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ABSTRACT
Brazil has a history of blooms and contamination of freshwater systems by cyanobacterial toxins. 
The monitoring relevance of toxins from cyanobacteria in reservoirs for public supply is notorious given 
its high toxicity to mammals, included humans beings. The most recurrent toxins in Brazilian water bodies 
are microcystins (MC). However, the recent record of cylindrospermopsin (CYN) in northeastern Brazil, 
Pernambuco state, alerts us to the possibility that this could be escalating. This study reports occurrence of 
MC and CYN, quantified with ELISA, in 10 reservoirs, devoted to public drinking supply in northeastern 
Brazil. The composition and quantification of the cyanobacteria community associated with these water 
bodies is also presented. From 23 samples investigated for the presence of MC, and CYN, 22 and 8 out were 
positive, respectively. Considering the similarity of the cyanobacteria communities found in reservoirs from 
Pernambuco, including toxin-producing species associated to MC and CYN, we suggest that geographic 
spreading can be favored by these factors. These issues emphasize the need for increased monitoring of 
MC and CYN in drinking supply reservoirs in Brazil.
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INTRODUCTION

Toxins from cyanobacteria are known to be harmful 
agents to human and animal health (Carmichael 
1994, Jochimsen et al. 1998, Soares et al. 2006). 
Besides the high poisoning potential of these toxins, 
chronic effects in human populations due to long-term 

exposure to hepatic and neurotoxins have also been 
reported (Suganuma et al. 1988, Falconer and Buckley 
1989, Falconer 1991, 1996, Nishiwaki-Matsushima et 
al. 1992, Carmichael 1994, Ito et al. 1997, Ding et al. 
1999, Cox et al. 2003, Clark et al. 2007).

Microcystins (MC) are hepatotoxins produced 
by some species of the Microcystis, Planktothrix and 
Anabaena/Dolichospermum genera, among others, 
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which act by inflicting damage to cells from the 
liver and other organs (Soares et al. 2007), possibly 
leading the organisms to death by hemorrhagic 
shock (Mackintosh et al. 1990, Hooser et al. 1991). 
Moreover, at sub-lethal doses, these toxins might 
act as tumor promoters (Ueno et al. 1996, Ding et 
al. 1999, Zhou et al. 2002).

Cylindrospermopsin (CYN) is a tricyclic alkaloid 
produced by Cylindrospermopsis (Ohtani et al. 1992, 
Berry and Lind 2010), Aphanizomenon (Banker et 
al. 1997, Preußel et al. 2006), Umezakia (Harada et 
al. 1994), Anabaena (Schembri et al. 2001, Spoof et 
al. 2006) and Lyngbya (Seifert et al. 2007). These are 
cytotoxins that irreversibly block protein synthesis, 
where the primary clinical symptoms are both 
hepatic and renal failure. They also act on tissues 
of the intestinal tract, vascular system and muscles 
(Terao et al. 1994, Falconer et al. 1999, Seawright 
et al. 1999, Froscio et al. 2008). Additionally, there 
are indications that CYN produces genotoxic, 
carcinogenic and mutagenic effects (Falconer and 
Humpage 2001, Saker et al. 2003). Following the 
first case of human intoxication provoked by CYN 
in Australia, 1979 (Hawkins et al. 1985), this toxin 
has been systematically found in other regions of the 
world (Carmichael et al. 2001, Li et al. 2001, Stirling 
and Quilliam 2001, Burns et al. 2002, Chonudomkul 
et al. 2004, Berry and Lind 2010), including Brazil 
(Bittencourt-Oliveira et al. 2011a).

Blooms of toxic cyanobacteria have been 
recorded worldwide and have become more 
numerous in both fresh and marine water (Hudnell 
et al. 2008, Paerl and Huisman 2009, Paerl et al. 
2011, O’Neil et al. 2012). Parallel to an increase in 
documentation regarding these events, new species 
have been found to be responsible for these toxins 
(Bormans et al. 2005, Cox et al. 2005, Richardson 
et al. 2007, Berry and Lind 2010, Sant’Anna et al. 
2011, Smith et al. 2011). As well, new occurrences of 
several toxins have been recorded in regions where 
they were historically thought not be present (O´Neil 
and Dennison 2005, Paul et al. 2005, Berry and Lind 

2010, Bittencourt-Oliveira et al. 2011a, Smith et al. 
2012, Mohamed and Al-Shehri 2013). With regard to 
Brazil, the observation of toxins from cyanobacteria 
in water intended for public drinking supply has 
been recorded in several regions, particularly in the 
south and the northeast (Molica et al. 2005, Anjos et 
al. 2006, Costa et al. 2006, Sotero-Santos et al. 2006, 
2008, Moschini-Carlos et al. 2009, Bittencourt-
Oliveira et al. 2010, 2012a).

The monitoring relevance of cyanobacteria 
toxins in reservoirs for public supply is notorious. 
Brazil was the first country to enforce a specific 
legislation for the control of cyanobacteria and 
their toxins in water used for drinking supply 
(Brasil 2011). Monitoring of reservoirs requires cell 
counting of potentially toxic cyanobacteria and toxin 
quantification (New Zealand, Ministry of Health 
2008, Brasil 2011, NHMRC, NRMMC 2011).

The most recurrent toxins in Brazilian water 
bodies are the MCs. However, the recent record of 
CYN in three reservoirs for public supply in the 
northeast region alerted to the possibility that it could 
be spreading (Bittencourt-Oliveira et al. 2011a).

Reservoirs in Pernambuco state were designed 
to fulfill different roles and multiple uses which, 
to some extent, make management difficult and, 
at the same time, increase the instability of the 
aquatic biota. These issues demand frequent 
environmental studies, plus investigation on the 
cyanobacteria communities and, in particular, their 
toxins. The occurrence of cyanobacteria toxins in 
these reservoirs (northeastern Brazil) was already 
recorded by a few authors using different techniques 
(Bouvy et al. 1999, Molica et al. 2005, Bittencourt-
Oliveira et al. 2010, 2011a, 2012a).

This study shows, for the first time, a wide 
and profound vision on the reservoirs in the 
northeastern region of Brazil with regard to 
cyanobacteria and their toxins. In addition to 
providing a glimpse of the current status for 
future research, this study can aid in comparative 
studies of diagnosis and monitoring, both on a 
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regional and global scale, given the expansion of 
species of toxic cyanobacteria and their impact 
on the human population.

This study presents data gathered from 10 
reservoirs of the state of Pernambuco, northeast 
of Brazil, destined for public drinking supply. 
The occurrence of MC and CYN, as well as the 
composition and quantification of the cyanobacteria 
community, is shown.

MATERIALS AND METHODS

STUDIED RESERVOIRS AND SAMPLINGS

The investigated reservoirs supply cities with high 
demographic densities. These reservoirs are located 
in regions where climates are warm but rain regimes 

can range from regular (Zona da Mata, Agreste) to 
sparse (Sertão, 37°C yearly average). Importance 
was given to reservoirs for public supply identified 
as those frequently having cyanobacteria blooms 
(Table I). The sampling sites were, preferentially, 
at the center of each reservoir.

Twenty three samples from 10 reservoirs in 
the state of Pernambuco (Table II) were collected, 
preferentially, in two different seasons, dry and 
rainy. Samples for cyanobacteria identification were 
gathered by surface dragging, using 20-µm mesh 
plankton net or a wide neck bottle in the case of 
high population density. Samples for quantification 
analyses were gathered using a van Dorn bottle in 
the subsurface (0.5 m).

TABLE I
Reservoirs, coordinates, use, phytogeographic region, water capacity (m3), maximum depth (m), 

target community and trophic state. S. Public Supply. W. Watering. F. Fishing. ND. No data.

Reservoir (Use) Coordinates
Phytogeographic 

Region
Water 

Capacity
Max. 
Depth

Target 
community

Trophic state

Alagoinha (S, W) 8°27’31.9”S, 6°46’33.5”W Agreste 2.0 x 104 5.0 11,886 ND

Arcoverde (S, W, F) 8°33’32.5”S, 6°59’07.5”W Agreste 1.7 x 108 20.0 55,902 Eutrophica

Carpina (S, F) 7°53’03.8”S, 5°20’37.8”W Zona da Mata 2.7 x 108 15.0 124,520 Eutrophicb

Duas Unas (S, W, F) 8°05’02”S, 35°30.6”W Zona da Mata 2.4 x 107 14.0 914,144 Eutrophicc

Ingazeira (S, W, F) 8°36’41.2”S, 6°54’23.7”W Agreste 4.8 x 106 5.0 9,311 Hypertrophicd*

Ipojuca (S, F) 8°20’43,7”S, 36°22’31,5”W Agreste 3.1 x 107 15.0 110,558 Eutrophice

Jucazinho (S, W, F) 7°59’03”S, 35°48’36.7”W Agreste 3.2 x 108 40.0 55,766 Eutrophicc

Mundaú (S, W, F) 8°56’42.8”S, 36°29’27.4”W Agreste 1.9 x 106 9.0 115,950 Eutrophicf

Tapacurá (S, W, F) 8°02’31.9”S, 35°11’46.5”W Zona da Mata 9.4 x 107 9.7 940,224 Eutrophicc

Venturosa (S, W) 8°34’43.6”S, 36°52’47.3”W Agreste 12.0 x 104 6.0 9,311 Eutrophicd*

a. Bittencourt-Oliveira et al. (2012b); b. Moura et al. (2011); c. Dantas et al. (2012); d*. Trophic State Index calculated from data of 
chlorophyll a of Bouvy et al. (2000) using trophic delineation according Forsberg and Ryding (1980); e. A.N. Moura (unpublished 
data); f. Dantas et al. (2010).
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TABLE II
Diversity, partial density (x 106 cell.mL-1), total density (106 cell.mL-1), partial biomass (mg.L-1) and total biomass 
of cyanobacteria in samples investigated. (%). Corresponding percentages of cell.mL-1 or mg.L-1 of cyanobacteria. 
(n). average number of cells per organism. Concentrations of microcystins (MC) and cylindrospermopsin (CYN) 

(ng.g-1 freeze-dried cells) in the environmental samples obtained by ELISA (three replicates). SD. Standard 
deviations. (*). Abundant species (°). Dominant species. (s). straight, (c). coiled. (-) absent.

Reservoir 
(Date sampling) 

Season
Cyanobacteria (n)

Partial 
Density

%
Total 

Density
Partial 

Biomass
%

Total 
Biomass

MC
(SD)

CYN
(SD)

Alagoinha 
(04.14.2009) 

Rainy

Cylindrospermopsis raciborskii 
s, c (34) *

2.16 42.06 27.51 51.84

Microcystis aeruginosa (420) * 0.88 17.18 8.36 15.75
Microcystis panniformis (419)* 1.21 23.49 5.14 6.55 12.34 53.07 836,280.0 -
Gleitlerinema amphibium (61) 0.51 9.95 5.11 9.63 (±16,122.0)
Planktothrix agardhii (57) 0.28 5.52 4.43 8.35
Others 0.093 1.80 1.11 2.09

Alagoinha 
(10.13.2009)

Dry

Planktothrix agardhii (75) ° 10.43 89.67 163.10 86.88
Sphaerospermopsis 
aphanizomenoides (45)

0.27 2.28 11.63 15.25 8.12 187.73 13,542.0 -

Cylindrospermopsis raciborskii 
s (30)

0.41 3.54 5.25 2.80 (±118.8)

Others 0.52 4.51 4.13 2.20

Arcoverde 
(05.12.2009) 

Rainy

Cylindrospermopis raciborskii 
s,c (26) °

95.70 77.93 12.44 82.98 306.1 33.3 

Geitlerinema amphibium (40) 24.20 19.71 122.80 2.42 16.14 14.99 (±16.8) (±4.0)
Others 2.90 2.36 0.13 0.88

Carpina 
(04.06.2009) 

Rainy

Planktothrix agardhii (81) ° 5.96 74.63 77.50 69.44
Cylindrospermopsis raciborskii 
s, c (24)

1.10 13.74 7.99 8.78 7.87 111.61 135.7

Sphaerospermopsis 
aphanizomenoides (44)

0.19 2.33 8.77 7.86 (±9.9) -

Geitlerinema amphibium (85) 0.32 4.05 4.21 3.77
Others 0.42 5.25 12.36 11.07

Carpina 
(10.06.2009) 

Dry

Planktothrix agardhii (80) ° 12.90 92.18 167.51 88.59
Planktothrix isothrix (88) 0.43 3.04 14.0 7.65 4.05 189.08 93.9 -
Geitlerinema amphibium (174) 0.42 3.01 5.46 2.89 (±8.3)
Others 0.25 1.77 8.45 4.47

Duas Unas 
(03.10.2009) 

Dry

Sphaerospermopsis 
aphanizomenoides (53) °

2.10 92.84 84.53 96.78

Cylindrospermopsis raciborskii 
s (24)

0.09 3.92 2.27 1.07 1.23 87.34 62.7 -

Others 0.07 3.24 1.74 1.99 (±4.4)

Duas Unas 
(05.04.2009) 

Rainy

Microcystis panniformis (540) ° 3,356.7 99.15 3,385.50 31.79 98.92 32.13 170.3 143.0
Cylindrospermopsis raciborskii 
s (30)

28.8 0.85 0.34 1.07 (±10.0) (±14.0)
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TABLE II (continuation)

Reservoir 
(Date sampling) 

Season
Cyanobacteria (n) Partial 

Density % Total 
Density

Partial 
Biomass % Total 

Biomass
MC
(SD)

CYN
(SD)

Ingazeira 
(04.14.2009) 

Rainy

Planktothrix agardhii (77) ° 10.30 69.70 160.58 76.77
Cylindrospermopsis raciborskii 
s, c (18) * 2.47 16.71 14.78 32.09 15.34 209.18 3,399.7 -

Geitlerinema amphibium (117) 1.64 11.10 12.32 5.89 (±299.2)
Others 0.37 2.48 4.19 2.00

Ingazeira 
(10.13.2009) 

Dry

Geitlerinema amphibium (117) ° 4.26 52.76 52.43 39.59
Planktothrix agardhii (77) * 2.64 32.67 8.07 39.53 29.85 132.44 2,032.0 -
Cylindrospermopsis raciborskii 
s, c (18) 0.87 10.79 27.93 21.09 (±78.4)

Others 0.30 3.78 12.54 9.47

Ipojuca 
(05.26.2010) 

Dry

Planktothrix isothrix (115) ° 1.33 92.37 25.41 95.81
Geitlerinema amphibium (54)  0.055 3.77 1.44 0.49 1.85 26.52 - 3.43
Others 0.053 3.86 0.62 2.34 (±0.5)

Ipojuca 
(05.03.2010) 

Rainy

Planktothrix isothrix (115) ° 1.40 91.69 26.58 93.86
Cylindrospermopsis raciborskii 
s, c (35) 0.12 7.63 1.53 1.16 4.10 28.32 10.3 201.5

Others 0.01 0.68 0.58 2.05 (±1.1) (±26.8)

Jucazinho 
(02.17.2009) 

Rainy

Planktothrix agardhii (118) ° 22.20 41.57 31.08 30.73
Sphaerospermopsis 
aphanizomenoides (41) 19.5 36.52 58.93 58.27 101.13 64.0 76.3

Cylindrospermopsis raciborskii 
s, c (16) 8.4 15.73 8.40 8.31 (±8.8) (±10.7)

Others 3.3 6.18 53.40 2.72 2.69

Jucazinho 
(03.24.2009) 

Dry

Planktothrix agardhii (117) ° 101.6 52.13 14.22 47.46
Geitlerinema amphibium (43)* 41.2 21.14 194.90 4.94 16.50
Sphaerospermopsis 
aphanizomenoides (41) 28.5 14.62 8.61 28.74 29.97 489.2 2,718.0

Cylindrospermopsis raciborskii 
s, c (16) 15.2 7.80 1.52 5.07 (±44.1) (±279.0)

Others 8.4 4.31 0.67 2.24

Jucazinho 
(10.27.2009) 

Dry

Planktothrix agardhii (118) ° 61.90 79.77 86.66 80.13
Geitlerinema amphibium (43) 6.90 8.89 77.60 8.28 7.66 108.15 117.7 0.5
Cylindrospermopsis raciborskii 
s, c (16) 6.40 8.25 6.40 5.92 (±8.7) (±0.1)

Others 2.40 3.09 6.81 6.30

Jucazinho 
(04.28.2009) 

Rainy

Planktothrix agardhii (117) ° 333.4 74.42 46.68 71.53
Geitlerinema amphibium (43) 63.7 14.22 448.00 7.64 11.71 65.25 83.6 201.4
Sphaerospermopsis 
aphanizomenoides (41) 29.3 6.54 8.85 13.57 (±3.7) (±90.0)

Cylindrospermopsis raciborskii 
s, c (16) 17.4 3.88 1.74 2.67

Others 4.20 0.94 0.34 0.51
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IDENTIFICATION AND EVALUATION OF DENSITY AND BIOMASS

Cyanobacteria identification was carried out under a 
light microscope (Nikon YS100, Melville, NY, USA), 
and by comparison with specialized literature. Samples 
for density evaluation (cells.mL-1) were maintained 
in acetic Lugol’s solution and settled in counting 
chamber according to Utermöhl (1958). Densities were 
converted into biovolume following the procedure 
in Hillebrand et al. (1999) and transformed into 

biomass, assuming a mass density of 1 mg.L-1 (Wetzel 
and Likens 2000). Average values were used for 
biovolume measurement (n = 50, for abundant species 
and n = 10, for less frequent species). Abundance and 
dominance were evaluated according to Lobo and 
Leighton (1986). Abundant species were those with 
densities above the community average density, while 
dominant species were those with density surpassing 
50% of the community total density.

TABLE II (continuation)

Reservoir 
(Date sampling) 

Season
Cyanobacteria (n) Partial 

Density % Total 
Density

Partial 
Biomass % Total 

Biomass
MC
(SD)

CYN
(SD)

Mundaú 
(09.02.2008) 

Rainy

Microcystis panniformis (827) ° 1.43 99.66 7.69 95.17 630.9

Others 0.05 3.34 1.48 0.39 4.83 8.08 (±41.1) -

Mundaú 
(03.17.2009) 

Dry

Microcystis panniformis (827) ° 16.11 87.92 86.68 77.13

Others 0.63 3.42 18.3 13.02 11.59 112.38 16,858.4 -

Cylindrospermopsis raciborskii 
s, c (17) 1.59 8.66 12.69 11.29 (±1,314.1)

Mundaú 
(05.05.2009)

Rainy

Microcystis panniformis (1143) ° 7.21 75.99 38.79 68.73 3,316.5

Cylindrospermopsis raciborskii 
s, c (23) 2.08 21.97 9.49 16.67 29.54 56.42 (±271.5) -

Others 0.21 2.05 0.96 1.70

Mundaú 
(11.09.2009) 

Dry

Microcystis panniformis (1143) ° 8.27 85.88 44.48 81.38

Cylindrospermopsis raciborskii 
s, c (17) 1.16 12.05 9.63 9.28 16.98 54.66 2,366.1 -

Others 0.20 2.07 0.90 1.65 (±114.5)

Tapacurá 
(03.10.2009) 

Dry

Microcystis panniformis (78) ° 1.49 71.95 39.33 85.93 52.7 

Planktothrix agardhii (73) 0.26 12.59 2.07 3.65 7.97 45.77 (±5.4) -

Others 0.32 15.48 2.79 6.1

Tapacurá 
(05.04.2009) 

Rainy

Microcystis panniformis (8653) ° 2.27 88.91 59.80 93.54 30.4

Planktothrix agardhii (73) 0.13 5.11 2.55 1.82 2.85 63.93 (±1.5) -

Others 0.15 5.98 2.31 3.61

Tapacurá 
(10.05.2009) 

Dry

Sphaerospermopsis 
aphanizomenoides (56) ° 1.73 43.10 70.85 65.64

Microcystis panniformis (3593)* 0.63 15.60 4.02 16.54 15.33 107.93 62.3 -

Cylindrospermopsis raciborskii 
s, c (16) 0.63 15.64 9.43 8.74 (±1.1)

Others 1.03 25.66 11.11 10.3

Venturosa 
(10.13.2009) 

Dry

Merismopedia tenuissima (16) ° 11.76 99.95 11.77 19.05 99.57 19.13 17.3 -

Others 0.006 0.05 0.08 0.43 (±1.4)
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MICROCYSTIN AND CYLINDROSPERMOPSIN ANALYSIS BY 

IMMUNOASSAY METHOD

Samples with approximately 20 L were collected, 
centrifuged, frozen in liquid nitrogen, and lyophilized. 
The lyophilized cells from environmental samples 
(~10 mg) with 3 mL of Milli-Q water were disrupted by 
ultrasonication (Microson Ultrasonic Cell Disruptor, 
Misonix, USA) and used directly for analysis of 
MC and CYN. Toxin quantification was carried out 
using a commercial ELISA kit (Beacon Analytical 
Systems Inc., Portland, ME, USA), following the 
manufacturer's protocols. The high and low detection 
limits for MC and CYN by ELISA were 2.0 
and 0.1 µg.L-1, respectively. Negative and positive 
controls for the ELISA analysis are included in the 
commercial kit. Triplicate analyses were performed 
and the values were averaged.

RESULTS

Occurrence of MC was found in all reservoirs (Table 
II). Only in one sample, out of 23 samples MC 
was absent (Ipojuca reservoir, 5/26/2010). It was 
found that in all samples cyanobacteria reported in 
literature as potentially toxin-producing (MC, CYN 
and SX), except for M. tenuissima. With respect to 
CYN, eight out of the 23 analyzed samples were 
positive in four reservoirs (Arcoverde, Duas Unas, 
Ipojuca, and Jucazinho). In these reservoirs MC 
and CYN were found simultaneously.

Diversity of cyanobacteria communities, 
their dominant and abundant taxa, densities and 
biomasses (total and partial), as well as the presence 
of MC and CYN in 23 samples were in the Table 
II. Cyanobacteria communities in the reservoirs 
were constituted, basically, by Cylindrospermopsis 
raciborskii (Woloszynka) Seenayya & Subba Raju, 
Planktothrix agardhii (Gomont) Anagnostidis & 
Komárek, Sphaerospermopsis aphanizomenoides 
(Forti) Zapomělová, Jezberová, Hrouzek, Hizem, 
Reháková & Komárková and Geitlerinema 
amphibium (Gomont) Anagnostidis. C. raciborskii 

and P. agardhii were dominant and abundant in five 
reservoirs, which had MC or CYN. Planktothrix 
species (P. agardhii and P. isothrix (Skuja) Komárek 
& Komárková) were dominant in five reservoirs and 
were responsible for more than 50% of cyanobacteria 
total biomass. In addition, they were the highest 
occurring genus in blooms, followed by Microcystis 
panniformis Komárek et al. in four reservoirs. The 
species Planktothrix agardhii and Microcystis 
panniformis reached the highest densities, sur
passing 107 cells.mL-1. Planktothrix agardhii, P. 
isothrix, Sphaerospermopsis aphanizomenoides, 
M. panniformis and Merismopedia tenuissima 
Lemmermann constituted monospecific blooms, 
accounted for up to 85% of cyanobacteria total 
biomass in the sample (Table II).

Generally speaking, there was no correlation 
between dry and rainy seasons, increase or decrease 
of superficial cyanobacteria biomasses or densities, 
in the reservoirs.

DISCUSSION

Cyanotoxins were found in 100% of the set of 
reservoirs (ten), where MCs were detected in 95.65% 
of the samples investigated for MC and CYN.

Early reports showed that toxic cyanobacteria 
have dominated in warmer waters of the tropics 
and subtropics. Within the regions with tropical 
and sub-tropical climates, Australia shows some 
similarity to the northeast of Brazil, due to its area, 
its many reservoirs, shallows, rivers and, mainly, 
its historical records of frequent blooms of toxic 
cyanobacteria (Burford et al. 2007, Burford and 
Davis 2011). Toxin production records are common 
in Brazil and Australia, and is less in other areas of 
the world (Fastner et al. 2003, Saker et al. 2003, 
Burford and Davis 2011).

Brazil has a history of contamination of 
freshwater systems by cyanotoxins (Teixeira et al. 
1993, Jochimsen et al. 1998). Over the last ten years, 
there have been frequent records of cyanobacteria 
blooms in reservoirs throughout the country (Anjos 
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et al. 2006, Costa et al. 2006, Chellappa et al. 
2008, Dantas et al. 2011, Bittencourt-Oliveira et 
al. 2011a, b, 2012a, Piccin-Santos and Bittencourt-
Oliveira 2012).

In spite of monospecific bloom occurrences 
in the reservoirs of Ingazeira, Jucazinho, Mundaú 
and Tapacurá, those blooms constituted by more 
than one species were the most frequent. Costa 
et al. (2006), Bittencourt-Oliveira et al. (2011a, 
2012b), Moura et al. (2011), and Lira et al. (2011) 
reported multi-species blooms of cyanobacteria 
constituted mostly by the genera Planktothrix and 
Cylindrospermopsis, with possible alternation of 
predominance according to the climate conditions. 

Apart from high temperatures, blooms in the 
northeast of Brazil are also enhanced by the hydric 
regime characterized by long and accentuated dry 
periods and by the length of time that the water 
remains in the reservoirs. Conditions associated 
with dry and rainy seasons, such as stratification 
and de-stratification of water bodies, as well as 
water turbidity, are appointed as favoring factors, 
allowing the establishment of other species with 
high population densities and forming multi-
species blooms of cyanobacteria (Dantas et 
al. 2011, Bittencourt-Oliveira et al. 2012b). 
Bittencourt-Oliveira et al. (2012b) observed in the 
Arcoverde reservoir an overwhelming increase of C. 
raciborskii populations during the dry season (de-
stratification), characterized by thermally stratified 
water where, in the rainy season, the cyanobacteria 
biomass dropped substantially due to the presence 
of other cyanobacteria in the community. These 
authors pointed out that species being favored by 
stratification cannot be considered a rule because in 
other reservoirs in the same region the population 
density of C. raciborskii increased all through 
the thermal de-stratification. These differences 
in the behavior of populations of cyanobacteria, 
particularly of C. raciborskii, also vary between 
Brazilian and Australian water bodies (Hawkins and 
Grifftiths 1993, Bittencourt-Oliveira et al. 2011b).

In all samples with MCs, potentially toxic 
cyanobacteria were found, as described in the 
literature. The single exception of nontoxic cyano
bacterium was M. tenuissima in the Venturosa 
reservoir (10.13.2009), even in high densities. 
Despite the high cellular density, the biomass was 
low (19.05 mg.L-1). Picoplanktonic cyanobacteria, 
such as Aphanocapsa cumulus Komárek & Cronberg 
(Domingos et al. 1999) and Epigloeosphaera brasilica 
Azevedo et al. (Bittencourt-Oliveira et al. 2012a), 
were already reported in Brazil as toxin-producing. It 
should be emphasized that no cyanobacteria have to 
be discarded with respect to toxin production.

Diversity of the cyanobacteria community, 
mainly constituted by toxin-producing species 
(Cylindrospermopsis raciborskii, Planktohrix 
agardhii, Sphaerospermopsis aphanizomenoides and 
Geitlerinema amphibium), was similar in all reservoirs, 
except for Merismopedia tenuissima (Venturosa 
reservoir). Such homogeneity of cyanobacteria 
communities in reservoirs of the state of Pernambuco 
corroborate previous studies (Bouvy et al. 2000, 2003, 
Dantas et al. 2011, Lira et al. 2011, Moura et al. 2011, 
Bittencourt-Oliveira et al. 2011a, b, 2012a).

In the studied Brazilian reservoirs, C. 
raciborskii shared dominance with species of 
Planktothrix, whereas P. agardhii and P. isothrix 
formed monospecific blooms which accounted for 
up to 85% of the total cyanobacteria biomass in the 
sample (Table II). Cylindrospermopsis raciborskii, 
Sphaerospermopsis aphanizomenoides previously 
enominated Aphanizomenon aphanizomenoides 
(Zapomělová et al. 2009, 2010), G. amphibium, 
Microcystis and Planktothrix species are potentially 
microcystin, cylindrospermopsin and saxitoxin-
producing. On the other hand, of the mentioned 
species, only C. raciborskii (Ohtani et al. 1992, Li et 
al. 2001) and species of the genus Sphaerospermopsis 
(Aphanizomenon spp.) (Preußel et al. 2006, Yilmaz et 
al. 2008) have been described as producers of CYN.

Although populations of C. raciborskii and 
Aphanizomenon/Sphaerospermopsis spp. are 
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common in the country, the toxin CYN was found 
only recently in Brazil (Bittencourt-Oliveira et 
al. 2011a). However, even though CYN occurs in 
reservoirs with high densities of C. raciborskii and 
Sphaerospermopsis no CYN-producing strain has 
been isolated in order to verify which species was 
responsible for producing this toxin. In Brazil no 
strain was reported as CYN-producing.

The Jucazinho reservoir had the greatest con
centrations of CYN, associated with a high biomass 
of Planktothrix agardhii, Sphaerospermopsis 
aphanizomenoides and Geitlerinema amphibium. 
P. agardhii was the predominant species in three 
out of four samples in this reservoir, with total 
cyanobacteria biomass ranging from 30.73 to 
80.13%, but there were no reports of an association 
with CYN production.

The sample from the Arcoverde reservoir taken 
on May 12, 2009 was the only one with an expressive 
predominance of C. raciborskii and also had the 
lowest concentrations of CYN (33.3 ng. g-1 freeze-
dried cells). Therefore, biomass and density values 
of MC and CYN-producing cyanobacteria were not 
proportional to the concentrations of the measured 
toxins. This fact was already reported in previous 
studies undertaken in the reservoirs of the region 
(Piccin-Santos and Bittencourt-Oliveira 2012).

CONCLUSION

The similarity of cyanobacteria communities in 
the investigated reservoirs, associated with both 
the occurrence of MC and CYN and adequate 
environmental conditions, favors geographic spreading 
of toxic blooms in the region. This circumstance 
emphasizes the need for increased monitoring of MC 
and CYN in drinking supply reservoirs in Brazil.
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RESUMO

O Brasil tem um histórico de florações e contaminações 
por toxinas de cianobactérias nos seus ecossistemas de 
água doce. A relevância do monitoramento de toxinas 
de cianobactérias em reservatórios de abastecimento 
público é notória, devido à sua alta toxicidade para 
mamíferos, inclusive seres humanos. As cianotoxinas 
mais recorrentes em corpos de água brasileiros são 
microcistinas (MC). No entanto, o registro recente 
de cilindrospermopsina (CYN) no nordeste, estado 
de Pernambuco, nos alerta para a possibilidade do 
aumento de novas ocorrências. Este estudo relata a 
ocorrência de MC e CYN, quantificadas por ELISA, em 
10 reservatórios destinados ao abastecimento público 
do nordeste do Brasil. Também são apresentadas 
a composição e a quantificação da comunidade de 
cianobactérias associadas a estes corpos de água. Das 
23 amostras investigadas, 22 e 8 foram positivas em 
relação, respectivamente, a MC e CYN. Considerando 
a similaridade das comunidades de cianobactérias 
encontradas nos reservatórios de Pernambuco e a 
presença de espécies potencialmente produtoras de MC 
e CYN, nós sugerimos que uma expansão geográfica 
possa ser favorecida por esses fatores. Estas questões 
enfatizam a necessidade de aumentar o monitoramento 
de MC e CYN em reservatórios de abastecimento 
público no Brasil.

Palavras-chave: floração, algas nocivas, monitoramento, 
toxinas, qualidade de água.
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