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ABSTRACT
Abstract Marshall and Olkin (1997) introduced an interesting method of adding a parameter to a well-
established distribution. However, they did not investigate general mathematical properties of their family 
of distributions. We provide for this family of distributions general expansions for the density function, 
explicit expressions for the moments and moments of the order statistics. Several especial models are 
investigated. We discuss estimation of the model parameters. An application to a real data set is presented 
for illustrative purposes.

Key words: Marshall-Olkin extended distribution, maximum likelihood estimation, Monte Carlo 
simulation, Rényi entropy.

INTRODUCTION

Adding parameters to a well-established distribution is a time honored device for obtaining more flexible 
new families of distributions. (Marshall and Olkin 2007) introduced an interesting method of adding a 
new parameter to an existing distribution. The resulting distribution, known as Marshall-Olkin (M-O) 
extended distribution, includes the baseline distribution as a special case and gives more flexibility to 
model various types of data. The M-O family of distributions is also known as the proportional odds 
family (proportional odds model) or family with tilt parameter (Marshall and Olkin 2007).

Let F(x)=1-F(x) denote the survival function of a continuous random variable X which depends on a 
parameter vector β = (β1,..., βq)T of dimension q. Then, the corresponding M-O extended distribution has 
survival function defined by

G(x) = α F(x)
1 – α F(x)

 = α F(x)
F(x) + α F(x)

 ,            – ∞ < x < ∞ ,

where α > 0 and α = 1– α. For α = 1, G(x) = F(x). Marshall and Olkin (1997) have noted that the method has 
a stability property, i.e., if the method is applied twice, nothing new is obtained in the second time around. 
Additionally, the extended model is geometrically extremely stable. If Xi = (i = 1, 2, ...) is a sequence of 
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independent and identically distributed random variables with cdf F(x) and if N has a geometric distribution 
taken values {1, 2, ...}, then the random variables U = min {X1, ..., XN} and V = max{X1, ..., XN} are 
distributed as in (1). It implies that the new distribution is geometrically extremely stable. Marshall and 
Olkin (2007) have called the additional shape parameter “tilt parameter”, since the hazard rate of the new 
family is shifted below (α ≥ 1) or above (0 < α ≤ 1) the hazard rate of the underlying distribution, that is, for 
all x ≥ 0, h(x) ≤ r(x) when α ≥ 1, and h(x) ≥ r(x) when 0 < α ≤ 1, where h(x) denotes the hazard rate of the 
transformed distribution and r(x) is that of the original distribution.

Some special cases discussed in the literature include the M-O extensions of the Weibull distribution 
(Ghitany et al. 2005, Zhang and Xie 2007), Pareto distribution (Ghitany 2005), gamma distribution (Ristić 
et al. 2007), Lomax distribution (Ghitany et al. 2007) and linear failure-rate distribution (Ghitany and Kotz 
2007). More recently, Gómez-Déniz (2010) presented a new generalization of the geometric distribution 
using the M-O scheme. Economou and Caroni (2007) showed that the M-O extended distributions have 
a proportional odds property and Caroni (2010) presented some Monte Carlo simulations considering 
hypothesis testing on the parameter α for the extended Weibull distribution. Maximum likelihood 
estimation in M-O family is given in Lam and Leung (2001) and Gupta and Peng (2009). Gupta et al. 
(2010) compared this family and the original distribution with respect to some stochastic orderings and 
also investigate thoroughly the monotonicity of the failure rate of the resulting distribution when the 
baseline distribution is taken as Weibull. Nanda and Das (2012) investigated the tilt parameter of the 
M-O extended family.

The probability density function (pdf) of the M-O extended-F distribution, say g(x), is given by

g(x) = α f(x)
{1 – α F(x)}2

 , 	  – ∞ < x < ∞ ,

where f(x) = dF(x) / dx is the baseline density function corresponding to F(x). Here after, we refer to the 
family (2) as the M-O extended-F distribution.

General mathematical properties of the M-O extended-F distribution were not derived by Marshall 
and Olkin (1997) such as moments and moments of order statistics. In this article, we derive some general 
structural properties of the M-O extended-F distribution including: (i) expansions for the pdf; (ii) general 
expressions for the moments; (iii) moments of order statistics; (iv) Rényi entropy. We propose several 
M-O extended-F distributions taken as baseline in the definitions the Weibull, Fréchet, Pareto, generalized 
exponential, Kumaraswamy and power function distributions. We discuss maximum likelihood estimation 
of the model parameters.

The article is organized as follows. Section 2 presents expansions for the density function and for 
the density function of the order statistics. Explicit expressions for the moments and moments of the 
order statistics of the M-O extended-F distribution are given in Section 3. Rényi entropy is derived in 
Section 4. Estimation of the model parameters by maximum likelihood is discussed in Section 5. Section 
6 presents an alternative method to estimate the model parameters. In Section 7, we propose several M-O 
extended-F distributions and discuss some of their properties. Simulation results are performed in Section 
8. An application of the current family to a real data set is explored in Section 9. Finally, some concluding 
remarks are presented in Section 10.

(2)



An Acad Bras Cienc (2013) 85 (1)

5MARSHALL AND OLKIN`S FAMILY OF DISTRIBUTIONS

EXPANSIONS

Consider the series representation

∑
∞

j=0 
(1 – z)– k = z j

Г(k+j)
Г(k) j!

which is valid for |z| < 1 and k > 0, where Г(·) is the gamma function. If α 2 (0,1) using (3) in (2), we obtain

∑
∞

j=0 
∑
j

k=0 
g(x) = f(x) wj,k F(x) 

j–k,

where

wj, k = wj, k (α) = α(j+1)(1– α) 
j (–1) 

j–k
µ 

j
k
	 ¶

.

The density function (2) can be expressed as

g(x) = f(x)
α{1–(α – 1)F(x)/ α }2

.

Hence, for α > 1, using (3) in the last equation yields

∑
∞

j=0 
g(x) = f(x) vj F(x) 

j,

where

vj  = vj (α) = (j + 1)(1 – 1/ α) 
j

α
.

We now give the pdf of the ith order statistic Xi:n, say gi:n(x), in a random sample of size n from the M-O 
extended-F distribution. The pdf of Xi:n can be expressed as

gi:n(x)  =  αn!f(x)∑
n–i

j=0 

(– 1) 
l

(i – 1)!(n – i)!
F(x) 

l+i–1

{1– α F(x)}l+i–1
,	  – ∞ < x < ∞ .

If α 2 (0,1) using expansion (??) in the last equation, we obtain

gi:n(x) = f(x)∑
∞

j=0  
∑
n–i

l=0  
∑
j

k=0 
uj,l,k F(x) 

j+l–k+i–1,

where

uj,l,k = uj,l,k(α) = αn! (– 1) 
l(1– α) j (–1) j–k

(i – 1)!(n – i)!
 
µ 

j
k
¶ µ 

l+i+j
j

¶

For α > 1, we write 1 – α F(x) = α{1– (α–1) F(x)/ α} and using (Ref: exp), gi:n (x) becomes

gi:n(x) =  f(x)∑
∞

j=0  
∑
n–i

l=0  
cj,l F(x) 

j+l+i–1,

(3)

(4)

(5)

(6)

(7)
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where

cj,l = cj,l (α) =  (– 1) 
l(α –1) j n!

αl+j+i (i – 1)!(n – i)!
 
 µ 
l+i+j

j
¶

Equations (4)-(7) reveal that the density functions of the M-O extended-F distribution and of its order 
statistics can be expressed as the baseline density f(x) multiplied by an infinite power series of F(x). They 
play an important role and will be used to obtain explicit expressions for the moments of the M-O extended-F 
distribution and of its order statistics in a general framework and for special models.

Moments

Here after, suppose that X has the density function (2). We derive general expressions for the moments 
of X and its order statistics in terms of the probability weighted moments (PWMs) of the F distribution. 
The PWMs, first proposed by Greenwood et al. (1979), are expectations of certain functions of a random 
variable whose mean exists. A general theory for these moments covers the summarization and description of 
theoretical probability distributions and observed data samples, non parametric estimation of the underlying 
distribution of an observed sample, estimation of parameters, quantiles of probability distributions and 
hypothesis tests. The PWMs method can generally be used for estimating parameters of a distribution 
whose inverse form cannot be expressed explicitly. The PWMs for the baseline F distribution are formally 
defined by

гp,r = ∫
∞
–∞ xp F(x)r f(x)dx.

Thus, from equations (4) and (5), the sth moment of X for α 2(0,1) and α >1 can be written as

E(X 
s)=∑

∞

j=0  
∑
j

k=0  
wj,k гsj+l–k+i     and    E(X 

s)=∑
∞

j=0 
vj гsj

respectively.
Now, using equations (6) and (7), we can determine the sth moment of the ith order statistic Xi:n in a 

random sample of size n from X for α 2 (0,1) and α >1 as

E i:n(X 
s   ) =∑

∞

j=0  
∑
n–j

l=0 
∑
j

k=0  
uj, l, k    гsj + l – k + i–1 	 and 	 E i:n(X 

s   ) =∑
∞

j=0 
∑
n–j

l=0 
cj,l    гsj + l + i – 1,

respectively, where the quantities wj,k , vj, uj,l,k  and cj,l are defined in Section 2. Thus, the moments of X and 
Xi:n are obtained in terms of infinite weighted sums of PWMs of the baseline F distribution.

RÉNYI ENTROPY

The entropy of a random variable is a measure of uncertainty variation and has been used in various 
situations in science and engineering. The Rényi entropy is defined by

IR(δ) = (1– δ)–1 log
µ
∫

∞
–∞ gδ(x)dx

¶
,

(8)

(9)
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where δ > 0 and δ ≠ 1. For furthers details, the reader is referred to Song (2001). For α 2 (0,1), using 
expansion (3), we can write

g(x)δ =  αδ f(x)δ

Г (2 δ)
 ∑
∞

j=0  
(1– α) 

j 
   Г (2 δ + j)   

[1 F(x)] 
j

j!
 .

For α > 1, we obtain

g(x)δ =  f(x)δ

αδ Г (2 δ)
 ∑
∞

j=0  
(α – 1) 

j 
   Г (2 δ + j)   

F(x) 
j

j!
 .

Thus, the Rényi entropy of X can be obtained for α 2 (0,1) and α > 1 as

IR(δ) = (1– δ)–1 log
µ
 ∑
∞

j=0  
ej ∫

∞
–∞ f(x)δ

   [1– F(x)] 
jdx

¶
,

and

IR(δ) = (1– δ)–1 log
µ
 ∑
∞

j=0  
hj ∫

∞
–∞ f(x) 

j
  F(x) 

jdx
¶
,

respectively, where

An interesting quantity based on the Rényi entropy is defined by Sg = –2d IR (δ) / dδ|δ=1. It is a location and 
scale-free positive functional and measures the intrinsic shape of a distribution (see, Song 2001).

ej = ej (α) =  α
δ (1– α) 

j Г (2 δ + j)
Г (2 δ)j!

,   hj = hj (α) =  (1 α – 1) 
j Г (2 δ + j)

α 
δ + j Г (2 δ)j!

.

For the purpose of illustration, we derive this quantity for the M-O extended exponential (M-O-EE) 
distribution, whose density function is g(x) = α λeλx (eλx– α)–2 (for x > 0 and λ > 0). Consider the case α 2 
(0,1); the case α > 1 follows in a similar way. Define

c δ, α = ∑
∞

j=0  
 (1– α) 

j Г (2 δ + j)
j! (δ + j)

The Song's measure for the M-O-EE distribution α 2 (0,1) takes the form

Sg = – 4Ψ(2) + αc1' ' – (αc1' )2,

where

c1' =  log α
(1 – α)

 + 2 ∑
∞

j=0  
(1– α)j Г ' (j+2)

(j+1)!

(11)

(10)
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and

c1 ' ' = 4∑
∞

j=0 
 (1– α) 

j

(j + 1)!
 

(

Г ' ' (j + 2) –Г '(j + 2)
(j + 1)!

)

 + 2∑
∞

j=0  
(1– α) 

j

(j + 1)3

where Ψ (·) is the digamma function, Г '(z)/ = dГ (z)/ dz and Г ' '(z) = dГ '(z) / dz.

MAXIMUM LIKELIHOOD

The model parameters of the M-O extended-F distribution can be estimated by maximum likelihood. Let x 
= (x1, ..., xn)

┬ be a random sample of size n from X with unknown parameter vector θ = (α, β ┬)┬, where β 
= (β1,..., βq)

┬ corresponds to the parameter vector of the baseline distribution. The log-likelihood function 
for θ is

ℓ = ℓ (θ) = n log α+ ∑
n

i=1 
log f(xi; β) –2 ∑

n

i=1 
log{1–αF(xi; β)}.

By taking the partial derivatives of the log-likelihood function with respect to α and β, we obtain the 
components of the score vector Uθ = (Uα, Uβ 

┬) ┬ given by

Uα = 
∂ℓ
∂α = 

n
α  –2 ∑

n

i=1 

F(xi; β)
1 – αF(xi; β)

,        Uβ = 
∂ℓ
∂β

 = ∑ 
n

i=1 

∂ log f(xi; β)
∂β

 + ∑ 
n

i=1 

2α
1 – αF(xi; β)

 ∂ F(xi; β)
∂β

 .

Setting these equations to zero, Uθ = 0, and solving them simultaneously yields the maximum likelihood 
estimate (MLE) θ̂  = (α̂, β̂ ┬) ┬ of θ = (α, β ┬)┬. These equations cannot be solved analytically and statistical 
software can be used to solve them numerically. For example, the BFGS method (see, Nocedal and Wright 1999, 
Press et al. 2007) with analytical derivatives can be used for maximizing the log-likelihood function ℓ (θ).

The normal approximation for the θ can be used for constructing approximate confidence intervals 
and confidence regions for the parameters α and β. Under conditions that are fulfilled for the parameters in 
the interior of the parameter space, we have n√  (θ̂  – θ) ~α  Nq+1 (0, K(θ)–1), where ~α  means approximately 
distributed and K(θ) is the unit expected information matrix given by

K(θ) =
∙

 K α,α   K α,β

K α
┬ 

,β   K β,β
 
¸

,

whose elements are given by

K α,α = 1
3α 

2    K α,β = 2E
Ã 1

[1 – αF(X; β)]2
 ∂F(X; β)

∂β

!
,

K β,β = – E
Ã ∂ 

2 log f(xi; β)
∂β ∂β┬

!
 – 2α2 E

Ã 1
[1 – αF(X; β)]2

 ∂F(X; β)
∂β

 ∂F(X; β)
∂β┬

!

– 2α E
Ã 1

1 – αF(X; β)
 ∂2F(X; β)

∂β ∂β┬
!

.

The asymptotic behavior remains valid if K(θ) = lim n →∞ n 

–1  Jn(θ), where Jn(θ) is is the observed 
information matrix, it is replaced by the average sample information matrix evaluated at θ̂ , i.e. n 

–1  Jn(θ̂ ). 
The observed information matrix is given by
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Jn(θ) = ∂2
 ℓ (θ)

∂θ ∂θ┬  = 
∙

 U α,α   U α,β

U α
┬ 

,β   U β,β
 
¸

,

whose elements are

U αα = – 

n
α 

2 + 2∑
n

i=1 

Ã F(xi; β)
1 – αF(xi; β)

!
    U αβ = – 2∑

n

i=1 

∂F(xi; β)/ ∂β
[1 – αF(xi; β)]2

 ,

U ββ = ∑
n

i=1 

∂ 
2 log f(xi; β)

∂ β ∂ β┬  + 2α2 ∑
n

i=1 

(∂F(xi; β)/ 2β) (∂F(xi; β)/ 2β┬)
[1 –  αF(Xi; β)]2

+ 2α ∑
n

i=1 

∂ 
2 F(xi; β)/ ∂β ∂ β┬

1 – αF(xi; β)
.

We can easily check if the fit of the M-O extended-F model is statistically “superior” to a fit using the 
F model by testing the null hypothesis H0: α≠1. For testing H0: α≠1 the likelihood ratio (LR) statistic is 
given by w = 2{ℓ(α̂, β̂) – ℓ(α̂, β̂)}, where α̂ and β̂  are the unrestricted MLEs obtained from the maximization of 
ℓ under H1 and β . The limiting distribution of this statistic is x1

2 under the null hypothesis. The null hypothesis 
is rejected if the test statistic exceeds the upper 100(1– γ)% quantile of the x1

2 distribution.

ESTIMATION-TYPE METHOD OF MOMENTS

We now present an alternative method to estimate the model parameters. Since the moments cannot be 
obtained in closed form, the estimation by the method of moments is complicated. However, after some 
algebra, we obtain

E{[1 – αF(xi; β)]v} = 
(

 –  α log(α)/ (1– α),         v = 1,
α(1– αv –1)/ {α(v – 1)}   v 2 {2, 3, ...}.

Thus, we can use (12) to construct a new method of estimation, i.e., if x1, ..., x2 is a random sample with 
survival function (1), we can estimate the model parameters from the equation

1
n

∑
n

i=1 
{1 – αF(xi; β)}v = 

(
 –  α log(α)/ (1– α),         v = 1,
α(1– αv –1)/ {α(v – 1)}   v =  2, ..., q +1.

In Section, we apply the two methods (maximum likelihood and estimation-type method of moments) 
to estimate the model parameters of the M-O extended family.

SPECIAL M-O EXTENDED MODELS

We motivate the study of Marshall and Olkin's distributions by considering some special models to 
illustrate the applicability of the previous results. Here, we obtain the moments and Rényi entropy for 
some special M-O extended-F distributions when the baseline F distribution follows the Weibull, Fréchet, 
Pareto, generalized exponential, Kumaraswamy and power distributions. Some others M-O extended-F 
distributions could be proposed and our general results applied to them. Clearly, the quantities ¿p,r are 
determined from the baseline F cdf.

(12)
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M-O EXTENDED WEIBULL DISTRIBUTION

The M-O extended Weibull (M-O-EW) distribution is defined by taking F(x) = 1– e –(λx)° 
and f(x) = γλ°x° –1 e –(λx)°, 

x, λ, ° ˃ 0. Its associated pdf and cdf are respectively given by

g(x) = 
α γ λ° x° –1 e –(λx)°

{1– αe –(λx)°}2      and    G(x) = 
–1 e –(λx)°

1– αe –(λx)° .

The M-O-EW distribution was studied by Ghitany et al. (2005); see also Barreto-Souza et al. (2011). We obtain

¿p,r = 
Γ(1+p / °)

λp  ∑
r

k=0  
Ã 

r
k

!  
 

(–1)k

(k+1)1+p/°

and

∫
∞
0  f δ(x) F(x)j dx = (°λ)δ –1 Γ(1+(δ –1)(1– ° 

–1)) ∑
j

k=0   
(–1)k 

µ   
 j
k 
¶

(δ + k) 1+ (δ –1)(1– ° –1)
,

where the last equation holds for (δ –1)(° –1) ˃ – 1 From these quantities, we immediately obtain explicit 
expressions for the moments, moments of the order statistics and Rényi entropy. If ° = 1, the results 
correspond to the M-O extended exponential distribution.

M-O EXTENDED FRÉCHET DISTRIBUTION

Here, we consider the Fréchet distribution (for x, σ, λ ˃ 0) with cdf and pdf given by F(x)= e–(σ/x)° and 
f(x) = λ σ λ x –(λ +1) e –(σ +1)λ

, respectively. The pdf and survival function of the M-O extended Fréchet (M-O-
EF) distribution (for x ˃ 0) reduce to

g(x) = 
α  λ σ λ x–(λ +1) e–(σ/x)λ

{1– α [1– e–(σ/x)λ
]}2

     and    G(x) = 
α [1– e–(σ/x)λ

]
1 – α [1 – e–(σ/x)λ

]
,

respectively. After some algebra, we obtain

¿p,r = σ p   (r+1) p/ λ–1   Γ(1– p/ λ),

which is valid for p < λ. Applying this result in (8) and (9), it follows simple expressions for the moments 
and moments of the order statistics of the M-O-EF distribution. An expression for the Rényi entropy of this 
distribution is obtained by inserting

∫
∞
0  f δ(x) F(x)j dx = 

λδ –1  Γ(δ(1+λ–1))
σ 

δ  (δ+j) δ(λ–1)

in (10) and (11).
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M-O EXTENDED EXPONENTIATED PARETO DISTRIBUTION

The pdf and cdf of the exponentiated Pareto distribution, introduced by Nadarajah (2005), for x ˃ θ and θ, 
k, ° ˃ 0, are given by f(x) = °kθ 

k x –(k +1) {1– (θ / x)k}°–1 and F(x) = {1– (θ / x)k}°, respectively. Applying 
the function F(x) in (1), the M-O extended exponentiated Pareto (M-O-EEP) survival function reduces to

G (x) = α [1 – { – (θ / x)k}°]
1 – α [1 – {1 – (θ / x)k}°]

,      x ˃θ.

The corresponding density function becomes

g(x) = 
α °Kθ 

k x – (k+1){1 – (θ / x)k} °  –]1

(1– α [1 – {1 – (θ / x)k}°])2 ,      x ˃θ.

The M-O-EEP distribution has as special sub-models the Pareto, exponentiated Pareto and extended Pareto 
distributions for the choices α = ° = 1, α = 1 and ° = 1, respectively. The extended M-O-Pareto (° = 1) 
distribution was studied by Ghitany (2005). Algebraic manipulations lead to

¿p,r = σ p   (r+1) p/ λ–1   Γ(1– p/ λ),

restricted to p < k, and

∫
∞
0  f δ(x) F(x)j dx = °δ (k / θ)δ–1 B(°( j+δ)+1– δ,(δ–1)/ k+δ),

which is valid for δ(°–1) ˃ –1 and δ ˃ (k+1)–1, where B(a, b) = ∫
1
0 x a–1(1– x) b–1dx is the beta function.

M-O EXTENDED GENERALIZED EXPONENTIAL DISTRIBUTION

The pdf and cdf of the generalized exponential distribution, introduced by Gupta and Kundu (1999), 
for x ˃ 0 and λ, ° ˃ 0, are given by f δ(x) = ° λe–(λx)(1 – e–λx)°  –]1 and F(x) = (1 – e–λx)°, respectively. 
By replacing these quantities in (1) and (2), the pdf and survival function of the M-O extended generalized 
exponential (M-O-EGE) distribution reduce respectively to (for x ˃ 0)

g(x) = 
α  ° λe–λx(1– e–λx) °  –]1

{1– α (1–  e –λx) °]}2      and    G (x) = 
α [1– (1– e–λx)°]

1 – α [1– (1– e–λx)°]
.

From (4) and (5), we obtain the moment generating function (mgf) of the M-O-EGE distribution as

M(t) = α∑
∞

j=0  
∑

j

i=0 

µ   
j
i

¶  
 
(–1)i(j+1)(1– α) 

j

i+1
 

Γ(1+°(i +1)) Γ (1– t/ λ)
Γ(1+° (i+1) – t/ λ)

,

for α 2 (0,1) and

M(t) = 
1
α

 ∑
∞

j=0  
(1– α–1) 

j Γ(1+°(j +1)) Γ (1– t/ λ)
Γ(1+° (j+1) – t/ λ)

,
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for α ˃  1. Both formulas hold for t < λ min {1,1+°}. Hence, their moments can be obtained from the derivatives 
of the mgf at t = 0. We also have

∫
∞
0  f δ(x) F(x)j dx = °δ  λδ–1 B(1+° (j+δ), δ),

which leads to a simple expression for the Rényi entropy.

M-O EXTENDED KUMARASWAMY DISTRIBUTION

Now, we propose a new distribution for modeling rates and proportions. Consider the Kumaraswamy 
distribution with pdf and cdf in the forms [for x 2 (0,1) and a, b ˃ 0] f(x) = abx 

a–1 and F(x) = 1– (1 – xa)b, 
respectively. This distribution, introduced by Kumaraswamy (1980), was well investigated by Jones (2009); 
see also Lemonte (2011). The M-O extended Kumaraswamy distribution, for x 2 (0,1), have pdf and cdf 
given respectively by

g(x) = 
α  abxa–1(1– x 

a)b–1

{1– α (1– x 
a) 

b]}2      and    G(x) = 
α (1– x 

a)b

1 – α (1– x 
a) 

b .

Hence,

¿p,r = b ∑
r

k=0  
µ   
 r
k  
¶ (–1)k

k+1
B(1+p/ α, b(k + 1))

and
∫

1
0 f δ(x) F(x)j dx = α 

δ –1bδ ∑
r

k=0 

µ   
 j
k  
¶
(–1) kB (1 + (δ –1)(1– α–1), 1+b(k+ δ) – δ),

restricted to (δ –1)(1– α–1) > –1.

M-O EXTENDED POWER DISTRIBUTION

Our final special case concentrates on the M-O extended power (M-O-EPo) distribution defined (for x 2(0, 
1/θ) and θ > 0) by taking F(x) = (θx)k in (1). For x 2(0, 1/θ), the pdf and cdf of the M-O-EPo distribution 
are given respectively by

g(x) = 
α k θ 

k x 
k–1

{1– α [1– (θ x) 
k]}2      and    G(x) = 

α [1– (θ x) 
k]

1 – α [1– (θ x) 
k]

.

Their moments and moments of the order statistics can be obtained by setting

¿p,r = 
kθ 

–p

p+k(r +1)

in (8) and (9). We also have

∫
1/θ
0 f δ(x) F(x)j dx = 

kδθ  
δ–1

k(δ+j) – δ +1
,
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valid for δ (1– k)–1. Replacing the last expression in (10) and (11), it follows simple expressions for the 
Rényi entropy.

SIMULATION RESULTS

In what follows, we shall present Monte Carlo simulation results. All the Monte Carlo simulation experiments 
are performed using the Ox matrix programming language (Doornik 2006). Ox is freely distributed for 
academic purposes and available at http://www.doornik.com. The number of Monte Carlo replications was 
R = 20,000.
We apply the estimation methods before discussed in order to estimate the model parameters of the M-O 
extended-F distribution. We adopt the M-O-EE distribution with pdf and hazard rate given by

g(x) = α λe–λx

(1– αe –λx)2
     and     h(x) = λ

1– αe λx
     x ˃ 0,

respectively, where α ˃  0 and λ ˃  0. According to Marshall and Olkin (1997), this distribution may sometimes 
be a competitor to the Weibull and gamma distributions. The authors derived several properties of the M-O-
EE distribution. For example, they showed that h(x) is decreasing in x for 0 < α ≤ 1 and that h(x) is increasing 
in x for α ≥ 1. Additionally, λ ≤ h(x) ≤ λ / α for 0 ≤ α ≤ 1, λ /α ≤ h(x) ≤ λ for α ≤ 1, e–λx/α ≤ G(x) ≤ e–λx for 0 ≤ α ≥ 
1 and  e–λx ≤ G(x) ≤  e–λx/α for α ≥ 1. Rao et al. (2009) developed a reliability test plan for acceptance/rejection 
of a lot of products submitted for inspection with lifetimes governed by the M-O-EE distribution.

For a random sample of size n from this distribution, the total log-likelihood function for the parameter vector 
θ = (α, λ) 

┬ is given by

 ℓ (θ) = nlog (α λ) – λ∑
n

i=1 
xi –2 ∑

n

i=1 
log(1– αe–λxi).

The components of the score vector Uθ = (Uα, Uλ)
┬ are

U α =  

n
α

 – 2∑
n

i=1  
 e–λx

1 – αe–λxi
, Uλ =  

n
λ

 –∑
n

i=1  
xi – 2α∑

n

i=1  
xie–λxi

1 – αe–λxi
.

Setting Uθ = 0 and solving them simultaneously yields the MLEs α̂ and λ̂ of α and λ, respectively. The 
observed information matrix for the parameter vector θ = (α,  λ) 

┬ is given in the Appendix. The estimates 
of α

^

 and λ

^

, come from the simultaneous solution of the non linear equations

1
n  ∑

n

i=0  
(1– αe–λxi) + αlog(α)

1– α
 = 0,     1

n  ∑
n

i=1 
 e–λxi (2– αe–λxi) –1= 0.

The simulation of the M-O-EE independent deviates can be performed using

X = – 1
λ  log 

Ã 1 – U
1 – αU

!
,
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where U ~ U (0,1).
The evaluation of point estimation was performed based on the following quantities for each sample 

size: (i) mean; (ii) relative bias (the relative bias of an estimator (θ̂ ) of a parameter θ is defined as {E(θ̂  – θ̂ )} / θ, 
its estimate being obtained by estimating E(θ̂ ) by Monte Carlo); (iii) root mean squared error, MSE√ , where 
MSE is the mean squared error estimated from R Monte Carlo replications. The sample sizes are taken 
as n = 50 and 150. The values of the parameters were set at λ = 0.5 and α = 0.2, 0.6, 1.5, 1.8, 2.0, 2.5, 3.0, 4.0, 
5.0, 7.0, 10 and 20.

The point estimates are presented in Tables I and II for n = 50 and n = 150, respectively. From these 
tables, note that the root mean squared errors of α̂ and α

^

 increase with α whereas the root mean squared error 
of λ̂ decreases with α. The relative bias of λ̂ also decreases as α increases. Additionally, in most of the cases, 
the relative bias of α̂ is smaller than the relative bias (in absolute value) of α

^

. Also, the relative bias and the 
root mean squared error of λ̂ is smaller than the relative bias (in absolute value) and the root mean squared 
error of λ

^

 in most of the cases. Also noteworthy is that as the sample size increases, the root mean squared 
error decreases. In general, the maximum likelihood method yields better estimates of α and λ than the 
estimation-type method of moments.

Tables III and IV evaluate the overall performance of each of the two different estimators, for each value 
of n. Each entry in Table III corresponds to a specific estimator and a specific value of n. We obtain what we 
call the integrated relative bias squared norm (Cribari-Neto and Vasconcellos 2002). This is computed as

IRBSQ = 
1
12

∑ 
12

h=1  
rh

2
 ,

s

where the rh's (h = 1, ..., 12) correspond to the twelve different values of the relative bias of each 
estimator. Similarly, Table IV provides the average root mean squared error expressed as

ARMSE = 
1
12

∑ 
12

h=1 
 MSE√ h,

where MSE√ h is the root mean squared error corresponding to the twelve different values of the 
MSE√  of each estimator. For each value of n, Table III provides a measure of the overall performance of 

the estimators regarding the bias, and Table IV gives a measure of their overall performance regarding the 
root mean squared error. In short, the figures in these tables reveal that the maximum likelihood method 
should be preferred than the estimation-type method of moments in order to estimate the model parameters.

APPLICATION

As Marshall and Olkin (1997) pointed out the M-O-EE distribution considered in the previous section may 
be an alternative to the Weibull and gamma distributions. In what follows, we shall present an empirical 
application to a real data set in which the M-O-EE distribution may be preferred than the Weibull and 
gamma models. We consider the active repair times (hours) for an airborne communication transceiver 
given in Jørgensen (1982). All the computations were done using the Ox matrix programming language 
(Doornik 2006).

Table V lists the MLEs of the parameters (standard errors in parentheses) and the values of the log-
likelihood functions. The M-O-EE distribution yields the highest value of the log-likelihood function. Plots 
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Maximum likelihood

Estimates of α Estimates of λ
α Mean Rel. Bias MSE√ Mean Rel. Bias MSE√

0.2 0.2815 0.4073 0.2041 0.6324 0.2649 0.3495 

0.6 0.7503 0.2505 0.4355 0.5572 0.1144 0.1953 

1.5 1.8160 0.2107 0.9866 0.5329 0.0658 0.1358 

1.8 2.1746 0.2081 1.1797 0.5300 0.0600 0.1278 

2.0 2.4145 0.2073 1.3108 0.5285 0.0571 0.1236 

2.5 3.0171 0.2068 1.6465 0.5258 0.0516 0.1156 

3.0 3.6235 0.2078 1.9928 0.5239 0.0478 0.1099 

4.0 4.8465 0.2116 2.7143 0.5215 0.0429 0.1021 

5.0 6.0819 0.2164 3.4705 0.5199 0.0399 0.0970 

7.0 8.5851 0.2264 5.0745 0.5181 0.0362 0.0905 

10.0 12.4085 0.2409 7.6766 0.5166 0.0332 0.0849 

20.0 25.6060 0.2803 17.6683 0.5147 0.0294 0.0771 

Method of moments

Estimates of α Estimates of λ
α Mean Rel. Bias MSE√ Mean Rel. Bias MSE√

0.2 0.3781 0.8906 0.3438 0.8216 0.6432 0.6851 
0.6 0.8682  0.4469 0.3256 0.6601 0.3201 0.2320 
1.5 1.1207 -0.2528 0.4437 0.4197 -0.1607 0.1129 
1.8 1.2927  -0.2818 0.6802 0.4064  -0.1872 0.1328 
2.0 1.4299 -0.2850 0.8329 0.4033 -0.1935 0.1429 
2.5 1.8539 -0.2584 1.2343 0.4058  -0.1884 0.1582 
3.0 2.3946 -0.2018 1.7244 0.4160 -0.1680 0.1671 
4.0 3.6432  -0.0892 3.0690 0.4338  -0.1324 0.1843 
5.0 5.0381 0.0076 4.8922 0.4446 -0.1108 0.1971 
7.0 8.2577 0.1797 11.7298 0.4591 -0.0818 0.3087 
10.0 13.4647 0.3465 25.7848 0.4603 -0.0794 0.3387 
20.0 28.3708 0.4185 53.4771 0.4343 -0.1315 0.2879 

TABLE I
Point estimates for n=50 and different values of α.

MSE: mean squared error; Rel. Bias: relative bias.

of the estimated density of all fitted models are given in Figure 1. Note that the M-O-EE model provides a 
better fit than the other models. In Figure 2, we plot the estimated hazard rate for the M-O-EE, Weibull and 
gamma distributions. Notice that the estimated hazard ratio of the M-O-EE distribution is decreasing and 
belongs to the interval [λ̂; λ̂/ α̂] = [0.1618;0.3935], expected.

Now, we shall apply formal goodness-of-fit tests in order to verify which distribution fits better to 
these data. We apply the Cramér-von Mises (W*) and Anderson-Darling (A*) statistics. The statistics W* 
and A* are described in details in Chen and Balakrishnan (1995). In general, the smaller the values of the 
statistics W* and A*, the better the fit to the data. Let H(x; θ) be the cdf, where the form of H is known but θ 
(a k-dimensional parameter vector, say) is unknown. To obtain the statistics W* and A*, one can proceed as 
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Estimates of α Estimates of λ
n MLE MME MLE MME 

50 0.2458 0.3720 0.0940 0.2480 

150 0.0749 0.2818 0.0314 0.1312 

TABLE III
Integrated relative bias squared norm.

MLE: maximum likelihood estimate.
MME: modified moment estimate.

Maximum likelihood

Estimates of α Estimates of λ
α Mean Rel. Bias MSE√ Mean Rel. Bias MSE√

0.2 0.2254 0.1268 0.0893 0.5438 0.0877 0.1697 

0.6 0.6470 0.0784 0.2028 0.5194 0.0388 0.1030 

1.5 1.5980 0.0653 0.4625 0.5113 0.0225 0.0740 

1.8 1.9158 0.0643 0.5517 0.5103 0.0205 0.0700 

2.0 2.1278 0.0639 0.6119 0.5098 0.0195 0.0678 

2.5 2.6588 0.0635 0.7647 0.5088 0.0176 0.0637 

3.0 3.1906 0.0635 0.9207 0.5082 0.0163 0.0607 

4.0 4.2570 0.0642 1.2413 0.5073 0.0146 0.0566 

5.0 5.3265 0.0653 1.5720 0.5068 0.0135 0.0538 

7.0 7.4736 0.0677 2.2596 0.5061 0.0122 0.0503 

10.0 10.7113 0.0711 3.3452 0.5056 0.0112 0.0473 

20.0 21.6129 0.0806 7.3070 0.5049 0.0098 0.0429 

Method of moments

Estimates of α Estimates of λ
α Mean Rel. Bias MSE√ Mean Rel. Bias MSE√

0.2 0.2881 0.4407 0.2331 0.6595 0.3191 0.4515 
0.6 0.7899 0.3165 0.2714 0.6090 0.2180 0.1732 
1.5 1.2103 -0.1932 0.3948 0.4364 -0.1272 0.0936 
1.8 1.4839 -0.1756 0.5785 0.4397 -0.1206 0.1080 
2.0 1.6932 -0.1534 0.6985 0.4453 -0.1095 0.1133 
2.5 2.2637 -0.0945 1.0076 0.4595 -0.0811 0.1192 
3.0 2.8963 -0.0346 1.3633 0.4731 -0.0539 0.1212 
4.0 4.2494 0.0624 2.3092 0.4919 -0.0162 0.1262 
5.0 5.6095 0.1219 3.5487 0.5003 0.0005 0.1330 
7.0 8.5945 0.2278 8.6495 0.5117 0.0235 0.1461 
10.0 13.3775 0.3378 15.3995 0.5182 0.0365 0.1606 
20.0 32.1990 0.6099 53.5464 0.5267 0.0534 0.1878 

TABLE II
Point estimates for n=50 and different values of α.

MSE: mean squared error; Rel. Bias: relative bias.
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Estimates of α Estimates of λ
n MLE MME MLE MME 

50 3.6967 8.7115 0.1341 0.2456 

150 1.6107 7.3334 0.0716 0.1611 

TABLE IV
Average root mean squared error.

MLE: maximum likelihood estimate.
MME: modified moment estimate.

MLEs: maximum likelihood estimate.
M-O-EE: Marshall-Orkin extended exponential.

TABLE V
MLEs of the model parameters and log-likelihood functions.

Estimates

Distribution α λ ° ℓ (θ̂)
M-O-EE 0.4112 0.1618 -98.4665

(0.2407) (0.0691) 0.9066 

Weibull 0.3169 (0.1002) -99.4840

(0.0751) 0.9453 

Gamma 0.2517 (0.1777) -99.8571

(0.0618) 

Figure 1 - Estimated pdf of the Marshall-Olkin extended exponential (M-O-EE), 
Weibull and gamma models for a real data set.
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Figure 2 - Estimated hazard rate of the Marshall-Olkin extended exponential (M-O-EE), Weibull and gamma models for a real data set.

follows: (i) Compute vi H(x; θ̂), where the xi's are in ascending order; (ii) Compute yi = Φ 
–1(vi), where Φ(·) 

is the standard normal cdf and Φ–1(·) its inverse; (iii) Compute ui = Φ {(yi – y)/ sy}, where y = (1/n)∑n
i=1 yi 

and sy
2 = (n –1)–1 ∑n

i=1 (yi – y)2; (iv) Calculate

W  
2 ∑

n

i=1 
 
 

(

ui – (2i 1)2

2n

)

 + 1
12n

and

A  
2= – n – 1

n
∑
n

i=1 
{(2i –1)ln(ui) + (2n + 1 – 2i)ln(1– ui)};

(v) Modify W  
2 into W* = (1 + 0.5 / n) and A2 into A* = A2(1+0.75 / n+2.25 / n2). The values of the statistics 

W* and A* for all models are given in Table VI. According to these statistics, the M-O-EE model fits the 
current data better than the other models.
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MLEs: maximum likelihood estimate.
M-O-EE: Marshall-Orkin extended exponential.

TABLE VI
MLEs of the model parameters and log-likelihood functions.

Statistics

Distribution W* A*
M-O-EE 0.08525 0.58468 

Weibull 0.12316 0.83717 

Gamma 0.22368 1.48280 

CONCLUDING REMARKS

We study some mathematical properties of the Marshall and Olkin's family of distributions (Marshall 
and Olkin 1997). This family is defined by adding a parameter to a baseline distribution, giving more 
flexibility to model various type of data. In the last few years, several authors proposed Marshall-Olkin 
models to extend well-known distributions (see, for example, Ghitany 2005, Zhang and Xie 2007, Ristić 
et al. 2007, Ghitany et al. 2007, Ghitany and Kotz 2007, Gómez-Déniz 2010). In this article, we derive 
various structural properties of the Marshall-Olkin extended-F distribution not explored before including 
simple expansions for the density function and explicit expressions for the moments, moments of the order 
statistics and Rénvy entropy. Our formulas related with this class of distributions are manageable, and with 
the use of modern computer resources with analytic and numerical capabilities, may turn into adequate 
tools comprising the arsenal of applied statisticians. Several Marshall-Olkin extended-F distributions are 
proposed and some of their mathematical properties are given. We discuss maximum likelihood estimation 
of the model parameters and propose an alternative estimation method. Monte Carlo simulation experiments 
are also considered. Finally, an empirical application to a real data set is presented.
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RESUMO

Marshall and Olkin (1997) introduziram um método interessante de adicionar um parâmetro a uma distribuição 
especificada para obter uma família ampla de distribuições. Entretanto, eles não investigaram propriedades 
matemáticas gerais dessa família. Nós deduzimos para essa classe de distribuições, expansões gerais para a função 
densidade, expressões explícitas para os momentos e momentos das estatísticas de ordem. Vários modelos especiais 
são investigados. Nós discutimos a estimação dos parâmetros do modelo. Uma aplicação de um conjunto de dados 
reais é apresentada para fins ilustrativos.

Palavras-chave: distribuição estendida Marshall-Olkin, estimação por máxima verossimilhança, simulação de Monte 
Carlo, entropia de Rényi.
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APPENDIX

The observed information matrix for θ =  (α, λ) 

┬, Jn (θ), is given by

Jn (θ) =
∙

 U α,α   U α,λ
U λ,α   Uλ,λ

 
¸

,

where the elements are

U αα = –  

n
α2  + 2∑

n

i=1  
Ã e–λx

1 – αe–λxi

!2
,      Uαλ = Uλα = 2∑

n

i=1  
xie–λxi

(1 – αe–λxi)2 ,

Uλλ = n
λ2  + 2∑

n

i=1  
x i

2 e–λxi

( 1 – αe–λxi)2 .




