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ABSTRACT
The Epinephelidae form a group of species of high biological and economical interests. It´s phylogeographic 
patterns are not well known especially the distributed populations in the western region of the Atlantic 
Ocean. Among the representatives is a small species called Cephalopholis fulva, Coney, which presents a 
wide geographical distribution, polychromia, hermaphroditism and is quickly becoming a large target for 
the exploration of commercial fishing. The genetic and historical demography were obtained through the 
partial sequence analysis of Control Region from six locations on the coastline of Brazil from the northeast 
coast to the southwest coast, including the oceanic islands of Rocas Atoll and Fernando de Noronha 
Archipelago. The analyzed samples revealed a high genetic variability and a strong gene flow among the 
sampled locations. Additionally, the genetic data revealed that population expansions probably occurred 
due to the changes in the sea levels that occurred during the Pleistocene. The large population connectivity 
found in Coney constitutes relevant conditions for their biological conservation.
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INTRODUCTION

Some species of the Epinephelidae family show 
peculiar biological characteristics which make 
them particularly vulnerable to climate changes, 

fishing and environmental degradation, such as high 
longevity, late sexual maturation, hermaphroditism, 
reproductive aggregation and need of nurseries in 
estuarine regions (Coleman 1999). In fact, around 
40% of this family´s species are considered under 
some level of anthropogenic threat (Morris 2000). 



An Acad Bras Cienc (2015) 87 (1)

122 ALLYSON S. DE SOUZA et al.

Genetic population studies are scarce for 
Epinephelidae, despite the family’s increasing 
commercial exploitation (Rivera et al. 2004, Zatcoff 
et al. 2004, Maggio et al. 2006, Silva-Oliveira 
et al. 2008). The Epinephelidae family consists 
of around 160 species distributed in 15 genders 
(Nelson 2006).  This group has representatives of 
different sizes. For example, the Black grouper, 
Mycteroperca bonaci Poey, 1860 and the Goliath 
grouper, Epinephelus itajara Lichtenstein, 1822, 
which is considered endangered in Brazil (MMA 
2004),  and smaller species like the Coney, 
Cephalopholis fulva Linnaeus, 1758. 

The biological characteristics of the Coney such 
as their small size, abundance and broad geographic 
distribution through Atlantic´s Western coast makes 
this species particularly indicated for phylogeographic 
analysis. In fact, its geographic distribution extends 
from the Bermudas and South Carolina (USA), to the 
Southeast of Brazil, including the oceanic islands in 
Rocas Atoll, and Fernando de Noronha Archipelago 
(Heemstra and Randall 1993, Freitas et al. 2003, 
Sazima et al. 2005) and Trindade and Martim Vaz 
(Gasparini and Floeter 2001). Polychromatism is a 
characteristic of this species, not entirely known in all 
its extension, although it has indications of possible 
adaptive value, related to the aggressive mimicry of 
some colors (Sazima et al. 2005).

Some reproductive aspects of marine fishes 
interfere with the genetic diversity pattern; among 
them are the sex-determining mechanisms. Like 
many other Epinephelidae, Coney is a protogynous 
hermaphrodite, in which the female reaches sexual 
maturity at 16 cm and begins their sexual reversion 
into a male when they reach approximately 20 cm, 
starting to exhibit territoriality and harem formation 
(Heemstra and Randall 1993, Coelho 2001, Araújo 
and Martins 2006). According to the evolutionary 
point of view, hermaphroditism can be an advantage, 
in relation to gonochorism, among other aspects, 
when presented in small populations with great 
fluctuations between sexes (Borgia and Blick 1981).

Despite Coney not being considered an endangered 
species, its fishing is important in the Caribbean (Trott 
2006), and seems to have continually increased due 
to a displacement of fishing pressure on smaller size 
species, having in mind the decrease of populations 
of large fish and the most commercially valued fish 
(IUCN 2010). In fact, the Coney capture volume has 
increased since the beginning of the 1990’s (Martins 
et al. 2005).  Between the years of 1996 and 2000, the 
Coney represented 2.4% of the total fishing production 
in the Northeast of Brazil (Frédou et al. 2006). With 
an average of 1,116 tons/year, the Coney represented 
the most abundant species of collected samples in the 
Central coast of Brazil (Klippel et al. 2005, Martins 
et al. 2007). As a result of this exploitation, in some 
areas the effects of fishing were detected through the 
abundance and space distribution of the individuals in 
relation to the depth (Coelho 2001).

Signs of overexploitation of C. fulva, as well as 
its extensive geographical distribution in the Atlantic 
Ocean and the presence of many color morphs, make 
studies that identify its phylogeographic aspects and 
genetic variability levels particularly favorable. This 
data will provide a comparative base to establish 
future interpopulational surveys on this species.  
Here we present genetic data obtained from partial 
sequences from the D-loop mitochondrial region 
from samples collected in a broad ocean strip of the 
Brazilian coast, covering continental and insular 
coast environments. The elevated genetic diversity 
and absence of structuring along all of the sampled 
areas suggests the existence of a single panmictic 
population along the Brazilian coast. 

MATERIALS AND METHODS

SPECIMENS COLLECTION

At the conclusion of this research there was no 
Animal Ethics Committee at the research institute 
where this study was conducted. Thus, this study 
was carried out in accordance with Brazilian 
law regarding the use of laboratory animals 
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(Law no. 11.794/2008) and supported by the 
Brazilian Institute of Environment and Renewable 
Natural Resources (IBAMA, Processes Numbers 
556793/2009-9 and 02001.001902/06-82). The 
authors underscore that the specimens were 
sacrificed under complete anesthesia, and all 
efforts were made to minimize suffering.
A total of 204 specimens of Coney showing 
different color morphs (Fig. 1A-D) were used in 
the genetic analysis. The samples were caught in 
the year 2009, by using line and hook or baited 
traps, in the ocean islands of Fernando de Noronha 

Figure 1 - The Cephalopholis fulva sampling locations are indicated with red stars. Coastal areas: Ceará 
(CE), Rio Grande do Norte (RN), Bahia (BA) and Espírito Santo (ES). Insular regions: Rocas Atoll (RA) 
and Fernando de Noronha Archipelago (FNA); SEC = South Equatorial Current, BC = Brazil Current, NBC 
= North Brazil Current. In detail some color morphs found in Coney (a-d). Photos by Allyson S. Souza.

Archipelago and Rocas Atoll, and also the coastal 
regions of the Northeast and Southeast of Brazilian 
coasts, most precisely in the coast of the states of 
Ceará (CE), Rio Grande do Norte (RN), Bahia (BA) 
and Espírito Santo (ES) (Fig. 1) (Table I). The most 
extreme collection points covered approximately 
2,100 km of distance. The samples were 
taxonomically identified according to Heemstra 
and Randall (1993). Fragments of hepatic tissue 
and/or fin tissue were conditioned in micro tubes 
(1.5 ml) with ethylic alcohol and methyl alcohol 
(1:1) and stored in temperature of -20°C.
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EXTRACTION, AMPLIFICATION AND DNA SEQUENCING

The total DNA extraction was performed according 
to Sambrook et al. (1989). The hypervariable region 
1 (HVR-1) of control region (D-loop) of mtDNA was 
amplified using primers CR-A and CR-E described 
by Lee et al. (1995). Each reaction contained 4 μl 
of dNTP (1.25 mM), 2.5 μl of tampon (10x), 1 μl of 
MgCl2 (50 mM), 2.0 μl of each primer (10 pmol/μl), 
1-1.5 μl of total DNA, 0.3 μl of Taq DNA Polimerase 
(5U/μl) (Invitrogen, USA) and water Milli-Q for a 
final volume of reaction of 25 μl. The used cycling 
conditions consisted of initial denaturation at 94°C 
for 2 minutes; 30 denaturation cycles at 94°C for 
45 seconds, hybridization at 52°C for 45 seconds, 
extension at 72°C for 1 minute; and final extension 
at 72°C for 2 minutes. The PCR products (5 μl) were 
purified with enzymes exonuclease I (3.3 U/reaction) 
and shrimp´s alkaline phosphatase (0.66 U/reaction) 
(GE Healthcare), in thermal cycler, submitting the 
mix to a cycle of 30 min in 37°C and 15 min in 
80°C. The samples were sequenced in EMBRAPA 
(Brazilian Company of Agricultural Development) 
Sequencing Platform through the automatic DNA 
sequencer ABI Prism 3700 (Applied Biosystems).

mtDNA ANALYSIS

The obtained electropherograms were checked 
using Bioedit (Hall 1999) and an automatic 
multiple alignment was performed in the Clustal-X 
application (Thompson et al. 1997).

The saturation between transitions and 
transversions in the sequences was checked by 
the software DAMBE (Xia and Xie 2001). The 
software jModelTest 2.1.4 (Guindon and Gascuel 
2003, Darriba et al. 2012) was used to select the 
best-fit model of nucleotide substitution. The genetic 
relationships among samples were evaluated through 
neighbor-joining method using MEGA5 (Tamura 
et al. 2011). The significance of the groupings in 
all generated trees was estimated using bootstrap 
analysis, based on 1,000 pseudo-replicates.

A haplotype network was set up using the 
median vector method available in the Network 4.5 
program (Bandelt et al. 1999).

The levels of genetic diversity, population 
structuring, through the estimative of FST (Wright 
1978), Mantel test (Mantel 1967) and AMOVA 
(Excoffier et al. 1992) were obtained by Arlequin 
3.5 (Excoffier and Lischer 2010). The historical 
demography was estimated by statistic Fs (Fu 1997) 
and D (Tajima 1989). Complementary to these, the 
population expansion condition was investigated 
through analysis of frequencies of the pair-to-pair 
differences (mismatch distribution), based on three 
parameters, θ0, θ1 (frequencies of the pair-to-pair 
differences between the sequences, before and after 
the population expansion) and τ (time of expansion 
expressed in mutational time unities) (Rogers and 
Harpending 1992, Rogers 1995). These estimates 
were obtained using Arlequin 3.5 (Excoffier and 

Sampled geographical localities Abbreviation Geographic Coordinates n
Ceará state CE 03°42’S - 38°30’W 37

Rio Grande do Norte state RN 05°16’S - 35°22’W 42
Bahia state BA 13°00’S - 38°29’W 48

Espírito Santo state ES 20°20’S - 40°14’W 30
Rocas Atoll RA 03°51’S - 33°49’W 11

Fernando de Noronha Archipelago FNA 03°50’S - 32°24’W 36
Total 204

TABLE I 
Collection points and analyzed samples of coney through the coast of Brazil.

n = Amostral number.
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Lischer 2010). Values of τ were transformed in real 
time, since the expansion estimate time, from u = 
μmt, where u is the mutational rate by segment of 
mtDNA, μ is the mutational rate estimated for the 
analyzed segment; mt is the amount of the analyzed 
nucleotide bases. Subsequently, τ = 2ut, where t is 
the estimated time of expansion occurrence since 
then. The generation time adopted for the species 
Coney was one year (Heemstra and Handall 1993, 
Araújo and Martins 2006, 2009). The mutation rates 
(μ) adopted for the HVR-1 control region was 8.24 
x 10-8 and 9.30 x 10-8 (Domingues et al. 2005). In 
addition, the raggedness index (Harpending 1994) 
and the sum of the squared deviations (SSD) between 
observed and expected mismatch distribution were 
calculated to validate the estimated expansion model 
(Schneider and Excoffier 1999).

RESULTS

SEQUENCE ANALYSIS

A total of 388 bp of HVR-1 sequence was resolved 
on 204 specimens (Genbank accession numbers 
of haplotypes: KC831794 - KC831953) from 

six geographical localities revealing 94 parsimony 
informative sites and 153 nucleotide substitutions 
(23 transversions and 130 transitions). The plot 
of transition/transversion vs. genetic distance did 
not indicate the presence of saturation (Fig. 2). The 
JC Model (Jukes and Cantor 1969) was selected as 
the best-fit model of nucleotide substitution for the 
sequences. The content of A/T was clearly higher 
(69.3%) than G/C (G=11.46%, C=19.28%, T=30.14% 
e A=39.18%). The haplotype diversity (h) and 
nucleotide diversity (π) were high and very similar 
among geographical localities, varying respectively 
from 0.977 to 0.998 and 0.022 to 0.024 (Table II).  
These high values of diversity were reflected both in 
the neighbor-joining analysis, which revealed a large 
polyatomic tree (there were no significant clusters of 
samples corresponding to sampling localities; Fig. 
3) and in the haplotype analysis, which revealed 
a star-shaped haplotype network with numerous 
connections between the median vectors (red circles, 
Fig. 4), suggesting the existence of a single panmictic 
population of Coney in Brazilian waters. Furthermore, 
no genetic differentiation was found among the 
different color morphs found in Coney.

Figure 2 - Plot of transition/transversion rates vs. genetic distance of the HVR-1 sequences of C. fulva.
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N = number of individuals; H = number of haplotypes; h = haplotype diversity; π = nucleotide diversity; 
sd = standard deviation.

TABLE II 
Indexes of genetic diversity among geographic samples of coney.

Geographical localities N H h ± sd π ± sd
Ceará state (CE) 37 36 0.998 ± 0.006 0.023 ± 0.012

Rio Grande do Norte state (RN) 42 38 0.994 ± 0.007 0.022 ± 0.011
Bahia state (BA) 48 46 0.997 ± 0.005 0.023 ± 0.012

Espírito Santo state (ES) 30 22 0.977 ± 0.014 0.024 ± 0.013
Rocas Atoll (RA) 11 10 0.981 ± 0.046 0.024 ± 0.013

Fernando de Noronha Archipelago (FNA) 36 34 0.996 ± 0.007 0.022 ± 0.011
Insular populations (RA, FNA) 47 43 0.995 ± 0.005 0.023 ± 0.012

Coastal populations (CE, RN, BA, ES) 157 134 0.997 ± 0.001 0.023 ± 0.011
All populations (CE, RN, RA, FNA, BA, ES) 204 173 0.997 ± 0.000 0.023 ± 0.011

Figure 3 - Neighbor-joining tree constructed using Jukes and Cantor distances and inferred from 204 samples of Coney. Each 
color represents where each sample was collected. CE = Ceará, RN = Rio Grande do Norte, RA = Rocas Atoll, FNA = Fernando 
de Noronha Archipelago, BA = Bahia, ES = Espírito Santo. Bootstrap values   greater than 70 are shown in the branches.
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Figure 4 - Haplotype network based on HVR-1 sequences of Coney. The size of the circles are proportional to the frequency of 
haplotypes. Each color represents where each sample was collected. CE = Ceará, RN = Rio Grande do Norte, RA = Rocas Atoll, 
FNA = Fernando de Noronha Archipelago, BA = Bahia, ES = Espírito Santo.

Areas CE RN RA FNA BA ES
CE - 0.761 ± 0.0057 0.183 ± 0.0034   0.650 ± 0.0045 0.601 ± 0.0042 0.206 ± 0.0043
RN -0.006 - 0.659 ± 0.0019           0.659 ± 0.0042 0.540 ± 0.0048 0.052 ± 0.0016
RA 0.015 0.031 - 0.059 ± 0.0022            0.047 ± 0.0018 0.105 ± 0.0035

FNA -0.004 -0.004 0.028 - 0.279 ± 0.0042            0.029 ± 0.0017
BA -0.003 -0.001 0.035* 0.003 - 0.033 ± 0.0017            
ES 0.007 0.019 0.031 0.025* 0.020* -

TABLE III 
FST estimatives between geographical populations based on HVR-1 of coney.

Upper diagonal = p values ± confidence interval; below diagonal = Fst values; *p<0.05.

POPULATION STRUCTURING

The pairwise population comparison by FST (Wright 
1978) showed, in most cases, negative or not 
significant values. Just three situations with significant 
FST were found, which were between Bahia and 
Espírito Santo (FST =0.020), Fernando de Noronha 

Archipelago and Espírito Santo (FST=0.025) and 
between Rocas Atoll and Bahia (FST=0.035) (Table 
III). The Mantel test found no association between 
the FST values and geographic distances (p > 0.05).

AMOVA analyses using different population 
groupings indicate that the higher variation 
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Comparisons Source of variation Percentage of 
variation ɸ statistic p value

All localities

(CE, RN, RA, FNA, BA, ES)
Among  populations 0.65 ɸst = 0.006 0.057
Within populations 99.35 - -

Insular vs. coastal localities
((RA, FNA) x (CE, RN, BA, ES)) Among groups -0.21 ɸct = -0.002 0.415

Among  populations  within  groups 0.74 ɸsc = 0.007 0.044*
Within populations 99.47 ɸst = 0.005 0.046*

Insular localities
(RA, FNA) Among populations 2.73 ɸst = 0.027 0.056

Within populations 97.27 - -
Coastal localities

(CE, RN, BA, ES)
Among populations 0.46 ɸst = 0.004 0.111
Within populations 99.54 - -
Within populations 97.27 - -

TABLE IV 
Hierarchical analysis of molecular variance (AMOVA) based on HVR-1 of coney. 

*Significant at the 0.05 level.

Geographical 
localities D Fs Θ0 Θ1 Rag. (p) SSD (p) τ Time 

(103 years ago)
CE -1.70** -24.78** 0.010 234.843 0.006(0.72) 0.001(0.57) 9.4 135 - 130
RN -1.77** -24.78** 0.012 78.681 0.006(0.71) 0.002(0.52) 9.6 150 - 133
RA -1.00 -2.40 0.008 108.046 0.036(0.52) 0.012(0.63) 10.2 159 - 141

FNA -1.66** -24.80** 0.000 255.000 0.006(0.98) 0.037(0.00**) 5.7 89 - 78
BA -1.69** -24.75** 0.008 116.445 0.005(0.82) 0.000(0.84) 9.5 148 - 131
ES -1.04 -6.58** 0.000 9999.00 0.015(0.12) 0.007(0.09) 10.2 159 - 141

Insular localities 
(RA, FNA) -1.79** -24.76** 2.376 122.031 0.004(0.82) 0.000(0.80) 7.1 111 - 98

Coastal localities 
(CE, RN, BA, ES) -1.86** -24.40** 0.021 224.687 0.005(0.52) 0.000(0.25) 9.6 148 - 131

All localities 
(CE, RN, RA, 
FNA, BA, ES)

-1.92** -24.30** 0.031 127.421 0.004(0.72) 0.000(0.60) 9.5 135 - 130

TABLE V 
Neutrality and geographic expansion indexes of coney geographic samples. 

D = Tajima´s D; Fs = Fu´s Fs; Ɵ0 e Ɵ1 = Mutation parameters before and after expansion, respectively; Rag. = Raggedness index; SSD = Sum of 
the squared deviations; τ = Mode of the mismatch distribuition; *p<0.05; **p<0.01.

percentage happens within populations (97.27% - 
99.54%) and no significant differentiation between 
the groupings coast-to-coast, coast-to-island or 
island-to-island (Table IV).

NEUTRALITY AND DEMOGRAPHIC HISTORY

The neutrality tests showed negative values for D and 
Fs for all sampled geographical localities and groupings 
(Table V), which indicates the non-neutral nature of 

the Coney´s HVR-1, and supports the hypothesis of 
demographic expansion. The mismatch distribution 
revealed in a general unimodal pattern, especially 
for the groupings “Insular populations”, “Coastal 
populations” and “All populations”, supporting a 
model of sudden expansion (Fig. 5). In addition to 
these tests, raggedness index and SSD (Harpending 
1994) also supports the idea that Brazilian Coney 
population is undergoing expansion (Table V).
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Figure 5 - Pairwise mismatch distribution for HVR-1 of Coney. A = Ceará (CE), B = Rio Grande do Norte (RN), C = Rocas Atoll 
(RA), D = Fernando de Noronha Archipelago (FNA), E = Bahia (BA), F = Espírito Santo (ES), G = Insular populations (RA, 
FNA), H = Coastal populations (CE, RN, BA, ES) and I = All populations (CE, RN, RA, FNA, BA, ES).
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The estimate τ values indicate that demo-
graphic expansions in this species happened 
between 98 and 111 thousand years ago in insular 
populations (Rocas Atoll and Fernando de Noronha 
Archipelago) and between 131 and 148 thousand 
years ago in coastal populations (CE, RN, BA, 
and ES). Considering a panmixia framework and 
analyzing all sampled populations as one, the 
expansion would have happened between 130 - 135 
thousand years ago (Table V).

DISCUSSION

GENETIC VARIABILITY AND STRUCTURE OF CONEY 

POPULATION

The control region mtDNA of the geographic 
samples of Coney show high values of haplotype 
diversity (0.977- 0.998) and nucleotide diversity 
(2.2% - 2.4%), when compared with another Atlantic 
grouper, Epinephelus itajara (Silva-Oliveira et al. 
2008). Silva-Oliveira et al. (2008) have analyzed 
populations of E. itajara in the Northern Brazilian 
coast and found values   of haplotype and nucleotide 
diversity considerably lower, varying from 0.86 – 
0.53 and 0.5% - 0.1%, respectively. E. itajara is 
a critically endangered species, and according to 
the authors, its low diversity values   were related to 
high fishing pressure and loss of habitat. 

The low FST values suggest extensive gene flow 
in almost all sampled regions, besides collected 
individuals located more to the South (ES) showed 
little genetic differentiation with those in Fernando 
de Noronha Archipelago (FNA) and Bahia (BA), 
more to the North. Likewise, the sample of BA also 
showed a small differentiation with samples from 
Rocas Atoll (RA). Curiously, the population of RA 
shows more similarity with the population of ES, 
farther south. This condition could suggest recent 
restrictions between these places; however, a biased 
sample can not be discarded. Incongruities between 
genetic patterns and geographical distribution along 
the Brazilian coast were also observed between 

populations of the Lutjanidae Ocyurus chrysurus 
(Vasconcellos et al. 2008). 

The estimate of FST, haplotype network 
and neighbor-joining analysis can not indicate 
genetic differentiation along the coast and ocean 
islands suggesting a genetic connectivity among 
the sites. In fact, the AMOVA analysis indicated 
that the highest genetic variation happens within 
populations. A low differentiation, next to the 
critical significance limit was shown between 
populations within groups ((RA, FNA) x (CE, RN, 
BA, ES)) (ɸSC = 0.007, p = 0.041). However, when 
analyzing insular locations (RA, FNA) versus 
coastal locations (CE, RN, BA, ES), the differences 
found do not reveal real groupings (p = 0.057 and 
p = 0.126, respectively). Furthermore, the presence 
of different color patterns found in Coney seems to 
be related to environmental or biological factors, 
because there is no genetic differentiation among 
the sampled color morphs. However, further 
analysis using nuclear genes may be used to confirm 
this condition.

The genetic homogeneity observed in Coney 
appears very different from other representatives 
of Epinephilinae, in which a pronounced genetic 
structuring has been identified in some grouper 
species such as Epinephelus akaara (FST ≤ 0.379; 
p<0.001) (Chen et al. 2008) and Epinephelus 
labriformis (FST ≤ 0.661; p = 0.001) (Craig et al. 
2006). Although other evidence is needed, the 
low level of genetic differentiation among the 
sampled locations could be related to the absence 
of dependence from estuarine regions in any life 
stage of the Coney, the adding of continuity of 
rocky substrates along the Brazilian coast and a 
directional regime of North and South currents.

HISTORICAL DEMOGRAPHY OF CONEY IN THE BRAZILIAN 

COAST

The glaciations of Pleistocene, have often 
been appointed as being relevant events for the 
establishment of phylogeographic and population 
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patterns currently shown by marine fish (Domingues 
et al. 2005, 2006, 2007, Santos et al. 2006, Craig et 
al. 2006, Zhang et al. 2006, He et al. 2010, Mobley et 
al. 2010, Viñas et al. 2010). In this sense, indicative 
indexes of the samples´ demographic past for each 
region were used, not only individually but also 
through geomorphological criteria for samples 
jointly placed in coastal and insular regions. Both 
neutrality tests Fs and D, showed negative and 
highly significant results, like mismatch distribution 
which appears unimodal, used in insular and coast 
clusters which appeared compatible with the 
populations that suffered expansion (Slatkin and 
Hudson 1991, Rogers and Harpending 1992, Ray 
et al. 2003, Excoffier 2004).

Dating by oxygen isotopes in two marine 
terraces of RN´s coast indicated that the Atlantic´s 
level in this region reached 8 ± 2m above the current 
sea level around 123.5 ± 5.7 thousand years ago 
(Fig. 6), period of the Pleistocene´s penultimate 
sea transgression (Barreto et al. 2002). Similar 
ocean elevation levels were determined for marine 
terraces located in BA´s coast (Bernat et al. 1983). 
This period corresponds to approximately the same 
period of the last population expansion of Coney in 
areas of the continental platform.

Distinct events seem to have influenced the 
asynchronic population expansion in insular and 
coastal clusters. The demographic expansion in 
coast cluster (CE, RN, BA, ES) occurred with 
a smaller number of individuals (θ0=0.021) 
than in insular regions (θ0=2.376). In fact, in 
coastal regions, the data shows a demographic 
expansion of Coney that is coincidental with the 
penultimate sea transgression which reached its 
top around 123.5 ± 5.7 thousand years ago, when 
the continental shelf was submerged again, making 
new habitats available to be taken, consequently 
causing the population expansion, emphasized in 
coast populations (see Fig. 7B).

This transgression event (during the Glacial 
Minimun) of Pleistocene is preceded by the maximum 
sea regression, occurred around 140 thousand years 
ago, which in some areas reached up to 100 meters 
below the current level (Hearty 1998) making 
practically the whole Brazilian continental shelf 
emerge. In this occasion the loss of broad natural 
habitat areas in the Brazilian coast possibly resulted in a 
deep decrease of population effectives in the Brazilian 
coast (Fig. 7C), like suggested by the low values of 
θ0 (Table V). In this period, as the continental shelf 
was emerged, Coney came to occupy seamounts that 
were not accessible due to depth, and a narrow area 
of the continental slope, which the depth has become 
the limiting factor for the occupation of Coney in the 
continental slope (Fig. 7C).

More recently, in last glaciation period, in 
the course of a growing decrease of the Atlantic 
Ocean’s level (Fig. 6), a population expansion 
involving only contingents of Coney located in 
insular environments was noticed. Values of θ0 

found for insular populations were much higher 
than those found in coast populations, indicating 
population expansion from a higher number of 
Coney individuals than those in the continent.

Coney inhabits areas in depths from 2 to 35 
meters (Gasparini and Floeter 2001), although the 
species have already been registered in 150 meters 

Figure 6 - Variations of Atlantic Ocean´s level and periods 
of population expansion of Coney in Brazilian coast 
(between 148,000 and 131,000 years; in yellow) and islands 
(between 111,000 and 98,000 years; in red). Modified from 
Barreto et al. 2002.
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of depth (Smith 1997), as represented in Fig. 7. So, 
its populations seem intensely prone to suffering 
interference by loss of areas in the continental 
platform during sea regressions (Fig. 7C). Besides, in 
general, ocean islands are considered more sensitive 
environments to environmental effects, they seem 
to have kept more population effectives during sea 

Figure 7 - Illustration representing the occupation areas 
of Coney along the variations of the sea levels during the 
Pleistocene; A = Submarine relief of the Brazilian coast and 
oceanic islands and the current sea level; Red areas represent 
the habitat occupied by Coney during periods of transgression 
(B) and marine regression (C).

regressions, by habitat expansion areas (Fig. 7C), 
consequently bringing higher environmental stability 
in relation to coastal areas, which are more shallow.

SYNERGISTIC ACTION OF FACTORS WHICH INTERFERE IN 
HISTORICAL DEMOGRAPHY AND POPULATION CONNECTIVITY

Among the conditions that can be suggested for 
population expansions in Coney, some environmental 
characteristics of geologic/geographic nature seem 
to have contributed to a higher θ0 and asynchrony of 
the expansion period for insular populations.

The geological conformation and geographic 
position in which the oceanic islands of Fernando de 
Noronha Archipelago and Rocas Atoll are located, 
could have positively contributed to the maintenance 
of genetic homogeneity. These regions form, equally, 
conical mounts supported by the oceanic floor 
around 4,000 meters of depth (as represented in the 
Fig. 7A), depth much higher than that shown by the 
continental platform, but also easily impacted by sea 
regressions. For having conical shape, retractions of 
sea level could increase the available of rocky areas 
and consequently the areas of habitats for Coney 
individuals (Fig. 7C). This condition can explain the 
fact that the population expansion in Fernando de 
Noronha Archipelago and Rocas Atoll happened in 
a period of regression of the Atlantic Ocean´s levels. 

According to the geographic view, Fernando 
de Noronha Archipelago and Rocas Atoll are part 
of an alignment of, at least, six more submarine 
mounts of volcanic origin, the Fernando de Noronha 
Range which extends in continent direction. From 
this range, currently only these two insular regions 
are immersed (Almeida 2002, Kikuchi 2002), but 
under a scenario of decrease in the sea level, the 
insular environments could be wider and shelter 
more effectives of Coney from other historically 
immersed areas as the sea mountains (Fig. 7C).

Although evidences are preliminary, the low 
indexes of structuring of Coney between insular and 
continent regions or between continent regions can 
be explained by biological factors of the species and 
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geological conditions of the environment in which 
the species inhabits. This species shows high larval 
production, with release of 150.000 to 282.000 
eggs per female (Heemstra and Randall 1993). 
Despite the absence of data about the duration of 
the larval pelagic, in some representatives of the 
Epinephelidae family, this stage can reach 80 days 
(Lara et al. 2009), a period which is considered 
to be long comparing it to other Perciformes. In 
fact, the broad geographic distribution of Coney 
(Nelson 2006, Heemstra and Randall 1993), 
suggests an elevated level of dispersion and 
colonization of the species.

Associated to these biological characteristics, 
a system of ocean currents in the Brazilian Atlantic 
coast (Fig. 1) favors the larval dispersion and the 
subsequent population homogeneity. The main 
ocean current present in the Brazilian coast is the 
South Equatorial Current (SEC), which flows in 
East/West direction and forks between latitudes 12 
and 14, forming the North Brazil Current (NBC) 
and the Brazil Current (BC). Brazil Current flows 
parallel to the continental platform, in Northeast/
Southeast direction while North Brazil Current 
flows in Northeast/North direction (Castro and 
Miranda 1998, Lumpkin and Garzoli 2005). 
In the region of Fernando de Noronha´s range 
of mountains, the Atlantic Equatorial Current 
(AEC), which originates between the North and 
Northeast coasts of Brazil, flows under and in 
opposite direction of the South Equatorial Current 
(Mendes 2006). The action of single currents 
on a vast geographic area seems to perform an 
important role in the larval dispersion and genetic 
homogeneity of Coney.

Despite Coney being an increasing target 
of fishing for several years, the genetic profile 
obtained for the species does not show damaging 
effects coming from overfishing up until the 
present. Other than this, evidence of genetic 
connectivity has not been found among continent/
continent, continent/island and island/island areas. 

The broad geographic distribution, the small size of 
sexual maturation and the decrease in competition 
by capturing bigger size predators can be positively 
influencing its abundance and maintenance of 
genetic variability. So, even though Coney in 
Brazilian coast does not suggest specific handling 
actions, the genetic data which was obtained, allow 
monitoring and accessing the conservation status of 
the species in the future. 
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RESUMO

Epinephelidae forma um grupo de espécies de grande 
interesse biológico e econômico. Seus padrões 
filogeográficos são pouco conhecidos, principalmente 
nas populações distribuídas na região oeste do 
Oceano Atlântico. Entre seus representantes está a 
pequena espécie Cephalopholis fulva, Coney, a qual 
apresenta ampla distribuição geográfica, policromia e 
hermafroditismo, além de estar se tornando um alvo 
crescente da exploração pesqueira comercial. Os dados 
genéticos e histórico-demográficos foram obtidos 
através da análise de sequências parciais da Região 
Controle de seis localidades do litoral brasileiro, desde 
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o Nordeste até o Sudeste do Brasil, incluindo as ilhas 
oceânicas do Atol das Rocas e do arquipélago Fernando 
de Noronha. As amostras analisadas revelaram uma alta 
variabilidade genética e um forte fluxo gênico entre as 
localidades amostradas. Além disso, os dados genéticos 
relevaram expansões populacionais provavelmente 
relacionadas às mudanças no nível do mar ocorridas 
durante o Pleistoceno. A ampla conectividade 
populacional presente em Coney constitui uma condição 
relevante para a sua conservação biológica.

Palavras-chave: d-loop, glaciação, mtDNA, panmixia, 
filogeografia.
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