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ABSTRACT

Given 0 < s ≤ 1 and Ã an s-convex function, s − Ã -sequence spaces are introduced. Several quasi-Banach 
sequence spaces are thus characterized as a particular case of s − Ã-spaces. For these spaces, new measures 
of noncompactness are also defi ned, related to the Hausdorff measure of noncompactness. As an application, 
compact sets in s − Ã-interpolation spaces of a quasi-Banach couple are studied.
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INTRODUCTION

Lately many researchers have been interested about diverse issues related to quasi-Banach spaces. These 
spaces arise in a natural way as a generalization of Banach spaces, where the triangular inequality of the 
norm is changed by a weaker condition. From a geometrical point of view, the convex unitary ball of the 
Banach space case is replaced in the quasi-Banach case by a nonconvex unitary ball. Besides the classical 
works by (Aoki 1942), (Rolewicz 1957, 1985) and (Kalton et al. 1985), the study of geometrical aspects 
is one of the main issues for these spaces, with several results obtained recently, as it may be seen in the 
works by Albiac and Kalton (2009), Albiac and Leranóz (2010a, b) and Mastylo and Mleczko (2010). 
Results on quasi-Banach spaces have been applied in related subjects, for example, to obtain important 
characterizations on HpHpH  spaces, for 0 < p ≤ 1, as it may be seen in (Bownik 2005), (Bownik et al. 2010) and 
(Gomez and Silva 2011).

Another example of quasi-Banach spaces cames from the interpolation theory. In the case of abstract 
Banach spaces and operators, this theory began with the classical papers by Lions and Peetre (1964), and 
Calderón (1964), constituting a very active research fi eld.

The study of geometrical aspects of interpolated spaces is one of the main issues. Besides the normed 
case, the research about the behavior of quasi-Banach spaces under interpolation methods begun with papers 
by Krée (1967), Holmsted (1970), Peetre (1970) and Sagher (1972). More recently, the subject has attracted 
a lot of attention, since several properties and issues from the normed case like interpolation of bilinear 
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operators, geometric aspects, maximal and minimal functors and compactness, have been generalized to the 
quasi-Banach case. See, for instance, the works of Bergh and Cobos (2000), Cobos et al. (2007), Grafakos 
and Mastylo (2006), Ghorbani and Modarres (2007), Molina (2009) and Cobos and Persson (1998).

Sequence Banach spaces are also another very active research subject, deeply connected with several 
defi nitions, characterizations and properties in functional analysis. In a very interesting paper, Mitani and 
Saito (2007) introduced a class of sequence spaces, called the ℓÃ sequence spaces, which presents in a 
unifi ed form, norm and geometric properties of several well-known Banach sequence spaces. Recent papers 
by Nikolova and Zachariades (2009) and Zachariades (2011) presents an interpolation theory of couples of 
Banach spaces modeled on ℓÃ spaces and characterizes several geometric properties. These spaces possess 
good generality and are very workable for a unifi ed application, but the constructions of Mitani and Saito 
(2007), Nikolova and Zachariades (2009) and Zachariades (2011) are not directly generalized to quasi-
Banach sequence spaces.

The notion of measure of noncompactness was introduced by K. Kuratowski. The Kuratowski measure, 
as well as its variant, called by some authors the Haudorff measure, has a very important role in functional 
analysis. It is applied to the theories of differential and integral equations as well as to the operator theory. 
The relation between measures of noncompactness and interpolation theory of linear and non-linear 
operators is a very active research topic. See, for example Banás and Goebel (1980) and Fernandez and 
Silva (2010) and the references therein.

In current work, given 0 < s ≤ 1 and an s-convex function Ã, the s − Ã-sequence spaces are introduced. 
A necessary condition is given which guarantees the existence of these spaces and some properties are 
proved, including that they are quasi-Banach spaces. This allow us to characterize some quasi-Banach 
sequence spaces as a particular case of s − Ã-spaces.

New measures of noncompactness related to Hausdorff measure of noncompactness are also introduced 
to obtain a quantitative version of a classical result by Phillips (1940, Thm. 3.7) [see also Dunford and 
Schwartz (1967 Lemma IV.5.4, p. 259)] and Brooks and Dinculeanu (1979, Thm. 1). These quantitative 
results for the quasi-Banach case seems to be new in the literature.

Interpolation spaces on s−Ã-sequence spaces are also defi ned. Compact sets in this interpolation spaces 
are investigated and a characterization of them is obtained.

s-CONVEX FUNCTIONS AND Ã-SEQUENCE SPACES

Let us set

c00 = {z = (z = (z z = (z = ( n)n2N 2 CN: zn ≠ 0 for fi nite number of n 2 N} ,

and let (en)n2N be the usual basis of c00. Denote |z| = (|zn|)n2N.

DEFINITION 1. Given 0 < s ≤ 1, an s-norm on c00 is a functional ||.|| :  is a functional ||.|| :  is a functional c00 → R+ .satisfying

(a) ||x|| ≥ 0 for all x 2 c00 and ||x|| = 0 if, and only if x = 0.
(b) ||λx|| = |λ|||x|| for all λ 2 R and x 2 c00.
(c) ||x + y||s ≤ ||x||s + ||y||s for all x, y 2 c00.

An s-norm on c00 is called absolute if ||z|| = || |z| || for every z 2 c00 and it is called normalized if 
||ei|| = 1, for all i 2 N.
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DEFINITION 2. Given x = (xi)i2N, y = (y, y = (y, y = ( i)i2N 2 c00, then |x| ≤ |y| if, and only if |xi| ≤ |yi|, 8i 2 N. 
An absolute norm on c00 is monotone if |x| ≤ |y| implies ||x|| ≤ ||y||.

DEFINITION 3. Given 0 < s ≤ 1, let ACs,∞ACs,∞AC be the set of all absolute and monotone s-norms on c00 such 
that, for all ei, there are positive constants ci, there are positive constants ci 1 and c2 satisfying

0 < c1 ≤ ||ei|| ≤ c2 .

Let ANsANsAN ,∞ be the set of all absolute, normalized and monotone s-norms on c00. We denote by Δ∞ the set

Δ∞ = {p = {p = {  = (p = (p = ( n)n2N 2 c00 : ∑
n2N

pn = 1 , pn ≥ 0} .

LEMMA 1. For all || . || 2 ACs,∞ one has

c1 || . ||∞ ≤ || . || ≤ c2 || . ||s ,

where ||.||s and ||.||∞ are the norms on ℓs and ℓ∞, respectively.

PROOF. Given x = (x = (x = ( n)n2N 2 c00, let us suppose xn = 0 for n > m and ||x||∞ = |x1|. Then,

||x||∞   =   |x1| = |x1| ||||e1||||
||e1||

 = 1
||e1||

 ||(|x1|, 0, 0, ...)||

≤   1
c1

 ||(|x1|, 0, 0, · · · )||

≤   1
c1

 ||(|x1|, |x2|, |x3|, · · · )||

=   1
c1

 ||(|x1|, |x2|, |x3|, · · · )|| =  ||||x||||
c1

.

Now,

||(x||(x||( n)n2N||s   =   ||| x1| e1+ (0, |x2|, |x3|, · · · )||s

≤   ||| x1| e1||s + (0, |x2|, |x3|, · · · )||s

≤   | x1|s|| e1||s + (0, |x2|, |x3|, · · · )||s

≤   | x1|s c s
2 + |||x2|e2||+ (0, 0, |x3|, · · · )||s

≤   | x1|s c s
2 + |x2|s ||e2||s + ||(0, 0, |x3|, · · · )||s

≤   | x1|s c s
2 + |x2|s ||c2||s + (0, 0, |x3|, · · · )||s

≤   · · ·

≤   c s
2 (|x1|s + |x2|s + · · · + |xm|s)

=   c s
2 ||x||sℓsℓsℓ .

DEFINITION 4. Given 0 < s ≤ 1, a linear space V and a function f : V → R, then f is said to be s-convex 
in the second sense if inequality

f (αu + βv) ≤ αs f (u) + βs + βs + β f sf s (v) (1)
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holds for all u, v 2 V and α, β ≥ 0 with α + β = 1. The set of all these functions is denoted by K2
s. The set of all these functions is denoted by Ks. The set of all these functions is denoted by K (V )V )V .

If s = 1 the defi nition means just convexity. Another useful result is

PROPOSITION 1. If fPROPOSITION 1. If fPROPOSITION 1. If 2 Ks
2K2K  (V ) and 0 < s < 1, then f is non-negative on V., then f is non-negative on V., then f is non-negative on V

Proof of this fact and several another results about s-convex functions appear in (Hudzik and 
Maligranda 1994).

DEFINITION 5. Given 0 < s ≤ 1, ªs,∞ will be the set of all s-convex continuous functions Ã (in the 
second sense) on Δ∞ , for which Ã(en) = 1 and condition (A) is fulfi lled, namely

λsÃ(t1, ..., ti−1, ti, ti+1, ..., tntnt , ...) ≥

Ã(λt(λt( 1, ..., λti−1, (1 − λ) + λti, λti+1, ..., λtnλtnλt , ...),

for all λ, where 1 < λ ≤ 1
1 − ti

, i 2 N and t = (ti)i 2 N 2 Δ∞ with ti ≠ 1.

DEFINITION 6. Given Ã 2ªs,∞ , the function Ãn : Rn → R+ is defi ned by

Ãn(x(x( 1, ... , xn) = Ã(x(x( 1, ... , xn, 0, ... , 0) , (x, 0, ... , 0) , (x, 0, ... , 0) , ( i)i 2 N.

THEOREM 1. (i). For every || . || 2 ANs,∞ ANs,∞ AN , we defi ne Ã : Δ∞ → R+ by

(2)Ã(p(p( ) = ||p) = ||p) = || ||s.

Then Ã 2ªs,∞.

(ii)For any Ã 2 Ψs,∞ and x 2 c00 we defi ne

||(x||(x||( i)i2N|| s
Ã = ( ∑ ∞

i=1|xi|)s Ã 
³ |x1|

∑ ∞
i=1|xi|

, ... , |x1|
∑ ∞

i=1|xi|
, ...
´

, if (x(x( n)n2N ≠ 0
0, if (x(x( n)n2N = 0.

Then, || . ||Ã 2 ANs,∞ANs,∞AN  and satisfi es (2).

Therefore, ANs,∞ANs,∞AN  and ªs,∞ are in a one-to-one correspondence under the equation 2.9(2).

PROOF. (i) Given t = (ti)i2N 2 Δ∞, with ti ≠ 1 and λ such that 1 < λ ≤ 
1

1−ti , for all i 2 N, then λ ≤ 1
1−tiimplies λti ≥ (1−λ)+λti ≥ 0. Since || . || 2 ANs,∞ANs,∞AN , the norm is monotone and one has

||{λti}||s ≥ ||λt1, . . . , λti−1, (1 − λ) + λti, λti, λti i+1, . . . , λtn, . . . , λtn, . . . , λt ||s ,

and so the condition (A) holds.
(ii) From the defi nition of ||.||Ã the properties (a) and (b) of Defi nition 2.1 are verifi ed. Now, let x 2 c00.

There exists some n 2 N with xi = 0 for all i > n. Then ||(x(x( i) ∞ ||si=1 Ã  = n||(x(x( i) n ||si=1 Ã , where

n||(x(x( i) n ||si=1 Ã : = (
n
∑
i=1

|xi|)s Ãn 

µ
|x1|

∑ n
i=1 |xi|

, ... , |xn|
∑ n

i=1 |xi|

¶
.
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To prove the ”triangle” inequality we fi rst show that ||.||Ã is monotone.
Given (pGiven (pGiven ( i)i, (ai)i 2 Δ∞ such that pi ≤ ai for each n 2 N, there exists some n 2 N with pi = ai = 0 for all 

i > n. Let us suppose the condition (A) is fulfi lled and 0 ≤ p1 ≤ a1. We denote a = a1 + p2 + . . . pn, p = p1 + 
p2 + ... pn and λ = a

p  ≥ 1.
Let t1 = a1

∑a  , ti = pi
a  , i = 2, ... , n and t ′i  = pi

∑ p , i =1, ... , n, then 1− t'1
1− t1

 = λ. Note that t′1 = (1 − λ) + λt1 and 
λ(1 − t1) = 1 − t′1 ≤ 1. Then 1 ≤ λ ≤ 1

1− t1  , and after condition (A), one has

λsÃn(t1, ... , tn)  =  λs)  =  λs)  =  λ Ãn 

µ
a1
a

, p2
a

 ,... ,pn
a

¶

≥  Ãn((1 − λ) + λt1, λt2λt2λt , ... , λtnλtnλt ) = Ãn(t′1, t′2t′2t′ , ... , t′nt′nt′ )

=  Ãn 

µ
p1
p

, p2
p

 ,... ,pn
p

¶

i.e.

(a)s Ãn 

µ
a1
a

, p2
a

 ,... ,pn
a

¶  
≥  (p≥  (p≥  ( )s Ãn 

µ
p1
p

, p2
p

 ,... ,pn
p

¶
,

which means

n||(a1, p2, ... , pn)|| s
Ã ≥ n ||(p||(p||( 1, p2, ... , pn)|| s

Ã.

Next step is to prove

n||(a1, a2, p3, ... , pn)|| s
Ã ≥ n ||(a1, p2, p3, ... , an)|| s

Ã.

Since a2 ≥ p2 ≥ 0, we just act similar to above. In this way, one can get

n||(a1, a2, a3, ... , an)|| s
Ã ≥ n ||(a1, p2, p3, ... , pn)|| s

Ã

when ai ≥ pi.
Finally, for triangle inequality one has, by the s-convexity of Ã,

||x + y|| s
Ã = n||(x||(x||( 1, ... , xn) + (y) + (y) + ( 1, ... , yn)|| s

Ã

=   n||(x||(x||( 1 + y1, ... , xn + yn)|| s
Ã = n ||(|x1 + y1|, ... , |xn + yn|)|| s

Ã

≤   n||(|x1| + |y1|, ... , |xn| + |yn|)|| s
Ã

=   (
n
∑
i=1

|xi| + |yi|)s Ãn 

µµ
|x1| + |y1|

∑ ∞
i=1 |xi| + |yi|

, ... , |xn| + |yn|
∑ ∞

i=1 |xi| + |yi|

¶¶

=   (
n
∑
i=1

|xi| + |yi|)s Ãn 

µµ
|x1|

∑ ∞
i=1 |xi| + |yi|

, ... , |xn|
∑ ∞

i=1 |xi| + |yi|

¶
+

+ 
µ

|y1|
∑ ∞

i=1 |xi| + |yi|
, ... , |yn|

∑ ∞
i=1 |xi| + |yi|

¶¶

=   (
n
∑
i=1

|xi| + |yi|)s Ãn 

µ
|x1|+ ··· |xn|
|x1|+ ··· |xn|

µ 
|x1|

∑ ∞
i=1 |xi| + |yi|

, ... , |xn|
∑ ∞

i=1 |xi| + |yi|

¶
+
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+ |y1| + ··· + |yn|
|y1| + ··· + |yn|

  
µ

|y1|
∑ ∞

i=1 |xi| + |yi|

¶
, ... , |yn|

∑ ∞
i=1 |xi| + |yi|

¶¶

=   (
n
∑
i=1

|xi| + |yi|)s Ãn 

µ
|x1|+ ··· +|xn|
∑ ∞

i=1 |xi| + |yi|

µ 
|x1|

|x1|+ ··· +|xn|
, ... , |xn|

|x1|+ ··· +|xn|

¶
+

+ |y1| + ··· + |yn|
∑ ∞

i=1 |xi| + |yi|

µ
|y1|

|y1| + ··· + |yn|
, ... , |yn|

|y1| + ··· + |yn|

¶¶

≤   (
n
∑
i=1

|xi| + |yi|)s 
∙µ

|x1|+ ··· +|xn|
∑ ∞

i=1 |xi| + |yi|

¶s

Ãn 

µ
|x1|

|x1| + ··· + |xn|
, ... , |xn|

|x1| + ··· + |xn|

¶¶
+

+
µ

|y1| + ··· + |yn|
∑ ∞

i=1 |xi| + |yi|

¶s

Ãn 

µ
|y1|

|y1| + ··· + |yn|
, ... , |yn|

|y1| + ··· + |yn|

¶¸

=   (|x1| + · · · + |xn|)s Ãn 

µµ
|x1|

|x1| + ··· + |xn|
, ... , |xn|

|x1| + ··· + |xn|

¶ ¶
+

+ (|y1| + · · · + |yn|)s Ãn 

µ 
|y1|

|y1| + ··· + |yn|
, ... , |yn|

|y1| + ··· + |yn|

¶ 
+

=   ||x|| s
Ã + ||y|| s

Ã .

The proof of Theorem 1 shows that the condition (AThe proof of Theorem 1 shows that the condition (AThe proof of Theorem 1 shows that the condition ( ) is really closed with monotonicity of the norm.

DEFINITION 7. Given Ã 2ªs,∞, the space ℓÃ is defi ned by

ℓÃ = {(x = {(x = {( n) ∞
n=1 2 ℓ2 ℓ2 ∞ : lim

n→∞
||(x||(x||( 1, ··· , xn, 0, 0, ...)|| s

Ã < ∞},

and cÃ is the closure of c00 in (ℓ(ℓ( Ã, || . ||Ã).

The next result may be proved following the proof of Proposition 2.4 in Mitani and Saito (2007).

PROPOSITION 2. The linear space ℓÃ and cÃ are s-Banach spaces with the s-norm ||(x ||(x ||( n)n2N|| s
Ã
 = 

limn→∞ ||(x ||(x ||( 1, ··· , xn, 0, 0, ···)|| s
Ã.

EXAMPLE 1. Let ÃpÃpÃ  be the p-convex function obtained from the p-norm || . ||p of ℓpℓpℓ , 0 < p ≤ 1. 
Then ÃpÃpÃ 2ªpªpª ,∞ and ℓÃ = cÃ = ℓpℓpℓ .

PROPOSITION 3. Let Ã 2ªs,∞. Then, for each (x(x( n) ∞
n=1 2 cÃ holds

lim
n→∞

||(0, 0, · · · , 0, xn, xn+1, ··· )|| s
Ã = 0.

DEFINITION 8. A function Ã 2ªs,∞ is called regular if cÃ = ℓÃ.

RELATIVE COMPACTNESS AND Ã-DIRECT SUMS

We have considered spaces ℓÃ as spaces of complex numbers labeled in N. An analogous theory may be 
also developed with labels in N0 = N [ {0} and even in Z. Therefore, let τ : τ : τ CZ → CN be defi ned by

τ ((τ ((τ z ((z (( n)n2Z) = (z) = (z) = (^
n)n2Z
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with (zwith (zwith (^
n)2n+1 = zn and ẑ2n= z−n, for n 2 N. For Ã 2ªs,∞ we defi ne

ℓÃ(Z) = {z = (z = (z z = (z = ( n)n2Z : τ(z(z( ) 2 ℓÃ}.

To emphasize which space we are considering, we shall use the notation ℓÃ (N), ℓÃ (N0) and ℓÃ (Z). 
The next result follows directly from Proposition 2.

PROPOSITION 4. Let Ã 2ªs,∞ and (and (and X (X ( nXnX )n2N be a sequence of Banach spaces.
Then,

XÃXÃX  = 
µ

∑
n2N
©XnXnX

¶

Ã

 = {x = (x = (x = ( n)n2N 2 ∏
n2N

XnXnX  : (||xn||XnXnX )n2N 2 ℓÃ}

is an s-Banach space when equipped with the norm ||x|| = ||(||xn||)n2N||Ã.

In a similar way, let (XIn a similar way, let (XIn a similar way, let ( nXnX )n2Z be a family of Banach spaces. We defi ne

µ
∑

n2N
©XnXnX

¶

Ã

 = {(x = {(x = {( n)n2N : ((||xn||XnXnX )n2Z 2 ℓÃ (Z)}

and ||x|| = ||τ (||τ (||τ xn||)n2Z||ℓ N
Ã

for every x 2
µ 

∑
n2N
©XnXnX

¶

Ã

.

Examples of Ã-direct sums are ℓp-direct sums are ℓp-direct sums are ℓ  direct sums for Ã = ÃpÃpÃ , 0 < p ≤ 1.

Now, the more general situation of Ã-direct sum of quasi-Banach spaces is considered.

THEOREM 2. If (X(X( nXnX )n2N is a sequence of quasi-Banach spaces with quasi-Banach constants Cn is a sequence of quasi-Banach spaces with quasi-Banach constants Cn is a sequence of quasi-Banach spaces with quasi-Banach constants C , with 
sup CnCnC  < ∞, then their Ã-direct sum is also a quasi-Banach space.

PROOF. Let C = sup CnCnC . Then,

||x + y||   =   ||(||xn + yn||XnXnX )||n)||n Ã ≤ ||{Cn(||xn||XnXnX  + ||yn||XnXnX )}||Ã

≤   C||((||xn||XnXnX  + ||yn||XnXnX ))||Ã ≤ C CÃCÃC (||((||xn||XnXnX  ||Ã + ||||yn||XnXnX ))||Ã)

=   CCÃCCÃCC (||x|| + ||y||),

where CÃCÃC  is the quasi-Banach constant of ℓÃ.

Using Lemma 1, the completness may be proved as in the Banach case, considered in Proposition 2.4 
of Mitani and Saito (2007).

DEFINITION 9. For a bounded set B in XÃXÃX , the Hausdorff measure of noncompactness of B, χ(B(B( ), is 
defi ned by

ÂXÂXÂ (X(X B(B( ) = inf{ε > 0; there exists a fi nite set F ½ X , such that B ½ F + εUXF + εUXF + εU }X}X , where UX, where UX, where U  is the closed unit X is the closed unit X

ball of XÃball of XÃball of X  with center in the origin.
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Now some operators are introduced who will assist in the attainment of the next result.

Let 0 < s ≤ 1, (X ≤ 1, (X ≤ 1, ( nXnX )n2N a sequence of quasi-Banach spaces as in Theorem 2 and Qk :( k :( k ∑ n2N ©XnXnX )Ã → 
(∑ k

i=1 ©XnXnX )Ã, the operator given by Qk(x(x( 1, . . . , xn, . . . ) = (x, . . . ) = (x, . . . ) = ( 1, . . . , xk). Then, for k). Then, for k Ã 2ªs,∞ we define

||Qk(x(x( )||Ãk = ||(k = ||(k x = ||(x = ||( 1, ... , xk)||k)||k ℓÃk = (k = (k

k
∑
1

||xi||xi)s 
Ãk (k (k

||x1||X11X1X
∑ k

1 ||xi||XiXiX
 , ... , ||xk||X11X1X

∑ k
1 ||xi||XiXiX

)

if (xif (xif ( 1, ... , xk) ≠ (0, ... , 0), and 0 if (k) ≠ (0, ... , 0), and 0 if (k x) ≠ (0, ... , 0), and 0 if (x) ≠ (0, ... , 0), and 0 if ( 1, ... , xk) = (0, ... , 0), where k) = (0, ... , 0), where k ℓÃk is the k is the k s−space defi ned on Rk.
It is clear that ||Qk(x(x( )||Ãk

 ≤ ||
k
 ≤ ||

k
Qk+1k+1k (x(x( )||Ãk+1

 for every k = 2, 3, . . . and ||k = 2, 3, . . . and ||k x||Ã = supk||Qk(x(x( )||Ãk
 .

k
 .

k

For a sequence x = (x = (x = ( n) 2 (∑ k
i=1©XnXnX )Ã, we also define PkPkP ((x((x(( n)) = (x)) = (x)) = ( 1, . . . , xk, 0, 0, . . .) and πkπkπ ({xn}) = xk.

It is clear that Qn(Pn(x)) = (x1, ... , xn), Qn+1(Pn(x)) = (x1, ... , xn, 0) and since ||(||x1||X1X1X  , ... , ||xn||XnXnX , 
0)||Ãn+1 = ||(||x1||X1 X1 X , . . . , ||xn||XnXnX )||Ãn 

, then

||Qn(P(P( n(x(x( ))||Ãn
 = ||Qn+1(P(P( n(x(x( ))||Ãn+1

 = ||Qn+2(P(P( n(x(x( ))||Ãn+2
 = ....

On the other hand since ||Qk (k (k y (y ( ))||Ãk
 ≤ ||

k
 ≤ ||

k
Qk+1k+1k (y(y( )||Ãk +1 

, one has

||Qn(P(P( n(x(x( ))||Ãn
 ≥ ||Qn−1(P(P( n(x(x( ))||Ãn−1

 ≥ ...

and

sup
k

||Qk(P(P( n(x(x( ))||Ãk
 = ||

k
 = ||

k
Qn(P(P( n(x(x( ))||Ãn

 ,

i.e.

||Pn(x(x( ))||xÃxÃx  = ||(||x1||X1X1X , ... , ||xn|| XnXnX )||ℓÃn 
.

Hence

||Pn(x(x( )||XÃÃXÃX
||x||XÃXÃX

 = ||(||x1|| X11X1X , ... , ||xn|| XnnXnX )||)||ℓÃÃnn
supk (||x1|| X1X1X , ... , ||xn|| XkXkX )||k)||k ℓÃk

 ≤ 1 ,

i.e. ||Pn||XÃXÃX  → XÃXÃX  ≤ 1. If x = (x = (x = ( 1, ... , xn, 0, ... , 0), then Pn(x(x( ) = x and thus ||Pn||XÃXÃX  → XÃXÃX  = 1.

THEOREM 3. For a bounded subset B ½ XÃXÃX  = ∑ n2N ©XnXnX  we defi ne

ν s
Ã (B(B( ) = lim sup [sup

k → ∞ x 2 B
 ||PkPkP (x(x( ) − x||s

XÃ
+Âs

XÂXÂ Ã
(P(P( kPkP (B(B( ))] .

Then if, ÂXÂXÂ ÃXÃX  is the Hausdorff measure of noncompactness on XÃ is the Hausdorff measure of noncompactness on XÃ is the Hausdorff measure of noncompactness on X , one has

ÂXÂXÂ ÃXÃX (B(B( ) ≤ vÃ (B(B( ) ≤ 2
1
s ÂXÂXÂ ÃXÃX (B(B( ).

for all bounded subset B in ÂÃ .

PROOF. For simplicity, let us denote ÂXÂXÂ ÃXÃX (B(B( ) by ÂÃ (B(B( ). For each bounded subset B ½ ÂÃ and n 2 N,

B ½ (Id − Id − Id Pn)B + PnB.
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Since ÂÃ is s-sub-additive, taking in account the inequality

Â
Ã((P((P(( n − Id)Id)Id B) ≤ sup

n2N
||Pn Pn P x − x||XÃXÃX  ,

we get

Âs
Ã (B(B( )   ≤   Âs

Ã ((P((P(( n − Id)Id)Id B) + Âs(P(P( nB)

≤   sup
x 2 B

||((P||((P||(( n x − x)||sX Ã
+ Âs

Ã (P(P( nB),

for all n 2 N. Therefore, ÂÃ(B(B( ) ≤ νÃ(B(B( ).
Conversely, since operators Pn are uniformly bounded, let us defi ne M := lim supM := lim supM n→∞ ||Pn||. Then, 

since ||Pn|| = 1, it follows M = 1.M = 1.M
Given a bounded subset B in XÃXÃX  and ε > 0 arbitrary, let r = r = r Âs

Ã (B(B( ) and rεrεr  := r
1
s  + ε. Thus, there is a fi nite 

set B0 in XÃXÃX , such that

B ½ B0 + rεrεr U XÃXÃX  .

And, since B0 is fi nite, there exist N 2 N, such that

||(P||(P||( n − Id)Id)Id x0|| XÃXÃX <ε1/s,

for all n ≥ N and N and N x0 2 B0. Now, let x be an arbitrary element in B and x0 2 B0 chosen such that ||x − x0|| 
XÃXÃX  < r1/s1/s1/

εrεr . Since

||(P||(P||( n − Id)Id)Id x||sXÃ 
− ||(P− ||(P− ||( n − Id)Id)Id x0 ||sXÃ 

≤ ||(P ||(P ||( n − Id)(Id)(Id x )(x )( − x0)|| s
XÃ
≤ rεrεr ,

it holds

||(P||(P||( n − Id)Id)Id x||sXÃ
≤ || (P || (P || ( n − Id)Id)Id x0||sXÃ

 + rεrεr ,

and, for all x 2 B and n ≥ N,N,N

||(P||(P||( n x − x||sXÃ 
≤ ε+ rε ε+ rε ε+ r  = r1/s + 2ε.

Therefore, taking ε → 0, one has

lim sup sup
k → ∞ x 2 B

 ||Pn x − x||s
XÃ

 ≤ Âs
Ã(B(B( ).

Finally, since Â Ã (P(P( nB) ≤ ||Pn||ÂÃ (B(B( ) ≤ M Â
Ã (B(B( ) ≤ ÂÃ (B(B( ), one has

vsvsv (B(B( ) ≤ Âs
Ã (B(B( ) + Âs

Ã(B(B( ) = 2Âs
Ã (B(B( ).

The proof is thus complete.

For a characterization of the compact sets in ÂÃ we need of the following auxiliary result.

LEMMA 2. Let πn : ÂÃ → Ã → Ã
Ân be the natural projection on Ân. Then, for any bounded subset B½ ÂÃ one has

ÂXÂXÂ n Xn X (πn(B(B( )) ≤ ÂXÂXÂ Ã XÃ X (B(B( ).
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PROOF. It will be proved that UXUXU nXnX  = (πn(UXUXU
ÃXÃX ). First we prove ||πn (x(x( )||XnXnX  ≤ ||x|| XÃXÃX  . For any x = (x = (x = ( 1, ... , 

xn, ...), we put y = (0, ... , xn, 0, ... , 0, ...). Then

||x||XÃXÃX    ≥   ||y||XÃXÃX  = sup
k

||Qk(y(y( )||Ãk = Qn(y(y( )Ãn = || (0, ... , 0, ||xn||XnXnX )||ℓÃn

=   ||xn||XnXnX ||(0, ... , 0, 1)||ℓÃn = ||xn||XnXnX  = ||πnπnπ (x(x( )||XnXnX  .

Hence, if x 2 UXUXU
ÃXÃX  , then πnπnπ (x(x( ) 2 UXUXU nXnX  .

For a given z 2 UXUXU nXnX , let x = (0, ... , z, 0, ... , 0, ...), with z in the z in the z n-th position. Then πnπnπ (x(x( ) = z and ||z and ||z x||XÃXÃX  = 
||z||XnXnX  ≤ 1. Hence x 2 UXUXU

ÃXÃX , which implies that UXUXU nXnX 2 πnπnπ (UXUXU
ÃXÃX ).

Now, given ε > ÂÃ (B (B ( ), there exist balls B1, ... , BM 2 XÃXÃX  which Bi = B(x(x( i, ε), such that

B ½
M

i=1
 | B (x(x( i, ε).

Thus

πnπnπ (B(B( ) ½ πnπnπ
µ 

M

i=1
B(x(x( i, ε)

¶
½

M

i=1
πn πn π (B(B( (x(x( i, ε)).

And, since
πnπnπ (B(B(  (x (x ( i, ε)) = πnπnπ (x(x( i) + επn πn π (UXUXU

ÃXÃX ) = πnπnπ (x(x( i) + εUXεUXεU nXnX  ,

for each i, there are elements y1, ... , yM, such thatM, such thatM

πnπnπ (B(B( ) ½
M

i=1
{y{y{ i + εUX + εUX + εU nXnX )}.

Therefore, ÂXÂXÂ n Xn X (πnπnπ (B(B( )) ≤ ε and the result follows.

COROLLARY 1. A set K ½ XÃXÃX  is relatively compact if, and only if:

(i) ||PkPkP xkxk  − x||XÃXÃX → 0 uniformly on K, uniformly on K, uniformly on K  for k → ∞.
(ii) The set K( The set K( The set K m) = πmπmπ (K(K( ) = {K) = {K πmπmπ (x(x( ) : x 2 K} is relatively compact in the norm of Xm is relatively compact in the norm of Xm is relatively compact in the norm of X  for each m 2 N.

PROOF. If K ½ XÃXÃX  is relatively compact, then ÂXÃXÃX  (K) = 0 and from Theorem 3.4 we obtain νÃ(K(K( ) ≤ K) ≤ K
Â
XÃXÃX  (K) = 0. Hence

0 ≤  lim sup [sup
k → ∞ x 2 K

 ||PkPkP (x(x( ) − x||XÃXÃX  ] = 0.

This means that lim sup is the only one point of condensation of supx2K ||K ||K PkPkP (x(x( ) − x||XÃXÃX  , hence the lim sup 
is just a lim. This implies that

lim sup [sup
k → ∞ x 2 K

 ||PkPkP (x(x( ) − x||XÃXÃX  ] = 0,

which means that ||PkPkP (x(x( ) − x||XÃXÃX → 0 uniformly on K. Hence (i) is fulfilled.
To prove (ii), using Lemma 3.5, one has

Â
XmXmX (πmπmπ  (K (K ( )) ≤ K)) ≤ K Â

XÃ XÃ X (K(K( ) ,K) ,K
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hence ÂXmXmX (πmπmπ  (K (K ( )) = 0.K)) = 0.K

Now, assuming (i) and (ii), the former means that

lim sup [sup
k → ∞ x 2 B

 ||PkPkP (x(x( ) − x||XÃXÃX  ] = 0.

It follows from (ii) that ÂXÃXÃX (πkπkπ (K(K( )) = 0 and hence K)) = 0 and hence K Â
XÃXÃX (P(P( kPkP (K(K( )) = 0. Then we get K)) = 0. Then we get K νXÃXÃX (K(K( ) = 0 and thus K) = 0 and thus K Â

XÃXÃX (K(K( ) K) K
= 0, i.e. K is relatively compact.K is relatively compact.K

In particular, if X is a fi xed quasi-Banach space and X is a fi xed quasi-Banach space and X XnXnX  = X, for each X, for each X n 2 N, we have

XpXpX  = p
∞
©
n=1

XnXnX  = ℓpℓpℓ (X(X( ).X).X

Thus, we obtain from Corollary 1 a similar result to that stated by Brooks and Dinculeanu (1979 
Thm.1), now for s-Banach spaces.

COROLLARY 2. A set K ½ ℓpℓpℓ (X(X( ), 0 < X), 0 < X p ≤ 1, is relatively compact if, and only if:

(i)   ∑
m ≥ k

 ||xm||p → 0, k → ∞,k → ∞,k  uniformly for x 2 K, for k → ∞.

(ii) for each m 2 N, the set K( the set K( the set K m) = {πmπmπ (x(x( ) : x 2 K} is relatively compact in the quasi-norm of X.

s − Ã-DIRECT SUMS AND INTERPOLATION SPACES

In Nilsson (1982), the K-interpolation space is defi ned for a pair of quasi-Banach spaces (K-interpolation space is defi ned for a pair of quasi-Banach spaces (K E-interpolation space is defi ned for a pair of quasi-Banach spaces (E-interpolation space is defi ned for a pair of quasi-Banach spaces ( 0, E1) and an 
Z-lattice A (a quasi-Banach space of real valued sequences with Z as index set and with a monotonicity 
property: M exists such that |M exists such that |M an|A ≤ M||M||M bn||A whenever |an| ≤ |bn| for each n 2 Z).

The K-space consists of all K-space consists of all K a 2 E0+E+E+ 1 such that {K(2K(2K n, a, E0, E1)} 2 A. One more condition has been 
put on A, namely to be K-nontrivial, which equivalently may be written as the condition {min(1, 2K-nontrivial, which equivalently may be written as the condition {min(1, 2K − n)}n 2 A. 
It will be considered the K interpolation space when K interpolation space when K Z-lattice is the space

ℓ θ
Ã  = {(z = {(z = {( n)n2Z 2 ℓ(Z) : (2−θn|zn|)n2Z 2 ℓÃ(Z)}

with ||(zwith ||(zwith ||( n)n2Z|| = ||(2−θn|zn|)n2Z||Ã. Due to Lemma 2.4, it is not diffi cult to see that ℓ θ
Ã  is K-nontrivial, i.e. K-nontrivial, i.e. K

(min(1, 2n))n2Z 2 ℓ θ
Ã  .

Let E = (E = (E E = (E = ( 0, E1) be a Banach couple, θ 2 (0, 1) and XnXnX  = 2−θnE0 + 2−(θ−1)nE1. The K-interpolation space K-interpolation space K
(E(E( 0, E1)θ,Ã may be defi ned as the subspace of all constant sequences in (∑n2Z ©XnXnX )

Ã
 = XÃXÃX  . Since ||a||XnXnX = 

2−θnKθnKθn  (2K (2K n, a, E0, E1), this is the space of all a 2 E0 + E1, such that ||a||θ,Ã ≤ ∞, where

||a||θ,Ã = ||a||XÃXÃX  = ||(2−θnKθnKθn (2K(2K n, a, E0, E1))n2Z || ℓ θ
Ã

.

Now, the following characterization may be proved.

THEOREM 4. Let Ei be quasi-Banach spaces with quasi-Banach constants Ci be quasi-Banach spaces with quasi-Banach constants Ci be quasi-Banach spaces with quasi-Banach constants C , i i, i i = 0, 1, and let M be 
the quasi-Banach constant of cÃ. Then, the interpolation space (E(E( 0, E1)θ,Ã is a quasi-Banach space and 
its quasi-Banach constant does not exceed M max(its quasi-Banach constant does not exceed M max(its quasi-Banach constant does not exceed M C0C0C ,C1). If the norm || . ||Ã is translation invariant, this 
constant may be estimated by M2constant may be estimated by M2constant may be estimated by M θ C 1−θ

0 C θ
1 .
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PROOF. To prove the fi rst part we will use Lemma 3.11.1 from Bergh and Löfstron (1976). Let Ei be 
quasi-normed with constants CiCiC , i = 0, 1. Then

K(K(K t, a + b, E0, E1) ≤ C0C0C (K(K( (K(K C1t/t/t C0C0C , a, E0, E1) + K(K(K C1t/t/t C0C0C , b, E0, E1)) . (3)

From the inequality K(K(K t, a) ≤ max(1, t/ t/ t s/s/ )K(K(K s, a) we get

C0C0C (K(K( (K(K C1t/t/t C0C0C , a, E0, E1)   ≤   C0C0C  max(1, C1/C0C0C )K(K(K t, a, E0, E1)
=   max(C0C0C , C1)K(K(K t, a, E0, E1) ,

and the same for b in the place of a. Thus,

||a + b||θ,Ã   =   ||(2−θnK−θnK−θn (2K(2K n, a + b , E0, E1)) ||ℓÃ
≤   max(C0C0C , C1)||2−θn(K(K( (2K(2K n, a, E0, E1) + K(2K(2K n, b, E0, E1)) ||ℓÃ
≤   M max(M max(M C0C0C , C1)(|| (2−θnK−θnK−θn (2K(2K n, a, E0, E1)) ||ℓÃ

+||(2−θnK−θnK−θn (2K(2K n, b, E0, E1)) ||ℓÃ)
=   M max(M max(M C0C0C , C1)(||a||θ,Ã + ||b||θ,Ã) .

In the case of the second part of the theorem, from (3)

||a + b||θ,Ã  =   ||(2−θnK−θnK−θn (2K(2K n, a + b , E0, E1)) ||ℓÃ
≤   ||(2−θnC0C0C  (K (K ( (2K(2K n C1/C0C0C , a, E0, E1) + K(2K(2K nC1/C0C0C , b, E0, E1))) ||ℓÃ
≤   M C0C0C ||2−nθ K(2K(2K n C1/C0C0C , a, E0, E1) ||ℓÃ

+||(2−nθK−nθK−nθ (2K(2K n C1/C0C0C , b, E0, E1)) ||ℓÃ) .

Now, choose m 2 Z, such that 2m ≤ C1/C0C0C  ≤ 2m+1. Then, since || . ||ℓÃ  is translation invariant, we have

||2−nθKnθKnθ (2K(2K nC1/C0C0C , a, E0, E1)||ℓÃ   ≤   ||2−nθK−nθK−nθ (2K(2K n+m+1, a, E0, E1)||ℓÃ
=   || 2−(n+m+1)θ2(m+1)θ K(2K(2K n+m+1, a, E0, E1)||ℓÃ
=   2(m+1)θ||a||θ,Ãµ

C1
C0C0C

¶θ

2θ||a||θ,Ã .

The same is obtained to ||2−nθKnθKnθ (2K(2K nC1/C0C0C , b, E0, E1)||ℓÃ . Therefore,

||a + b||θ,Ã ≤ M2M2M θC 1−θ
0 (||a||θ,Ã + ||b||θ,Ã) .

Now, we may get a result about relative compactness and s − Ã-interpolation spaces using a modifi cation of 
results from the previous section.

For a sequence x = (x = (x = ( n)n 2 Z, let us consider the τ operator from Section 3,τ operator from Section 3,τ

τ (τ (τ x (x ( ) = τ ((τ ((τ x ((x (( n)) = (x)) = (x)) = ( 0, x−1, x1, x−2, x2, ... , x−n, xn, ...),

and

τ (τ (τ x (x ( ) − P2k+1k+1k τ (τ (τ x (x ( ) = (0, ...0, x−(n+1), x(n+1), x−(n+2), x(n+2), . . .) .

Then, it is appropriate to consider a modifi cation of the measure of noncompactness ν, namely

v~   Ã (B (B ( ) = lim sup [sup
k → ∞ x 2 B

||P2k+1k+1k τ(x(x( ) − τ(x(x( )||XÃXÃX  + ÂXÂXÂ ÃXÃX  (P (P ( 2k+1k+1k (B(B( ))] .
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The results for this measure are analogous to those given in Theorem 3 for the measure νÃ(B(B( ). Thus 
the following theorem for the compactness of bounded sets in the Ã-interpolation spaces may be obtained:

THEOREM 5. Given quasi-Banach spaces E0 Given quasi-Banach spaces E0 Given quasi-Banach spaces E  and E1, a bounded set K is relatively compact in (E(E( 0 E0 E , E1)θ,Ã,
for 0 < θ < 1 and Ã regular if, and only if,

(i) limn→∞ ||{c(k, n)K(2K(2K k, a, E0, E1)}||ℓÃ = 0 uniformly in x 2 K,K,K  where c(k, n) equals 2−θk if |θk if |θk k| ≥ n and 
0, if k = k = k − n,− n + 1, . . . , n − 1, n.

(ii) The set K is relatively compact in E0 + E1.

Here we use the fact that if K is relatively compact in K is relatively compact in K E0 + E1 then, it is also relatively compact in 
XnXnX  = 2−θnE0 + 2−(θ−1)nE1.

When Ã = ÃpÃpÃ , is obtained for the quasi-Banach case the Theorem 3.2 from Fernandez and Silva (2006), 
which for the Banach case is a result originally given in Peetre (1968) and also proved in Fernandez-Cabrera 
(2002). Similar results for general real interpolation methods appear in Cobos, et al. (2005).
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RESUMO

Dado 0 < s ≤ 1 e uma função s-convexa Ã, os espaços de sequencias s − Ã são introduzidos. Vários espaços quase-
Banach de sequencias são assim caracterizados como um caso particular dos espaços s − Ã. Para esses espaços novas 
medidas de não compacidade são também defi nidas, relacionadas a medida de não compacidade de Hausdorff. Como 
uma aplicação, conjuntos compactos nos espa¸cos de interpolação s − Ã, de um par quase-Banach são estudados.

Palavras-chave: espaços quase-Banach, funções quase-convexas, medidas de não compacidade, teoria de interpolação.
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