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ABSTRACT

For a given binary BCH code Cn of length n = 2s − 1 generated by a polynomial g(x) 2 F2[x] of degree r there 
is no binary BCH code of length (n + 1)n generated by a generalized polynomial g(x

1
2 ) 2 F2[x 1

2  Z ≥ 0] of 
degree 2r. However, it does exist a binary cyclic code C(n+1)n of length (n + 1)n such that the binary BCH 
code Cn is embedded in C(n+1)n. Accordingly a high code rate is attained through a binary cyclic code 
C(n+1)n for a binary BCH code Cn. Furthermore, an algorithm proposed facilitates in a decoding of a binary 
BCH code Cn through the decoding of a binary cyclic code C(n+1)n, while the codes Cn and C(n+1)n have the 
same minimum hamming distance.
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INTRODUCTION

The applications of finite commutative rings, particularly finite local rings, have great importance due to 
their principal ideals. In the design of communication systems and high rate digital computers, encoding and 
decoding have an importance for error control. The main component of the conventional error-correcting 
codes are ideals in a finite commutative principal ideal ring.

In Cazaran and Kelarev 1997 authors introduce the necessary and sufficient conditions for the ideal 
to be a principal ideal and describe all finite principal ideal rings Zm[x1, x2, ··· , xn]/I, where I is generated 
by univariate polynomials. Moreover, in Cazaran and Kelarev 1999, they obtained conditions for certain 
rings to be finite commutative principal ideal rings. However, the extension of a BCH code embedded 
in a semigroup ring F[S], where S is a finite semigroup, is introduced by Cazaran et al. 2006, where an 
algorithm was given for computing the weights of extensions for codes embedded in F[S] as ideals. 
A numerous information related with several ring constructions and concerning polynomial codes was 
given by Kelarev 2002. Whereas, in Kelarev 2007, 2008, Kelarev discusses the concerning extensions of 
BCH codes in several ring constructions, where the results can also be considered as particular cases of 
semigroup rings of particular nature. Andrade and Palazzo 2005 elaborated the cyclic, BCH, alternant, 
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Goppa and Srivastava codes over finite rings, which are in real meanings constructed through a polynomial 
ring in one indeterminate with a finite coefficient ring. Shah in Shah et al. 2011a, b, instead of a polynomial 
ring, the construction methodology of cyclic, BCH, alternant, Goppa, and Srivastava codes over a finite 
ring is used through a semigroup ring, where the results of Andrade and Palazzo 2005 are improved in 
such a way that in the place of cancellative torsion free additive monoid Z ≥ 0 of non negative integers, the 
cancellative torsion free additive monoids 1

2 Z ≥ 0 and 1
22 Z ≥ 0 are taken, respectively. Consequently, this 

new structure gives a construction of a finite quotient ring of a polynomial ring into a finite quotient ring of 
monoid rings of particular nature. In Shah et al. 2011a, b, R is considered as a finite unitary commutative 
ring for the quotient rings R[x; 1

22Z ≥ 0]/((x
1
2 )2n − 1) and R[x; 1

22Z ≥ 0]/((x
1
22)22n − 1), respectively. However, 

in (Andrade et al. 2010) authors describe the decoding principle based on modified Berlekamp-Massey 
algorithm for BCH, alternant and Goppa codes constructed through monoid rings R[x; 1

2 Z ≥ 0].
The existence of a binary cyclic ((n + 1)3k − 1, (n + 1)3k − 1 − 3kr) code, where k is a positive 

integer, corresponding to a binary cyclic (n, n − r) code is established in Shah et al. 2012 by monoid ring 
F2[x; 1

3kZ ≥ 0]. Furthermore, in Shah et al. 2012 a decoding procedure for binary cyclic (n, n − r) code by 
the binary cyclic ((n+1)3k −1, (n+1)3k−1−3kr) code is also given, which improve the code rate and error 
corrections capabilities.

We were provoked by Shah et al. 2012 and initiated the inquiry in support to binary BCH codes alike binary 
cyclic codes. However, we observed that for an n length binary BCH code with n = 2s − 1 generated by the 
polynomial g(x) 2 F2[x] of degree r it is not possible to construct a binary BCH code of length (n+1)n generated 
by the generalized polynomial g(x

1
2) 2 F2[x, 1

2 Z ≥ 0] of degree 2r. However, in this study, we established that 
corresponding to a binary BCH code Cn(n, n − r) there is a binary cyclic code C(n+1)n((n+1)n, (n+1)n−2r) such 
that Cn is embedded in C(n+1)n. Furthermore, we propose an algorithm that enables decoding a binary BCH 
code of length n through the decoding of (n + 1)n length binary cyclic code.

This paper is formulated as follows. In Section 2, first we investigate that, for a positive integer 
n = 2s − 1, where s is a positive integer, such that if a polynomial g(x) 2 F2[x,Z ≥ 0] of degree r divides xn − 1, 
then a generalized polynomial g(x

1
2 ) 2 F2[x, 1

2 Z ≥ 0] of degree 2r divides x
1
2  (n+1)n −1 in F2[x, 1

2 Z ≥ 0]. Second, 
we discuss cyclic codes of length (n+1)n generated by g(x

1
2 ). In Section 3, we discuss the non existence and 

existence of a binary BCH code of length (n+1)n and a cyclic code of length (n+1)n against a binary BCH 
code of length n, respectively. Consequently, a link of a BCH code (n, n−r) and a cyclic code ((n+1)n, 
(n+1)n−2r) is developed. However, in Section 4, we present the decoding procedure for a binary cyclic code 
((n + 1)n, (n + 1)n − 2r) by which we can obtain the decoding of a binary BCH code (n, n−r). Concluding 
remarks are given in Section 5.

CYCLIC CODE OF LENGTH (n + 1)n CONSTRUCTED THROUGH F2[x; 1
2Z ≥ 0]

A semigroup ring R[x; S] is the set of all finitely nonzero functions from a semigroup (S,*) into an associative 
ring (R,+, ·) in which binary operations addition and multiplication are given by (f + g)(s) = f(s) + g(s) and 
(fg)(s) = ∑t* u = s f(t)g(u), where the ∑t* u = s shows that the sum is taken over all pairs (t, u) of elements of S such 
that t * u = s, otherwise (fg)(s) = 0. If S is a monoid, then R[x; S] is called monoid ring. A nonzero element 
f of R[x; S] has unique representation 

n
∑ fi xsi

i = 1
, where fi 6 ≠ 0 and si 6 ≠ sj for i ≠ j. If S is Z0 and R is an 

associative ring, particularly the binary field F2, then the semigroup ring R[x; S] is simply the polynomial 
ring R[x]. Clearly, it follows that R[x] = R[x;Z ≥0] ½ R [x, 1

2 Z ≥ 0]. Since 1
2 Z ≥ 0 is an ordered monoid, it 

follows that we can define the degree of an element in R[x, 1
2 Z ≥ 0].
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We initiate this study by an observation that the indeterminate of generalized polynomials in a 
semigroup ring F2 [x; 1

2 Z ≥0] is given by x
1
2  and it behaves like an indeterminate x in F2 [x]. For instance, for a 

torsion free cancellative monoid S, it follows that the monoid ring F2 [x; S] is a Euclidean domain if F2 is 
a field and S ~= Z or S ~= Z ≥ 0 (Gilmer and Parker 1974). Of course, here 1

2 Z ≥ 0 is a torsion free cancellative 
and isomorphic to Z ≥ 0.

Given any generalized polynomial f(x
1
2 ) 2 F2[x, 1

2 Z ≥ 0], we can construct the factor ring F2[x; 1
2 Z ≥ 0]

(f(x
1
2 ))

,

where (f(x
1
2 )) is a principal ideal in F2[x; 1

2 Z ≥ 0] generated by f(x
1
2 ). The elements of the factor ring are the 

cosets of the ideal (f(x
1
2 )). The factor ring is a field if, and only if, f(x

1
2 ) is irreducible over F2.

Proposition 1 Let g(x) 2 F2[x, Z ≥ 0] be a polynomial of degree r. If n = 2s −1, where s is a positive integer, 
then the generalized polynomial g(x

1
2 ) 2 F2[x, 1

2  Z ≥ 0] of degree 2r divides x
1 (n+1)n2 −1 in F2[x, 1

2  Z ≥ 0].

Proof. Clearly g(x
1
2 ) 2 F2[x, 1

2  Z ≥ 0] divides x
1 2n2  −1. If x

1 (n+1)n2 −1 = x
1 (2s −1)2s
2 −1 = x

1 (2s−1)2  −1)2s = 
x

1
2 n −1)2s, then g(x

1
2 ) divides x

1
2  (n+1)n −1.

Now onward, if f (x
1
2 ) = (x

1
2 )(n+1)n −1, then F2[x; 1

2 Z ≥ 0]

((x
1
2 ))n(n+1) −1

 is given by

{a0 +a 1
2
ζ + a1ζ2 + ... + an (n +1)−1

2
ζn(n+1)−1:a0 , a 1

2
, a1, ... , an (n +1)−1

2
 2 F2},

where ζ denotes the coset x
1
2 +(f (x

1
2 )). Thus, f (ζ) = 0, where ζ satisfies the relation ζn(n+1) −1 = 0. Let us now 

make a change in notation and write x
1
2  in place of ζ. Thus, the ring F2[x; 1

2 Z ≥ 0]

(x
1
2  n(n+1) −1)

 becomes F2[x; 1
2 Z ≥ 0]n(n+1) 

in wich the relation x
1
2  

n(n+1)−1 = 0 holds, that is (x
1
2 )n (n+1) =1.

The multiplication * in the ring F2[x; 1
2 Z ≥ 0]n(n+1) is modulo (x

1
2  

n(n+1) −1). So, given c(x
1
2 ), d(x

1
2 ) 2 F2[x; 

1
2 Z ≥ 0]n(n+1), we write c(x

1
2 ) * d(x

1
2 ) to denote their product in the ring F2[x; 1

2 Z ≥ 0]n(n+1) and c(x
1
2 )d(x

1
2) to 

denote their product in the ring F2[x; 1
2 Z ≥ 0]. If deg a(x

1
2 ) + deg b(x

1
2 ) ˂  1

2  n(n+1), then c(x
1
2 ) * d(x

1
2 ) = 

c(x
1
2 ) d(x

1
2 ). Otherwise, c(x

1
2 ) * d(x

1
2 ) is the remainder left on dividing c(x

1
2 )d(x

1
2 ) by (x

1
2 )(n+1)n −1. In other 

words, if c(x
1
2 ) * d(x

1
2 ) = r(x

1
2 ), then c(x

1
2 )d(x

1
2 ) = r(x

1
2 ), then c(x

1
2 )d(x

1
2 ) = r(x

1
2 ) + ((x

1
2 )n(n+1) −1)q(x

1
2 ) for some 

generalized polynomial q(x
1
2 ). Practically, to obtain c(x

1
2 ) * d(x

1
2 ), we simply compute the ordinary product 

c(x
1
2 ) d(x

1
2 ) and then put x

1
2  

n(n+1) =1, x
1
2  

n(n+1) + 1
2  = x

1
2  and so on. Now, consider x

1
2  * c(x

1
2 ) and it would be

x
1
2  * (c0 + c 1

2
 x

1
2  + ... + cn(n+1)−2

2
 + (x

1
2 )n(n+1) −2 + cn (n +1)−1

2
 (x

1
2 ) n(n+1) −1).

That is

x
1
2  * c(x

1
2 ) = cn (n +1)−1

2
 + c0 x

1
2  + c 1

2
x1 + ... + c n (n +1)−2

2
 (x

1
2 ) n(n+1) −1.

Particularly, we can take the product x
1
2  * c(x

1
2 ) in F2[x; 1

2 Z ≥ 0]n(n+1) by following lema.

Lemma 2 The F2-space F2[x; 1
2 Z ≥ 0]n(n+1) is isomorphic to F2-space F2

n(n+1).

Proof. It follows that (x
1
2 )n(n+1)n −1 = y 

n(n+1) −1, where x
1
2  = y. In fact, we deal the coefficients of generalized 

polynomials c(x
1
2 ) = c0 + c 1

2
 x

1
2  + ... + c n (n +1)−2

2
 (x

1
2 )n(n+1)−2 + cn (n +1)−1

2
 (x

1
2 )n(n+1)−1 of F2[x; 1

2 Z ≥ 0]. So c(x
1
2 ) has 

n(n + 1) terms and hence the coefficients in F2. Corresponding to c(x
1
2 ) 2 F2[x; 1

2 Z ≥ 0] n(n+1), there is a 
n(n + 1)-tuppled vector (c0, c 1

2
 , ... , cn(n+1)−1

2
 in F2

2n. Thus, there is an isomorphism between the vector space 
F2

n(n+1)and F2[x; 1
2 Z ≥ 0]n(n+1) defined by c  c(x

1
2 ).
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We observed that, multiplication by x
1
2  in the ring F2[x; 1

2 Z ≥ 0]n(n+1) corresponds to cyclic shift σ in 
F2

n(n+1), that is x
1
2  * c(x

1
2 ) = σ (c)(x

1
2 ). A subspace C of F2-space F2

n(n+1) is a linear code. From Lemma 2, 
identifying every vector c in Fn(n+1) with the polynomial c(x

1
2 ) in F2[x; 1

2 Z ≥ 0]n(n+1), it follows that C ½ F2[x; 
1
2 Z ≥ 0]n(n+1). The elements of the code C are now referred as codewords or code generalized polynomials.

By use of the techniques of (Shah et al. 2012), the following results can easily be established for a 
positive integer n(n + 1) instead of (n + 1)3k − 1.

Theorem 3 (Shah et al. 2012) Let C be a linear code over F2. Then C is cyclic if, and only if, x
1
2  * c(x

1
2 ) 2 

C for every c(x
1
2 ) 2 C.

Theorem 4 (Shah et al. 2012) A subset C of F2[x; 1
2 Z ≥ 0]n(n+1) is a cyclic code if, and only if, C is an ideal 

of the ring F2[x; 1
2 Z ≥ 0]n(n+1).

It is noticed that (p(x
1
2 )) = {b(x

1
2 ) * p(x

1
2 ) : b(x

1
2 ) 2 F2[x; 1

2 Z ≥ 0]n(n+1)}, where p(x
1
2 ) 2 F2[x; 1

2 Z ≥ 0] 
represents the principal ideal generated by p(x

1
2 ) in the ring F2[x; 1

2 Z ≥ 0]n(n+1).

Theorem 5 (Shah et al. 2012) If C is a nonzero ideal in the ring, F2[x; 1
2 Z ≥ 0]n(n+1) then,

1. there exists a unique monic polynomial g(x
1
2 ) of least degree in C;

2. g(x
1
2 ) divides divides (x

1
2 )n(n+1) − 1 in F2[x; 1

2 Z ≥ 0]n(n+1);

3. for all a(x
1
2 ) 2 C, g(x

1
2 ) divides a(x

1
2 ) in F2[x; 1

2 Z ≥ 0]n(n+1); and

4. C = (g(x
1
2 )).

Conversely, if C is an ideal generated by p(x
1
2 ) 2 F2[x; 1

2 Z ≥ 0]n(n+1), then p(x
1
2 ) is a generalized polynomial 

of least degree in C if, and only if, p(x
1
2 ) divides (x

1
2 )n(n+1) − 1 in F2 [x; 1

2 Z ≥ 0]n(n+1).

From Theorem 5, it follows that the only ideals in the ring F2 [x; 1
2 Z ≥ 0]n(n+1) are linear codes which are 

generated by the factors of x
1
2 n(n+1) − 1. Thus, we can obtain all cyclic codes of length n(n + 1) over F2 if we 

find all factors of x
1
2  

n(n+1) − 1. In the case of trivial factors, we get trivial codes. If g(x
1
2 ) = x

1
2  

n(n+1) − 1, then 
(g(x

1
2 )) = (0). Whereas g(x

1
2 ) = 1 implies (g(x

1
2 )) = F2 [x; 1

2 Z ≥ 0]n(n+1).

Remark 6 If p(x
1
2 )) does not divide x

1
2 n(n+1) − 1, then p(x

1
2 ) cannot be of least degree in the ideal (p(x

1
2 )).

Definition 7 Let C be a nonzero ideal in F2 [x; 1
2 Z ≥ 0]n(n+1). If g(x

1
2 ) is a unique monic generalized polynomial 

of least degree in C, then g(x
1
2 ) is called the generator generalized polynomial of the cyclic code C.

Note that if C = (p(x
1
2 )) is the ideal generated by p(x

1
2 ), then p(x

1
2 ) is the generator generalized polynomial 

of C if, and only if, p(x
1
2 ) is monic and divides x

1
2 n(n+1) − 1.

A LINK OF A BCH CODE (n, n−r) AND A CYCLIC CODE ((n+1)n, (n+1)n−2r)

In this section, we develop a link between a binary BCH code (n, n−r) and a binary cyclic code ((n+1)n, 
(n+1)n − 2r). For this, let Cn be a binary BCH code based on the positive integers c, δ1, q = 2 and n such 
that 2 ≤ δ1 ≤ n with gcd(n, 2) = 1 and n = 2s − 1, where s 2 Z+. Consequently, the binary BCH code Cn has 
generator polynomial of degree r given by g(x) = lcm{mi(x) : i = c, c +1, ... , c +δ1−2}, where mi(x) are minimal 
polynomials of ζi for i = c, c + 1, ... , c + 1−2. Whereas ζ is the primitive nth root of unity in F2m. Since mi(x) 
divides xn −1 for each i, it follows that g(x) divides xn −1. This implies Cn = (g(x)) is a principal ideal in the 
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factor ring F2[x]n. From Proposition 1, it follows that the generalized polynomial (g(x
1
2)) 2 F2 [x; 1

2 Z ≥ 0] of 

degree 2r divides x
1
2  

n(n+1) −1 in F2 [x; 1
2 Z ≥ 0]. So, there is a cyclic code C(n+1)n generated by g(x

1
2) in 

F2 [x; 1
2 Z ≥ 0]n(n+1). Since x

1
2  

2n −1 divides x
1
2  

n(n+1) −1 in F2 [x; 1
2 Z ≥ 0], it follows that (x

1
2  

n(n+1) −1) ½ (x
1
2  

2n −1). 

Now, by third isomorphism theorem for rings, it follows that F2[x; 1
2 Z ≥ 0]/(x

1
2  n(n+1) −1) ~_

F2[x; 1
2 Z ≥ 0]

~_
F2[x]

(x
1
2  2n −1)/(x

1
2  n(n+1) −1) (x

1
2  2n −1) (xn −1)

 . 

Thus, Cn is embedded in C(n+1)n and the monomorphism ϕ : Cn → C(n+1)n is defined as ϕ(a(x)) = ϕ(a0 + a1x 
+ ... + an −1 x 

n −1) = a0 + a1 (x
1
2 )2 + ... + a2(n −1) −1 (x

1
2 )2(n −1) = a(x

1
2 ), where a(x) 2 Cn. The above discussion 

shape the following theorem.

Theorem 8 Let s be a positive integer. If Cn is a binary BCH code of length n = 2s −1 generated a polynomial
of degree r given by g(x) = g0 + g1x + ··· + grxr 2 F2[x], then

1. there exist a binary cyclic code C(n+1)n of length (n+1)n generated by a generalized polynomial of degree 
2r given by g(x

1
2 ) = g0 + g1x

1
2 2 + ... + g1x

1
2 2r 2 F2[x; 1

2 Z ≥ 0]; and
2. the binary BCH code Cn is embedded in the binary cyclic code C(n+1)n.

For a binary BCH code Cn with generator polynomial g(x) it is not possible to construct a binary BCH code 
C(n+1)n with generator polynomial g(x

1
2 ). Indeed, as we know that generator polynomial of a binary BCH 

code is the least common multiple of irreducible polynomials over F2. For instance, if g(x) =∑ r
i=0 gi xi 

is the generator polynomial of the binary BCH code Cn, then g(x
1
2 ) = g0 + g1x

1
2  

2 + ... + grx
1
2  

2r = (g0 + g1x
1
2  

2 
+ ... + grx

1
2  

2r )2 is not the least common multiple of irreducible polynomials in F2 [x; 1
2 Z ≥ 0]. Hence, g(x

1
2 ) 

is not qualify for a generator of a binary BCH code.

Example 9 Let s = 2, n = 2s − 1 = 22 − 1 = 3, δ = 3, c = 1 and p(x) = x2 + x + 1 a primitive polynomial of 
degree 2. Thus, F22 = F2[x]

(p (x))
 = {a0 + a1ζ : a0, a1 2 F2}, where ζ satisfies the relation ζ2 + ζ + 1 = 0. Using this 

relation, it follows that {0, ζ1 = ζ , ζ2 = 1 + ζ , ζ3 = 1}. Let mi(x) be the minimal polynomial of ζi, where i = 
c, c + 1, ... , c, c + 1, ... , c + δ − 2. Thus, m1(x) = x2 + x + 1, and hence, g(x) = lcm{mi(x) : i = c, c +1, ... , c + 
δ − 2} = x2 + x + 1. Also, C3 = (g(x)) ½ F2[x]3 is a binary BCH code based on the positive integers c = 1,  δ = 3, 
q = 2 and n = 3 such that 2 ≤ δ ≤ n with gcd(n, 2) = 1. Since g(x

1
2 ) = (x

1
2 )4 + (x

1
2 )2 + 1 divides (x

1
2 )3(3+1) − 1 in 

F2 [x; 1
2 Z ≥ 0], it follows that the corresponding cyclic code C12(12, 8) is generated by g(x

1
2 ).

GENERAL DECODING PRINCIPLE

Berlekamp et al. 1978 demonstrated that the maximum-likelihood decoding is a NP-hard problem for general 
linear codes. Whereas by the principle of maximum-likelihood decoding we obtain a code after decoding 
which is closest to the received vector when the errors are corrected. We use the decoding procedure which 
follows the same principle.

In the following we interpret the decoding terminology for a binary cyclic code C(n+1)n with length 
(n+1)n and having parity-check matrix H. If the vector b is received, then we obtain the syndrome vector of b 
given by S(b) = bHT . In this way, we calculate a table of syndromes which is useful in determining the error 
vector e such that S(b) = S(e). So the decoding of received vector b has done as the transmitted vector a = b − e.

The general principle of decoding is to pick the codeword nearest to the received vector. For this 
purpose, we prepare a look-up table that gives the nearest codeword for every possible received vector. 
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The algebraic structure of a linear code as a subspace provides a convenient method for preparing such a 
table. If C(n+1)n is a subspace of F2

(n+1)n, then C(n+1)n is a subgroup of the additive group F2
(n+1)n. Recall that 

for every a 2 F2
(n+1)n, the set a+C(n+1)n = {a + c : c 2 C(n+1)n} is called a coset of C(n+1)n and the set of these 

cosets form a partition of the set F2
(n+1)n. Hence, F2

(n+1)n is the disjoint union of distinct cosets of C(n+1)n.
Let y be any vector in F2

(n+1)n, and supose x 2 C(n+1)n is the codeword nearest to y. Now, x lies in the 
coset y + C(n+1)n = {y − c : c 2 C(n+1)n}. For all c 2 C(n+1)n, it follows that d(y,x) ≤ d(y,c), i.e. w(y − x) ≤ 
w(y − c). Hence, y − x is the vector of least weight in the coset containing y. Writing e = y − x, it follows 
that x = y − e. Thus, the following theorem is obtained.

Theorem 10 Let C(n+1)n ½ F2
(n+1)n be a linear code. Given a vector y 2 F2

(n+1)n, the codeword x nearest to y 
is given by x = y − e, where e is the vector of least weight in the coset containing y. If the coset containing 
y has more than one vector of least weight, then there are more than one codewords nearest to y.

Definition 11 Let C(n+1)n be a linear code in F2
(n+1)n. The coset leader of a given coset of C(n+1)n is defined to 

be the vector with the least weight in the coset.

Theorem 12 Let C(n+1)n be an ((n+1)n, (n+1)n−2r) code over F2. If H is a parity-check matrix of C(n+1)n, 
then C(n+1)n = {x 2 F2

(n+1)n : xH 
T = 0 = HxT}.

From Theorem 12, it follows that S(y) = 0 if, and only if, y 2 C(n+1)n. Let y such that y' 2 F2
(n+1)n. Thus, 

S(y) = S(y') holds if, and only if, (y − y')H 
T = 0, that is, y − y' 2 C(n+1)n. Hence, two vectors have the same 

syndrome if, and only if, they lie in the same coset of C(n+1)n. Thus, there is a one-to-one correspondence 
between the cosets of C(n+1)n and the syndromes. A table with two columns showing the coset leader ei and 
the corresponding syndromes S(ei) is called the syndrome table. To decode a received vector y, we compute 
its syndrome S(y) and then look at the table to find the coset leader e for which S(e) = S(y). Then y is decoded 
as x = y − e. The syndrome table is given by

coset leader syndrome
e1 S(e1)
e2 S(e2)
. . . . . .
ei S(ei)
. . . . . .

eN S(eN)

where N = qn−k, F = F2q and S(ei) = eiH 
T for 1 ≤ i ≤ N.

Now, consider a binary BCH code Cn based on the positive integers c, δ, q = 2 and n such that 2 ≤ δ ≤ 
n with n = 2s − 1, where s is a positive integer. Let ζ be a primitive nth root of unity in F2m. Let mi(x) 2 F2[x] 
denote the minimal polynomial of ζi. Let g(x) be the product of distinct polynomials among mi(x), for i = c, 
c + 1, ... , c + δ − 2, that is, g(x) = lcm{mi(x) : i = c, c + 1, ... , c + δ − 2}.

Assume that C(n+1)n is the corresponding binary cyclic code of length (n + 1)n with minimum distance 
d and with generator generalized polynomial g(x

1
2 ) which has the check generalized polynomial

h(x
1
2 ) = hn(n+1) − 2r 

(x
1
2 )n(n+1) − 2r+ hn(n+1) − 2r −1(x

1
2 )n(n+1) − 2r − 1 + ... + h1(x

1
2 ) + h0.
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Of course, x
1
2  

(n+1)n −1 = g(x
1
2 ) * h(x

1
2 ). Thus, the matrix H is given by

hn(n+1) − 2r hn(n+1) − 2r −1 . . . . . . h0 0 0 . . . 0
0 hn(n+1) − 2r . . . . . . h1 h0 0 . . . 0
. . . . . . .   .     . .   .     . .   .     . .   .     . . . . . . . . . .
0 0 0 hn(n+1) − 2r hn(n+1) − 2r −1 . . . . . . h1 h0

is the parity-check matrix de order (2r × (n + 1)n for binary cyclic code C(n+1)n of dimension k = (n +1)n − 2r. 
Syndrome of the vector a 2 F2

(n+1)n is denoted as S(a) = aH 
T. For the vector a given by a = (a0, a 1

2
1, a 1

2
2, ... , 

an −1
2

, ... , a (n −1) n −1
2

) 2 F2
(n+1)n, it follows that the generalized polynomial is given by a (x

1
2 ) = a0 + a 1

2
x

1
2  + ... + 

a(n −1)
2

x
1
2 (n−1)+ ... + a (n −1) n −1

2
x

(n+1) n −1
2  in F2[x; 1

2 Z ≥ 0](n+1)n. So, S(a) = aH 
T, where

a = a0    a 1
2
    ...    an −1

2
     a (n −1) n −1

2
.

Now, assume that the codeword v 2 C is transmitted and the received vector is given by a = v + e, where 
e = (e0, e 1

2
, e, ... , e(n −1)

2
, ... , e (n −1) n −1

2
) is the error vector which has the polynomial form

e(x
1
2 ) = e0 + e 1

2
x

1
2  + ... + e(n −1)

2
x

1
2 (n−1) + ... + e (n −1) n −1

2
 x

1
2 (n+1)n) − 1

2 .

Therefor, S(e) = S(a). Now, the syndrome table for the binary cyclic code C(n+1)n is

coset leader syndrome
e1 S(e1)
e2 S(e2)
. . . . . .
ei S(ei)
. . . . . .

eN S(eN)

where N = 2(n+1)n−k, k = (n+1)n −2r and S(ei) = eiH 
T for 1 ≤ i ≤ N.

DECODING ALGORITHM

We establish a decoding method of a binary BCH code of length n through binary cyclic code of length 
(n+1)n. Though, here in the following we sum up the procedure which indicates the steps in decoding 
a received word of the cyclic code of length (n + 1)n and explain the technique obtaining the wrapped 
codeword of the BCH code of length n.

Step 1: Evaluate the check generalized polynomial h
 
(x

1
2 ) of binary ciclic code C(n+1)n.

Step 2: Construct the syndrome table for the binary cyclic code C(n+1)n.
Step 3: Calculate the received generalized polynomial b' (x

1
2 ) 2 F2[x; 1

2 Z ≥ 0] n(n+1) corresponding to 
received polynomial b(x) 2 F2[x]n.

Step 4: Calculate the syndrome vector for the vector

b' = b0, b 1
2

1, b 1
2

2, ... , b(n −1)
2

, ... , a (n +1) n −1
2

) 2 F2
(n+1)n,
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corresponding to the received generalized polynomial

b' (x
1
2 ) = b0 + b 1

2
 x

1
2  + ... + b (n −1)

2
 x

1
2  

(n −1)
 + ... + b(n +1) n −1

2
 x

(2((n +1) n) −1)
2  2 F2[x; 1

2 Z ≥ 0] (n+1)n.

Step 5: By looking at syndrome table (step 2), find the coset leader e for which S(b') = S(e).
Step 6: Decode b' as b' − e = a'.
Step 7: The corresponding corrected codeword polynomial a(x) in binary BCH code Cn is obtained.

Example 13 Let s = 2, n = 22 − 1 = 3 and C3 be the BCH code with positive integers c, δ, gcd(n, 2) = 1 
and generated by g(x) = x2 + x + 1 2 F2[x]3. In this case, g(x

1
2 ) = (x

1
2 )4 + (x

1
2 )2 + 1 2 F2 [x; 1

2 Z ≥ 0]12 is the 
generator polynomial of the corresponding binary cyclic code C(3+1)3 = C12(12, 8, d). The generator matrix 
of C12 is given by

G' =

1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1

and parity-check matrix with check polynomial h(x
1
2 ) = 1 + (x

1
2 )2 + (x

1
2 )6 + (x

1
2 )8 is given by

H' =

1 0 1 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 1 0 1

Syndrome table is given by

coset leader syndrome
e0 = 000000000000 0000
e1 = 100000000000 1000
e2 = 010000000000 0100
e3 = 001000000000 1010
e4 = 000100000000 0101
e5 = 000010000000 0010
e6 = 000001000000 0001
e7 = 110000000000 1100
e8 = 100100000000 1101
e9 = 100001000000 1001
e10 = 011000000000 1110
e11 = 010010000000 0110
e12 = 001100000000 1111
e13 = 001001000000 1011
e14 = 000110000000 0111
e15 = 000011000000 0011
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Let b = 110 2 F 3
2  be the received vector of binary BCH code C3. Then, its polynomial representation is 

given by b(x) = 1 + x in F2[x]3 and the corresponding received polynomial in the cyclic code C12 is given 
by b'(x

1
2 ) = 1 + (x

1
2 )2 in F2[x, 1

2 Z≥ 0]12, and its vector representation is b' = 101000000000 2 F 12
2 . Also, 

S(b') = b'*(H')T = 0010 = S(e5), hence the corrected codeword in C12 is a' = b' + e5 = 101010000000 and 
its polynomial representation is a' (x) = 1+x2 +x4 in F2[x; 1

2 Z≥ 0]12. Hence, the corresponding corrected 
codeword in binary BCH code C3 is a(x) = 1 + x + x2 in F2[x]3, that is a = 111.

AN APPLICATION TO COGNITIVE RADIO

Cognitive radio is a most recent technology in wireless communication by which the spectrum is vigorously 
used when the primary user, the approved possessor of the spectrum, is not consumed. The scheme of 
cognitive radio is initiated in Mitola 2000. Rendering this notion, the cognitive radio has the competence 
to judge the radio environs and step up the decision according to the transmission parameters such as code 
rate, modulation scheme, power, carrier frequency and bandwidth.

The fundamental map in Zhao and Sadler 2007 is to issue license spectrum to secondary users and hurdle 
the interference observed by primary users. To guard the primary user from the interference activated by 
the secondary user during transmission, (Srinivasa and Jafar 2006) offered an organization of transmission 
models as interweave, underlay and overlay.

By (Mitola 2000), in the interweave model the secondary user has opportunistic accesses to the 
spectrum slum while the primary user is not in and pull out when the primary user wants to in once more. 
For cognitive radio transformation under the interweave model we may get spectrum corresponding to the 
binary cyclic code C(n+1)n for data transfer of the primary user. Now, the setup only allow the secondary user 
having binary BCH code Cn for its data transfer. Accordingly the secondary user obtain high speed data 
transfer as compare to its own scheme of the BCH code Cn.

CONCLUSION

This paper addresses the following aspects:

1. There does not exist a binary BCH code of length (n+1)n generated by a generalized polynomial g(x
1
2 ) 2 

F2[x, 1
2 Z ≥ 0] of degree 2r corresponding to a binary BCH code of length n with n = 2s − 1 generated by a 

polynomial g(x) 2 F2[x] of degree r such that Cn is embedded in C(n+1)n.

2. There does exist a binary cyclic code of length (n + 1)n generated by a generalized polynomial g(x
1
2 ) 2 

F2[x, 1
2 Z ≥ 0] of degree 2r corresponding to a binary BCH code of length n with n = 2s − 1 generated by a 

polynomial g(x) 2 F2[x]  of degree r such that Cn is embedded in C(n+1)n.

3. An algorithm is given which enables in decoding of a given binary BCH code Cn of length n through the 
decoding of a binary cyclic code C(n+1)n of length (n + 1)n. Consequently, we have the advantage that, if 
n − r message transmitted under the cover of binary cyclic code C(n+1)n, then we obtain high speed data transfer 
as compare to the BCH code Cn. Whereas the codes Cn and C(n+1)n have same minimum hamming distance.

4. By the interweave model for cognitive radio, the secondary user transfers its data through the binary BCH 
code Cn and has opportunistic accesses to the spectrum of primary user which uses binary cyclic code 
C(n+1)n for its data transfer. As a result the secondary user achieve high data transfer rate as compare to its 
own scheme based on the BCH code Cn.
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RESUMO

Para um determinado código binário BCH Cn de comprimento n = 2s−1 gerado por um polinômio g(x) 2 F2[x] 
de grau r não existe um código BCH binário de comprimento (n + 1)n gerado por um polinômio generalizado g(x

1
2 ) 

2 F2[x, 1
2 Z ≥ 0 de grau 2r. No entanto, não existe um código cíclico binário C(n+1)n de comprimento (n + 1)n de tal 

modo que o código BCH binário Cn é imerso em C(n+1)n. Assim, um código de taxa elevada é alcançado através de um 
código cíclico binário C(n+1)n para um código BCH binário Cn. Além disso, propomos um algoritmo que facilita na 
decodificação de um código BCH binário Cn através da decodificação de um código cíclico binário C(n+1)n, ao passo 
que os códigos Cn e C(n+1)n possuem a mesma distância de Hamming mínima.

Palavras-chave: Código BCH, código cíclico binário, código de Hamming binário, algoritmo de decodificação.
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