c) and (d). Under a 20 m water layer, the magnitudes are also of the same order of the

total field of the maps of Figure 5 for transverse distances to the tail larger than 75 m. This means that, in

shallow waters, it is necessary to separate the receivers at least one quarter of the tail lenght to achieve an

adequate discrimination. Though this is not a problem in deep waters, one should consider the possibility

of adverse situations as the referred case of Figure 9(d).

( a )

( b ) ( c )

Fig. 8 – Contour maps of the difference of the vertical component of the magnetic field in nanotesla between one substratum

with σ2 = 0.3 S/m and another with σ2 = 0.03 S/m. h1 represents the thickness of the sea layer.

An Acad Bras Cienc (2011) 83 (3)



“main” — 2011/7/6 — 12:35 — page 850 — #16

850 EDSON E.S. SAMPAIO

( a )

( b ) ( c )

Fig. 9 – Contour maps of the difference of the vertical component of the magnetic field in nanotesla between one substratum

with σ2 = 0.3 S/m and another with σ2 = 0.003 S/m. h1 represents the thickness of the sea layer.

CONCLUSIONS

We solved the induced electromagnetic field both in the frequency and in the time domain for tail and

receiver in the sea. The integrands are complex functions with multiple branch points. So, it is difficult

to represent the field as a closed expression or with a minimum number of integrals. We approached the
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( a )

( b ) ( c )

Fig. 10 – Contour maps of the difference of the vertical component of the magnetic field in nanotesla between one substratum

with σ2 = 0.03 S/m and another with σ2 = 0.003 S/m. h1 represents the thickness of the sea layer.

expression for a pulse source of current by a Dirac Delta function. Though it describes an abstract model

for the source, its analysis is useful to: evaluate noises caused by current peaks; separate the terms of

the wave-field due to single or double reflections and to the electrical parameters; and solve the case of

a generic source waveform employing convolution.
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Though the source signal consists of a single pulse whose time duration is negligible, the conductivity

of the sea water changes it appreciably. It increases its duration and causes the primary and the secondary

fields to be measured up to times later than tens of milliseconds depending on the source-receiver offset.

The curves of the graphs show this fact clearly, as well as the effect of the thickness of the sea layer on

the relative magnitude of both the primary and the secondary fields. The contour maps show the influence

of the thickness of the sea layer on the spatial variation of the field.

The model is adequate for shallow, intermediate, and deep water environments. For safety procedures,

a step source model will be useful to evaluate transient fields at turn on and turn off times during field

operations. The results provide a wealth of information depending on the selected source-receiver config-

uration and the conductivity contrasts. The analysis, modelling, and interpretation of these data help to:

define safety procedures in counter-sweep campaigns; map the conductivity of the submarine soil in envi-

ronmental studies of marshes and bays; and identify, as a first approach, deep electrical structures, including

possible economical deposits under the sea, employing mCSEMI (marine controlled source electromag-

netic induction) methods in exploration and development works.

There are situations as show the maps of Figure 9, in which even for a high conductivity contrast

the discrimination capability is poor. However, in general, the analysis of the magnitudes as a function of

the electrical conductivity contrast, of the water layer thickness, of the transverse distance to the tail, and

of the vertical position of the tail leads to evaluate the discrimination capability in the following way:

• it can be adequate for any conductivity contrast of the substratum as long as the measurement accuracy

is better than about 0.01 nT;

• in shallow water it improves by increasing the receivers’ distance across the axis of the source and

decreasing the distance between the tail and the seafloor; and

• for deep water it is in general adequate for any position of the receivers.
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RESUMO

A análise de campos eletromagnéticos causados por correntes alternadas ou transientes fluindo ao longo de um cabo

na água do mar tem várias aplicações. Ela provê suporte à interpretação de dados geofísicos eletromagnéticos e aos

procedimentos de segurança contra a ameaça de minas submarinas. A abordagem do problema emprega um potencial

vetorial magnético, no domínio da frequência, devido a um dipolo elétrico com uma fonte tipo pulso e calcula

transformações de Laplace e de Hankel e integração ao longo do comprimento do cabo, para descrever a variação

temporal do campo magnético de indução devido a um dipolo elétrico de comprimento finito. O resultado é aplicável

em ambientes de água do mar rasa ou profunda, adaptável para qualquer forma de onda de corrente transmitida e útil

para separação de campos de ondas. As configurações se referem a uma bobina receptora horizontal no fundo do

mar e simulam: uma campanha de varredura de minas submarinas com uma fonte de corrente na superfície ou um
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levantamento geofísico com uma fonte de corrente próxima ao assoalho do mar. Portanto, a presente análise pode

servir: para definir parâmetros em contra-varredura de minas submarinas; para mapear a condutividade de sedimentos

sob águas rasas em prevenção e controle de contaminação e como uma primeira abordagem na caracterização de

depósitos minerais e de hidrocarbonetos no mar.

Palavras-chave: dipolos, energia eletromagnética, campos induzidos, mar.
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APPENDIXES

A BINOMIAL EXPANSION OF THE KERNEL FUNCTIONS

Take into account that |e−2 α1 h1 | < 1 and | R1, j | < 1, j = 0, 2, and express the reflection coefficient as,

R1, j =
2 α1

α1 + α j
− 1, j = 0, 2.

Next, expand the denominator of F±
x,1(λ, s) by the binomial theorem and neglect second and higher order

terms to obtain:

∫ β+i∞

β−i∞

F+
x,1(λ, s)

s
e+α1 z e+s t ds ≈

∫ β+i∞

β−i∞

{(
2λ

s(α1 + α2)
−

λ

sα1

)
e−α1 q1

+
(

−
2λ

s(α1 + α0)
−

2λ

s(α1 + α2)
+

λ

sα1

)
e−α1 q2

}
e+st ds,

∫ β+i∞

β−i∞

F−
x,1(λ, s)

s
e−α1 z e+s t ds ≈

∫ β+i∞

β−i∞

{(
2λ

s(α1 + α0)
−

λ

sα1

)
e−α1 q3

+
(

−
2λ

s(α1 + α0)
−

2λ

s(α1 + α2)
+

λ

sα1

)
e−α1 q4

}
e+st ds. (A1)

Equations A1 contain three types of Laplace transforms. The coefficients q j are positive, j = 1, 2, 3, 4,

because

q1 = 2 h1 − z − z0; q2 = 2 h1 − z + z0; q3 = z + z0; q4 = 2 h1 + z − z0.

When z = h1,

q1 = h1 − z0; q2 = h1 + z0; q3 = h1 + z0; q4 = 3 h1 − z0.

B LAPLACE TRANSFORM OF THE FIRST ORDER TERMS

Substitute in Equation A1 s = p − γ , γ = λ2

μ0 σ1
and write:

α0 =

√
(p − p0)(p − ṗ0)

c0
; α1 =

√
μ0 σ1

√
p; and α2 =

√
μ0 σ2

√
p + p1,

where p = 0, p0 = γ + ic0λ, ṗ0 = γ − ic0λ, and

p1 =
λ2(σ1 − σ2)

μ0 σ1 σ2
=

γ (σ1 − σ2)

σ2

represent the four branch points. The residue at the pole p = +γ vanishes. The vertical straight line in

Figure B1 represents the Bromwich path. We shall evaluate the integrals modifying it to a closed circuit

(Papoulis 1962).

The three types of Laplace transforms of Equation A1 yield, respectively, the following expressions

(Abramowitz and Stegun 1968):
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•
−p1

•
γ

Plane (p)

<(p)

=(p)

•

p0
•

ṗ0
•

β + γ + iΩ

β + γ − iΩ

β + γ

Fig. B1 – Distortion of the Bromwich path (<(p) = β + γ ) into a closed contour for the integration of Equations B1, B2, and B4.

The function is analytical inside the contour. The origin, −p1, p0, and ṗ0 are branch points, and γ is the pole.

FIRST TRANSFORM

λ

∫

Br

e−α1q j est

sα1
ds =

e−γ t

2

∫

Br

(
1

√
p(−

√
γ +

√
p)

−
1

√
p(+

√
γ +

√
p)

)
e−

√
μ0σ1q j

√
pe+pt dp,

4∑

j=1

(−1) jλ

2π i

∫

Br

e−α1q j est

sα1
ds =

4∑

j=1

(−1) j

(
e−λq j

2
er f c

(
− λχ +

q j

2χ

)

−
e+λq j

2
er f c

(
+ λχ +

q j

2χ

))
u(t), (B1)

where:

χ =

√
t

μ0σ1
.

The circuit of the two integrals of Equation B1 is represented in Figure B1 with the following parts:

the semi-circle � → ∞, for <(p) < β + γ ; the circle ε → 0 around the branch point p = 0; the contour

of the branch cut (−∞ → 0); and the circle around the pole p = +γ . The two terms of Equation B1

correspond to the contour of the branch cut. The integrals along the circle ε → 0 around the branch point

p = 0 and along the semi-circle � → ∞ for <(p) < β + γ vanish.

SECOND TRANSFORM

∫

Br

e−α1q j est

s(α1 + α2)
ds = e−γ t

∫

Br

(√
σ1

√
p −

√
σ2

√
p + p1

)
e−

√
μ0σ1q j

√
p e+pt

√
μ0(σ1 − σ2) (p − γ )2

dp,
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4, j 6=3∑

j=1

(−1) j+1λ

π i

∫

Br

e−α1q j est

s(α1 + α2)
ds =

4, j 6=3∑

j=1

(−1) j+1g+
j (λ, t) u(t). (B2)

The circuit of the two integrals of Equation B2 is represented in Figure B1, and is constituted of the

following parts: the semi-circle � → ∞, for <(p) < β + γ ; the circles ε → 0 around the branch points

p = 0 and p = −p1; the contours of the branch cuts: (−∞ → 0) and from −p1 to 0; and the circle

around p = +γ . In Equation B2, the integrals along the circles with radius ε → 0 around the branch

points p = 0 and p = −p1 and around p = � → ∞ vanish, and

∂g+
j (λ, t)

∂t
=

2 λ e−γ t√σ1
√

μ0(σ1 − σ2)

{
1

√
π t

e
−

q2
j

4χ2 +
λχ e+λ2χ2

2
√

t

×
{

e−λq j er f c
(

− λχ +
q j

2χ

)
− e+λq j er f c

(
λχ +

q j

2χ

)}

+
√

σ2(σ1 − σ2)
√

p1

π
√

σ1

∫ 1

0

N+(p)

(σ1 − σ2)p + σ2
e−p1tpdp

}
, (B3)

N+(p) =
√

1 − p sin
(√

μ0σ1 p1 q j
√

p
)
.

THIRD TRANSFORM

∫

Br

e−α1q j est

s(α1 + α0)
ds =

e−γ t

μ0ε0
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Br

√
μ0σ1
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j (λ, t) + h−

j (λ, t)
}

u(t). (B4)

The circuit of the two integrals of Equation B4 is represented in Figure B1, and is constituted of

the following parts: the semi-circle � → ∞, for <(p) < β + γ ; the circles ε → 0 around the branch

points p = 0, p = p0 and p = ṗ0 and of the pole p = +γ ; and the contours of the two branch cuts:

from ṗ0 to p0 and from −∞ to 0. The pole p = γ + σ1
ε0

is not shown, and its two residues cancel out.

In Equation B4 the integrals along the circles with radius ε → 0 around the branch points p = 0, p = p0

and p = ṗ0, as well as around p = � → ∞, vanish. The term g−
j (λ, t) on the right-hand side of

Equation B4 corresponds to the contour of the branch cut from −∞ to 0, and the term h−
j (λ, t) to the
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contour around the branch cut parallel to the imaginary axis, such that

∂g−
j (λ, t)

∂t
=

2λ e−γ t

√
μ0σ1

{
λχ e+λ2χ2

2
√

t

{
e−λq j er f c

(
− λχ +

q j

2χ

)
− e+λq j er f c

(
λχ +

q j

2χ

)}

−

√
γ + σ1

ε0
e+γ t+ σ1

ε0
t

2

{
e

−
√

γ+
σ1
ε0

√
μ0σ1q j er f c

(
−

√
(γ +

σ1

ε0
)t +

q j

2χ

)

−e
+

√
γ+ σ1

ε0

√
μ0σ1q j er f c

(
+

√
(γ +

σ1

ε0
)t +

q j

2χ

)}}

+
2c0λe−γ t

π

∫ +∞

0

N− e−tp

(p + γ ) (p + γ + σ1
ε0

)
dp,

N−(p) =
√

(p + p0)(p + ṗ0) sin(
√

μ0σ1 q j
√

p). (B5)

∂h−
j (λ, t)

∂t
= −

4 c0 λ

π

∫ c0λ

0

{
σ1

ε0

sin(pt − b j )

p
+ cos(pt − b j )

}
√

c2
0λ

2 − p2 e−a j

σ 2
1

ε2
0

+ p2
dp , (B6)

a j =

√
μ0σ1

2

√√
γ 2 + p2 + γ q j ,

b j =

√
μ0σ1

2

√√
γ 2 + p2 − γ q j .

C FIRST HANKEL TRANSFORM

The first two terms on the right-hand side of Equation 15 yield the following Hankel transforms:

(T H)1 = −
(

∂

∂y

) ∫ +∞

0
λ e−λ2χ2

J0(λr)

dλ, = +
( y

r

) ∫ +∞

0
λ2 e−λ2χ2

J1(λr) dλ. (C1)

Employing the tables of (Erdélyi 1954) we obtain the following result:

(T H)1 = −
(

1

2 χ2

)
0(1)

(
∂

∂y 1 F1

(

1; 1;−
(

r

2 χ

)2
))

,

= +
(

y

4 χ4

)

(0!) e
−

(
r

2 χ

)2

L1
0

((
r

2 χ

)2
)

. (C2)

Employing the properties of the 0(η) function, of Kummer’s hypergeometric series, and of the generalized

Laguerre polinomium on Equation C2, we conclude that

(T H)1 =
(

y

4 χ4

)
e

−
(

r
2 χ

)2

(C3)
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and therefore:

100 y
∫ + L

2

− L
2

{ ∫ +∞

0

{ 4∑

j=1

(−1) j e−(
q j
2χ

)2 λ2 e−λ2χ2

√
π μ0 σ1 χ

}
J1(λr)dλ

}
dx0

r

=
π σ1 y e(− y

2χ
)2

105 t2

{
er f

(
x + L

2

2χ

)
− er f

(
x − L

2

2χ

)}( 4∑

j=1

(−1) j e−(
q j
2χ

)2
)

, (C4)

100 y
∫ + L

2

− L
2

{ ∫ +∞

0

{ 4, j 6=3∑

j=1

(−1) j+1 e−(
q j
2χ

)2 2 λ2 e−λ2χ2

√
π μ0 (σ1 − σ2) χ

}
J1(λr)dλ

}
dx0

r

=
2 π σ 2

1 y e(− y
2χ

)2

105(σ1 − σ2)t2

{
er f

(
x + L

2

2χ

)
− er f

(
x − L

2

2χ

)}( 4, j 6=3∑

j=1

(−1) j+1 e−(
q j
2χ

)2
)

. (C5)

D SECOND HANKEL TRANSFORM

The two first terms inside the brackets on the right-hand side of Equation 16, combined with Equation 13,

yield the following Hankel transform:

(T H)2 = +
(

4 −
σ2

σ1

)(
∂

∂ y

) ∫ +∞

0
λ2 e−λ2 χ2

J0(λr) dλ,

= −
(

4 −
σ2

σ1

) ( y

r

) ∫ +∞

0
λ3 e−λ2χ2

J1(λr) dλ. (D1)

By employing the tables of (Erdélyi 1954) we obtain the following result:

(T H)2 = +
(

4 −
σ2

σ1

) (
1

2 χ3

)
0

(
3

2

) (
∂

∂y 1 F1

(
3

2
; 1;−

(
r

2 χ

)2
))

,

= −
(

4 −
σ2

σ1

)(
y

4 χ5

) (
1

2
!
)

e
−

(
r

2 χ

)2

L1
1
2

((
r

2 χ

)2
)

. (D2)

We shall prove that the two forms in Equation D2 give the same result. First consider the following

properties of 0(η): 0
(

1
2

)
=

√
π ; 0(η + 1) = η 0(η) = η!; and

0

(
n +

1

2

)
=

5n−1
k=0 (2n + 1)

2n
0

(
1

2

)
.

Employing the general expression of Kummer’s confluent hypergeometric series,

1 F1

(

a; b;−
(

r

2χ

)2
)

=
∞∑

n=0

(−1)n 0(a + n)/0(a)

(0(b + n)/0(b)) n!

(
r2

4χ2

)n

,

1 F1

(
3

2
; 1;−

(
r

2χ

)2
)

=
∞∑

n=0

(−1)n
(
5n

k=0(2k + 1)
)

2n (n!)2

(
r2

4χ2

)n

,
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we obtain:

∂

∂y 1 F1

(
3

2
; 1;−

(
r

2 χ

)2
)

=
(

2 y

r2

) ∞∑

n=1

n (−1)n
(
5n

k=0(2k + 1)
)

2n (n!)2

(
r2

4χ2

)n

.

Also taking into account the representation of Laguerre’s generalized polynomial of order η and coef-

ficient α

Lα
η (χ) =

(
eχ χ−α

η!

) (
dη

dχη

(
e−χ χη+α

)
)

,

we obtain

L1
1
2
(χ) =

(
eχ χ−1

(
1
2 !

)

) (
d

1
2

dχ
1
2

(
e−χ χ

3
2

)
)

.

According to (Sokolov et al. 2002)

d
1
2 χμ

dχ
1
2

=
0(μ + 1)

0(μ + 1
2 )

χμ− 1
2 , μ > −1.

Applying fractional derivative to the Taylor’s series expansion of the exponential function, we conclude

that (
d

1
2

dχ
1
2

(
e−χ χ

3
2

)
)

=
∞∑

p=0

(−1)p

(p)!

0(p + 5
2 )

0(p + 2)
χ p+1,

where: 0(p + 2) = (p + 1)! and

0

(
p +

5

2

)
= 0

(
(p + 2) +

1

2

)
=

(
5

p
k=0 (2k + 3)

)

2p+2
0

(
1

2

)
.

Therefore, we may rewrite Equation D2 as:

(T H)2 =
(

4 −
σ2

σ1

) √
π y

2 χ3 r2

∞∑

n=1

n(−1)n
(
5n

k=0(2k + 1)
)

2n (n!)2

(
r

2 χ

)2n

. (D3)

Substituting Equations D3 and C3 in Equation 13, we obtain the following expression for bzs in

nanotesla:

bzs(R, t) =
25 y

√
π μ0 σ1 χ3

{
2 π

(
4 −

σ2

σ1

) ∞∑

n=1

n (−1)n
(
5n

k=1(2k + 1)
)

y2n−1

23n(n!)2 χ2n

n∑

j=1

(n − 1)!

(2 j − 1) ( j − 1)! (n − j)!

((
x + L

2

y

)2 j−1

−
(

x − L
2

y

)2 j−1 )

+

√
π e

−
(

y
2χ

)2 (
e

−
(

z−z0
2χ

)2

+ e
−

(
z+z0

2χ

)2)

χ

(
er f

(
x + L

2

2 χ

)
− er f

(
x − L

2

2 χ

))}
. (D4)

The calculus of the double series of Equation D4 becomes laborious for high values of the argument.

So, it is necessary to analyze its asymptotic behavior when y and t are such that y
χ

>> 1. The fact that

lim
η→−∞

1 F1

(
3

2
; 1; η

)
=

0(1)

0
(
− 1

2

) (−η)− 3
2
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implies that

lim(
r

2χ

)2
→∞

1 F1

(
3

2
; 1;−

(
r

2 χ

)2
)

= −
4 χ3

√
π r3

,

lim(
r

2χ

)2
→∞

(
∂

∂y 1 F1

(
3

2
; 1;−

(
r

2 χ

)2
))

=
12 y χ3

√
π r5

and consequently we have:

12 y χ3

√
π

∫ + L
2

− L
2

dx0

r5
=

4 χ3

√
π y3

{
(x + L/2)(3y2 + 2(x + L/2)2)

(y2 + (x + L/2)2)3/2
−

(x − L/2)(3y2 + 2(x − L/2)2)

(y2 + (x − L/2)2)3/2

}
.
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